HS 09
Prof. J. Fröhlich

Exercise 4.1 Charged particle in an external electromagnetic field

a) By direct computation,

$$
p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}=m_{i} \dot{x}_{i}-\frac{q_{i}}{c} A\left(x_{i}\right) .
$$

b) Hence

$$
\dot{x}_{i}=\frac{1}{m_{i}}\left(p_{i}+\frac{q_{i}}{c} A\left(x_{i}\right)\right)
$$

and

$$
\begin{aligned}
H\left(x_{i}, p_{i}\right)= & \sum_{i} \dot{x}_{i} p_{i}-\mathcal{L}\left(x_{i}, \dot{x}_{i}\right) \\
= & \sum_{i} \frac{1}{m_{i}}\left(p_{i}+\frac{q_{i}}{c} A\left(x_{i}\right)\right) p_{i}-\sum_{i} \frac{1}{2 m_{i}}\left(p_{i}+\frac{q_{i}}{c} A\left(x_{i}\right)\right)^{2} \\
& +\sum_{i} q_{i} \varphi_{i}\left(x_{i}\right)+\sum_{i} \frac{q_{i}}{c}\left(p_{i}+\frac{q_{i}}{c} A\left(x_{i}\right)\right) A\left(x_{i}\right) \\
= & \sum_{i} \frac{1}{2 m_{i}}\left[p_{i}^{2}+\frac{q_{i}}{c}\left(p_{i} A\left(x_{i}\right)+A\left(x_{i}\right) p_{i}\right)+\frac{q_{i}^{2}}{c^{2}} A\left(x_{i}\right)^{2}\right]+\sum_{i} q_{i} \varphi_{i}\left(x_{i}\right)
\end{aligned}
$$

Notice that since we promote the p_{i} to operators they do not commute in general with $A\left(x_{i}\right)$. We have finally

$$
H\left(x_{i}, p_{i}\right)=\sum_{i} \frac{1}{2 m_{i}}\left(p_{i}+\frac{q_{i}}{c} A\left(x_{i}\right)\right)^{2}+\sum_{i} q_{i} \varphi_{i}\left(x_{i}\right) .
$$

c) For an electron the degrees of freedom are the spatial coordinates (x, y, z) and the charge is e. Therefore we have

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{p}) & =\frac{1}{2 m}\left(\mathbf{p}+\frac{e}{c} \mathbf{A}\right)^{2}+e \varphi \\
& \longrightarrow \frac{1}{2 m}\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}\right)^{2}+e \varphi
\end{aligned}
$$

so that the Schrödinger equation $i \hbar \frac{\partial}{\partial t} \Psi=H \Psi$ corresponds exactly to what we want.
d) After a gauge transformation, the left-hand side of the Schrödinger equation becomes

$$
i \hbar\left[\exp \left(-\frac{i e}{\hbar c} \chi\right) \frac{\partial}{\partial t} \Psi-\frac{i e}{\hbar c}\left(\frac{\partial}{\partial t} \chi\right) \exp \left(-\frac{i e}{\hbar c} \chi\right) \Psi\right]=\exp \left(-\frac{i e}{\hbar c} \chi\right)\left[i \hbar \frac{\partial}{\partial t} \Psi-\frac{e}{c}\left(\frac{\partial}{\partial t} \chi\right) \Psi\right]
$$

Let's expand the right-hand side:

$$
\left[\frac{1}{2 m}\left(i \hbar \nabla-\frac{e}{c} \mathbf{A}\right)^{2}+e \varphi\right] \Psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi-\frac{i \hbar e}{2 m c}(\nabla \cdot \mathbf{A}) \Psi-\frac{i \hbar e}{m c} \mathbf{A} \cdot \nabla \Psi+\frac{e^{2}}{2 m c^{2}} \mathbf{A}^{2} \Psi+e \varphi \Psi
$$

The different pieces transform as

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi \longrightarrow-\frac{\hbar^{2}}{2 m} \nabla^{2}\left[\exp \left(-\frac{i e}{\hbar c} \chi\right) \Psi\right] \\
& =\exp \left(-\frac{i e}{\hbar c} \chi\right)\left[-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+\frac{i \hbar e}{m c} \nabla \chi \nabla \Psi+\frac{i \hbar e}{2 m c}\left(\nabla^{2} \chi\right) \Psi+\frac{e^{2}}{2 m c^{2}}(\nabla \chi)^{2} \Psi\right] \\
& -\frac{i \hbar e}{2 m c}(\nabla \cdot \mathbf{A}) \Psi \longrightarrow-\frac{i \hbar e}{2 m c} \exp \left(-\frac{i e}{\hbar c} \chi\right)\left(\nabla \cdot \mathbf{A}+\nabla^{2} \chi\right) \Psi \\
& \left.-\frac{i \hbar e}{m c} \mathbf{A} \cdot \nabla \Psi \longrightarrow-\frac{i \hbar e}{m c} \exp \left(-\frac{i e}{\hbar c} \chi\right)(\mathbf{A}+\nabla \chi)\left[\nabla \Psi-\frac{i e}{\hbar c}(\nabla \chi) \Psi\right)\right] \\
& =\exp \left(-\frac{i e}{\hbar c} \chi\right)\left[-\frac{i \hbar e}{m c} \mathbf{A} \cdot \nabla \Psi-\frac{i \hbar e}{m c} \nabla \chi \nabla \Psi-\frac{e^{2}}{m c} \mathbf{A} \cdot(\nabla \chi) \Psi-\frac{e^{2}}{m c}(\nabla \chi)^{2} \Psi\right] \\
& \frac{e^{2}}{2 m c^{2}} \mathbf{A}^{2} \Psi \longrightarrow \frac{e^{2}}{2 m c^{2}} \exp \left(-\frac{i e}{\hbar c} \chi\right)\left[\mathbf{A}^{2}+2 \mathbf{A} \cdot(\nabla \chi)+(\nabla \chi)^{2}\right] \Psi \\
& e \varphi \Psi \longrightarrow \exp \left(-\frac{i e}{\hbar c} \chi\right)\left[e \varphi-\frac{e}{c} \frac{\partial}{\partial t} \chi\right] \Psi
\end{aligned}
$$

so that the right-hand side of the Schrödinger equation becomes

$$
\begin{gathered}
\exp \left(-\frac{i e}{\hbar c} \chi\right)\left[-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi-\frac{i \hbar e}{2 m c}(\nabla \cdot \mathbf{A}) \Psi-\frac{i \hbar e}{m c} \mathbf{A} \cdot \nabla \Psi+\frac{e^{2}}{2 m c^{2}} \mathbf{A}^{2} \Psi+e \varphi \Psi-\frac{e}{c}\left(\frac{\partial}{\partial t} \chi\right) \Psi\right] \\
=\exp \left(-\frac{i e}{\hbar c} \chi\right)\left[\frac{1}{2 m}\left(i \hbar \nabla-\frac{e}{c} \mathbf{A}\right)^{2}+e \varphi-\frac{e}{c} \frac{\partial}{\partial t} \chi\right] \Psi
\end{gathered}
$$

Canceling the exponential factor and removing the term $-\frac{e}{c} \frac{\partial}{\partial t} \chi$ on both side, one recover the initial Schrödinger equation.

Exercise 4.2 Landau problem

a) Obviously, $\varphi=0$ and \mathbf{A} time-independent ensure that $\mathbf{E}=0$, and

$$
\mathbf{B}=\nabla \times \mathbf{A}=\frac{1}{2} B \nabla \times\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
B
\end{array}\right)
$$

We have therefore

$$
\begin{aligned}
H \Psi & =\frac{1}{2 m}\left(i \hbar \nabla-\frac{e}{c} \mathbf{A}\right)^{2} \Psi \\
& =\frac{1}{2 m}\left[-\hbar^{2} \nabla^{2} \Psi-i \hbar \frac{e}{c}(\nabla \cdot \mathbf{A}) \Psi-2 i \hbar \frac{e}{c} \mathbf{A} \cdot \nabla \Psi+\frac{e^{2}}{c^{2}} \mathbf{A}^{2}\right]
\end{aligned}
$$

One can check that $\nabla \cdot \mathbf{A}=0, \mathbf{A} \cdot \nabla=\frac{1}{2} B\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$ and $\mathbf{A}^{2}=\frac{1}{4} B^{2}\left(x^{2}+y^{2}\right)$. Moreover since the electron moves in the plane (x, y) the Laplacian reads $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$. Therefore

$$
H \Psi=\frac{1}{2 m}\left[-\hbar^{2}\left(\frac{\partial^{2}}{\partial x^{2}} \Psi+\frac{\partial^{2}}{\partial y^{2}} \Psi\right)-i \hbar \frac{e B}{c}\left(x \frac{\partial}{\partial y} \Psi-y \frac{\partial}{\partial x} \Psi\right)+\frac{e^{2} B^{2}}{4 c^{2}}\left(x^{2}+y^{2}\right) \Psi\right]
$$

or in terms of momenta $p_{x} \sim-i \hbar \frac{\partial}{\partial x}$ and $p_{y} \sim-i \hbar \frac{\partial}{\partial y}$

$$
H=\frac{1}{2 m}\left[p_{x}^{2}+p_{y}^{2}+\frac{e B}{c}\left(x p_{y}-y p_{x}\right)+\frac{e^{2} B^{2}}{4 c^{2}}\left(x^{2}+y^{2}\right)\right]
$$

b) We have

$$
\begin{array}{rlrl}
q & =a x+b p_{y} & p=e y+f p_{x} \\
Q & =c y+d p_{x} & P=g x+h p_{y}
\end{array}
$$

and the usual commutation relations $\left[x, p_{x}\right]=\left[y, p_{y}\right]=i \hbar$ and $[x, y]=\left[p_{x}, p_{y}\right]=\left[x, p_{y}\right]=$ $\left[y, p_{x}\right]=0$.
The commutators $[q, P]$ and $[Q, p]$ are automatically zero. For the others, we have

$$
\left\{\begin{array} { l }
{ [q , Q] = a d [x , p _ { x }] + b c [p _ { y } , y] = i \hbar (a d - b c) } \\
{ [p , P] = e h [y , p _ { y }] + g f [p _ { x } , x] = i \hbar (e h - g f) } \\
{ [q , p] = a f [x , p _ { x }] + b e [p _ { y } , y] = i \hbar (a f - b e) } \\
{ [Q , P] = \operatorname { c h } [y , p _ { y }] + d g [p _ { x } , x] = i \hbar (c h - d g) }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
a d-b c=0 \\
e h-g f=0 \\
a f-b e=1 \\
c h-d g=1
\end{array}\right.\right.
$$

In order to compute the Hamiltonian, one has to invert the transformation above. We find

$$
\begin{array}{ll}
x=\frac{1}{a h-b g}(h q-b P) & p_{x}=\frac{1}{d e-c f}(e Q-c p) \\
y=\frac{1}{c f-d e}(f Q-d p) & p_{y}=\frac{1}{b g-a h}(g q-a P)
\end{array}
$$

and the Hamiltonian is then

$$
\begin{aligned}
H= & \frac{1}{2 m}\left[\frac{(e Q-c p)^{2}+2 \beta(e Q-c p)(f Q-d p)+\beta^{2}(f Q-d p)^{2}}{(c f-d e)^{2}}\right. \\
& \left.+\frac{(g q-a P)^{2}+2 \beta(g q-a P)(h q-b P)+\beta^{2}(h q-b P)^{2}}{(a h-b g)^{2}}\right]
\end{aligned}
$$

where we habe used the notation $\beta=e B / 2 c$. For the cross-terms in $q P$ and $Q p$ to vanish, one needs

$$
\begin{aligned}
c e+\beta(c f+d e)+\beta^{2} d f & =0 \\
a g-\beta(a h+b g)+\beta^{2} b h & =0
\end{aligned}
$$

Following the hint, we set $a=c=1 / \sqrt{2}$, and thus

$$
\begin{aligned}
& d=b \\
& \begin{array}{l}
f=\sqrt{2}(1+b e) \\
h=\sqrt{2}(1+b g)
\end{array} \quad \Longrightarrow \quad \begin{array}{c}
a h-b g=1 \\
g=e
\end{array} \\
& h=\sqrt{2}(1+b g) \quad g=e \\
& \Longrightarrow \quad \begin{array}{l}
\frac{1}{\sqrt{2}} e+\beta(1+2 b e)+\beta^{2} b(1+b e)=0 \\
\frac{1}{\sqrt{2}} e-\beta(1+2 b e)+\beta^{2} b(1+b e)=0
\end{array} \\
& \Longrightarrow e=-\frac{1}{2 b} \quad \Longrightarrow \quad-\frac{1}{2 \sqrt{2}} \frac{1}{b}+\beta^{2} \frac{\sqrt{2}}{2} b=0 \quad \Longrightarrow \quad b= \pm \frac{1}{\sqrt{2}} \frac{1}{\beta}
\end{aligned}
$$

We are free to choose the sign of b, so let's take -

$$
a=c=f=h=\frac{1}{\sqrt{2}} \quad b=d=-\frac{1}{\sqrt{2}} \frac{1}{\beta} \quad e=g=\frac{1}{\sqrt{2}} \beta
$$

so that we have finally

$$
\left\{\begin{array} { r l }
{ q } & { = \frac { 1 } { \sqrt { 2 } } (x - \frac { 1 } { \beta } p _ { y }) } \\
{ Q } & { = \frac { 1 } { \sqrt { 2 } } (y - \frac { 1 } { \beta } p _ { x }) } \\
{ p } & { = \frac { 1 } { \sqrt { 2 } } (\beta y + p _ { x }) } \\
{ P } & { = \frac { 1 } { \sqrt { 2 } } (\beta x + p _ { y }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
x & =\frac{1}{\sqrt{2}}\left(q+\frac{1}{\beta} P\right) \\
y & =\frac{1}{\sqrt{2}}\left(Q+\frac{1}{\beta} p\right) \\
p_{x} & =\frac{1}{\sqrt{2}}(\beta Q-p) \\
p_{y} & =\frac{1}{\sqrt{2}}(\beta q-P)
\end{array}\right.\right.
$$

And the Hamiltonian becomes then

$$
H=\frac{1}{m}\left(P^{2}+\beta^{2} Q^{2}\right)
$$

which corresponds to the Hamiltonian of an harmonic oscillator

$$
H=\frac{1}{2 m_{0}} P^{2}+\frac{m_{0} \omega_{0}^{2}}{2} Q^{2}
$$

with $m_{0}=m / 2$ and $\omega_{0}=2 \beta / m=e B / m c$.
c) Since the Hamiltonian of the system is the one of an harmonic oscillator, the energy levels are

$$
E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right)=\frac{\hbar e B}{m c}\left(n+\frac{1}{2}\right)
$$

Exercise 4.3 Particle in a one-dimensional square potential

a) For a constant potential $V(x)=V_{i}$, the time-independent Schrödinger equation becomes

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+V_{i} \psi(x)=E \psi(x) \\
\Longleftrightarrow \psi^{\prime \prime}(x)=\frac{2 m}{\hbar^{2}}\left(V_{i}-E\right)
\end{gathered}
$$

The solution will depend on the sign of the right-hand side:

$$
\Longrightarrow \quad \psi(x)=\left\{\begin{array}{clll}
A \exp \left(\frac{k_{i} x}{\hbar}\right)+B \exp \left(-\frac{k_{i} x}{\hbar}\right), & k_{i}=\sqrt{2 m\left(V_{i}-E\right)} & \text { if } \quad E<V_{i} \\
A \exp \left(i \frac{k_{i} x}{\hbar}\right)+B \exp \left(-i \frac{k_{i} x}{\hbar}\right), & k_{i}=\sqrt{2 m\left(E-V_{i}\right)} & \text { if } \quad E>V_{i}
\end{array}\right.
$$

where A and B are arbitrary constants.
We have then to treat the following cases:

1) $V_{1}<E<0$

Let's denote by ψ_{1}, ψ_{2} and ψ_{3} the wavefunction in the regions $(0, a),(a, b)$ and (b, ∞) respectively. We have

$$
\begin{array}{rll}
\psi_{3}(x) & =A e^{k_{3} x / \hbar}+B e^{-k_{3} x / \hbar} & k_{3}=\sqrt{-2 m E} \\
\psi_{2}(x) & =C e^{k_{2} x / \hbar}+D e^{-k_{2} x / \hbar} & k_{2}=\sqrt{2 m\left(V_{2}-E\right)} \\
\psi_{1}(x) & =E e^{i k_{1} x / \hbar}+F e^{-i k_{1} x / \hbar} & k_{1}=\sqrt{2 m\left(E-V_{1}\right)}
\end{array}
$$

The infinite potential for $x<0$ implies $\psi_{1}(0)=0$ and thus $F=-E$ and

$$
\psi_{1}(x)=2 i E \sin \left(\frac{k_{1} x}{\hbar}\right)
$$

By continuity we must have $\psi_{1}(a)=\psi_{2}(a)$ and $\psi_{1}^{\prime}(a)=\psi_{2}^{\prime}(a)$ and thus

$$
\begin{aligned}
& \hbar \frac{\psi_{1}^{\prime}(a)}{\psi_{1}(a)}= \frac{k_{1}}{\tan \left(k_{1} a / \hbar\right)}=\hbar \frac{\psi_{2}^{\prime}(a)}{\psi_{2}(a)}=k_{2} \frac{C e^{k_{2} a / \hbar}-D e^{-k_{2} a / \hbar}}{C e^{k_{2} a / \hbar}+D e^{-k_{2} a / \hbar}} \\
& \Longrightarrow\left(C e^{k_{2} a / \hbar}\right.\left.+D e^{-k_{2} a / \hbar}\right)=\frac{k_{2}}{k_{1}} \tan \left(k_{1} a / \hbar\right)\left(C e^{k_{2} a / \hbar}-D e^{-k_{2} a / \hbar}\right) \\
& \Longrightarrow \frac{D}{C}=e^{2 k_{2} a / \hbar} \frac{1-\frac{k_{2}}{k_{1}} \tan \left(k_{1} a / \hbar\right)}{1+\frac{k_{2}}{k_{1}} \tan \left(k_{1} a / \hbar\right)}
\end{aligned}
$$

The wavefunction must vanish at infinity, hence $A=0$. By continuity in b, we have

$$
\begin{aligned}
\hbar \frac{\psi_{2}^{\prime}(b)}{\psi_{2}(b)}= & k_{2} \frac{C e^{k_{2} b / \hbar}-D e^{-k_{2} b / \hbar}}{C e^{k_{2} b / \hbar}+D e^{-k_{2} b / \hbar}}=\hbar \frac{\psi_{3}^{\prime}(b)}{\psi_{3}(b)}=-k_{3} \\
& \Longrightarrow \frac{D}{C}=e^{2 k_{2} b / \hbar} \frac{k_{2}+k_{3}}{k_{2}-k_{3}}
\end{aligned}
$$

2) $\underline{0<E<V_{2}}$
3) $\underline{E>} V_{2}$
b)
c)

Exercise 4.4 Symplectic transformations

We have:

$$
\begin{aligned}
M \Omega M^{T}= & \left(\begin{array}{cc}
-B & A \\
-D & C
\end{array}\right)\left(\begin{array}{cc}
A^{T} & C^{T} \\
B^{T} & D^{T}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A B^{T}-B A^{T} & A D^{T}-B C^{T} \\
C B^{T}-D A^{T} & C D^{T}-D C^{T}
\end{array}\right)=\Omega=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\sum_{k}\left(A_{i k} B_{j k}-B_{i k} A_{j k}\right) & =0 \\
\sum_{k}\left(C_{i k} D_{j k}-D_{i k} C_{j k}\right) & =0 \\
\sum_{k}\left(A_{i k} D_{j k}-B_{i k} C_{j k}\right) & =\delta_{i j}
\end{aligned}
$$

Then, using the relations above, the commutators become:

$$
\begin{aligned}
{\left[Q_{i}, Q_{j}\right] } & =\sum_{k} \sum_{l}\left[A_{i k} q_{k}+B_{i k} p_{k}, A_{j l} q_{l}+B_{j l} p_{l}\right] \\
& =\sum_{k} \sum_{l}\left(A_{i k} A_{j l}\left[q_{k}, q_{l}\right]+A_{i k} B_{j l}\left[q_{k}, p_{l}\right]+B_{i k} A_{j l}\left[p_{k}, q_{l}\right]+B_{i k} B_{j l}\left[p_{k}, p_{l}\right]\right) \\
& =\sum_{k} \sum_{l}\left[A_{i k} B_{j l}\left(i \hbar \delta_{k l}\right)+B_{i k} A_{j l}\left(-i \hbar \delta_{k l}\right)\right] \\
& =i \hbar \sum_{k}\left(A_{i k} B_{j k}-B_{i k} A_{j k}\right) \\
& =0 \\
{\left[P_{i}, P_{j}\right] } & =\sum_{k} \sum_{l}\left[C_{i k} q_{k}+D_{i k} p_{k}, C_{j l} q_{l}+D_{j l} p_{l}\right] \\
& =i \hbar \sum_{k}\left(C_{i k} D_{j k}-D_{i k} C_{j k}\right) \\
& =0 \\
{\left[Q_{i}, P_{j}\right] } & =\sum_{k} \sum_{l}\left[A_{i k} q_{k}+B_{i k} p_{k}, C_{j l} q_{l}+D_{j l} p_{l}\right] \\
& =i \hbar \sum_{k}\left(A_{i k} D_{j k}-B_{i k} C_{j k}\right) \\
& =i \hbar \delta_{i j}
\end{aligned}
$$

And hence we see that the commutation relations are preserved.

