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Exercise 3.1 Wave packet in one dimension

The time dependent Schrödinger equation of a quantum system represented by the wave function Ψ(t, !x)
and ruled by the Hamiltonian H is

i! ∂

∂t
Ψ(t, !x) = HΨ(t, !x).

When the Hamiltonian is time independent, the evolution of the wave function can be obtained by

Ψ(t, !x) = e
−i(t−t0)

! HΨ(t0, !x).

Finally, the Hamiltonian of a single particle moving in a time independent potential is given by

H = − !2

2m
∇2 + V (!x).

a) Consider the wave function of a single particle in a time independent, one-dimensional potential,

H = − !2

2m

∂2

∂x2
+ V (x).

Prove that we have
d

dt

∫ +∞

−∞
Ψ∗(t, x)Ψ(t, x)dx = 0.

Tips:

1. Let us do it for the general case: The Schrödinger equations and its complex conjugate give us an
expression for the time derivatives,

∂

∂t
Ψ = − i

!HΨ
∂

∂t
Ψ∗ = − i

!HΨ∗

b) Consider a free particle in one dimension,

H = − !2

2m

∂2

∂x2
,

with the initial wave function of Gaussian shape

Ψ(0, x) =
(
π∆0

2
)− 1

4 exp
(

ip0x

!

)
exp

(
−x2

4∆0
2

)
.

TYPO in the exercise sheet: −x2

2∆0
2 → −x2

4∆0
2

Show that, at generic instant t, the wave is still a Gaussian, of width

∆(t) = ∆0

√

1 +
!2t2

m2∆0
4 .

What happens to the mean position and mean momentum of the particle over time? And to the uncertainty
on these quantities?
Tips:
To simplify the notation, let us use ∆ ≡ ∆0 and k0 = p0/!,

Ψ(0, x) =
(
π∆2

)− 1
4 exp (ik0x) exp

(
−x2

4∆2

)
.

1. Show the superposition of waves of the form

Ψ(t, x) =
∫ +∞

−∞
A(k) exp

(
ikx− i

!k2t

2m

)

satisfies the Schrödinger equation of a one-dimensional free particle,

i! ∂

∂t
Ψ(t, x) = − !2

2m

∂2

∂x2
Ψ(t, x).



2. See that at instant t = 0 the wave function becomes

Ψ(0, x) =
∫ +∞

−∞
A(k) exp (ikx)

and calculate the coefficient A(k) via Fourier transform,

A(k) =
1
2π

∫ +∞

−∞
Ψ(0, x) exp (−ikx) dx,

using the expression for Ψ(0, x) that is given.

3. Useful little thing: ∫ +∞

−∞
e−ikxe−

x2
α dx =

√
πα

2
exp

(
αk2

4

)

4. You will obtain (I don’t think this is the case, but a factor of 2 or
√

2 may be missing)

A(k) =
√

2
2π

(
2π∆2

) 1
4 exp

(
−(k − k0)2∆2

)
.

5. Introduce now the value of A(k) in the expression for Ψ(t, x) and calculate the dreadful integral.

6. Useful not so little thing:
∫ +∞

−∞
e−ikxeBkek2(C+iD)dk =

√
π

2
√

C + iD
exp

(
− (B + ix)2

4(C + iD)

)

7. You will obtain

Ψ(t, x) = (2π∆2)−
1
4

e−k2
0∆2

1 + i!t/2m∆2
exp

(
−x2 + 4ik0∆2x + 4k0

2∆4

4L2(1 + i!t/2mL2)

)

8. Play a bit with that expression to show that it has the form of a Gaussian of width (back to the
notation ∆0)

∆(t) = ∆0

√

1 +
!2t2

m2∆0
4 .

9. Now you have to calculate 〈x〉, 〈∆x〉, 〈p〉 and 〈∆p〉

c) Suppose now that the particle feels the influence of a slowly varying potential V (x). How does that
affect the previous result?
Extra challenge!

Exercise 3.2 Hydrogen atom and Rydberg constant

a) Consider an atom formed by an electron orbiting a single proton. Use the fact that the electron is in
a Coulomb potential of the form U = −ke2/r and Kepler’s laws for the motion of classical rigid bodies
in such potentials to derive the relation

ν(E) =
1

πe2

√
2|E|3

m
,

where ν is the frequency of a given orbital and E the energy associated with that orbital. Recall Bohr’s
prediction for the energy of each level,

En = −hR
1
n2

.

TYPO in the exercise sheet: ! → h If we further consider Einstein’s relation E = !ν, what is the
expression for the frequency of the photons emitted when the electrons jumps from the energy level n to
the n− k one, in the limit n ( 1? Relate these results to obtain the value of the Rydberg constant,

R =
2π2me4

h3
.

Tips:



1. A bit ahead we will set k = (4πε0) = 1, by switching to the appropriate unit system. For now let
us keep k.

2. We will also assume that the proton as infinite mass, ie., it does not move while the electron orbits
it.

3. The potential energy between electron and proton is

E = k
e2

r
.

4. Kepler’s third law of planetary motion tells us that the square of the orbital period T of a planet
is directly proportional to the cube of the semi-major axis of its orbit, R.

5. This is also true in the case of an electrical potential between two charges. For the general case of
a Kepler orbit due to Coulomb forces, we have

T 2 =
4π2m

ke2
R3.

6. Now use that to calculate the total energy (kinetic + potential) of the orbital. It simplifies the
problem if you consider uniform circular movement. As a challenge, you may try to do it for the
general Kepler setting.

7. Now that you know the energy of the orbital, E(R), insert it in Kepler’s third law to obtain the
expression for the frequency of the electron’s orbit. Setting k = 1, it is given by

νorbit(E) =
1

πe2

√
2E3

m
.

8. Why are we doing this? Because according to Rutherford’s classical theory, the electron loses energy
continually by emitting radiation. This radiation is a superposition of monochromatic waves, each
of one has frequency νorbit(E) ore one of its harmonics.

9. Of course, the electron does not lose energy continually but rather by discrete jumps. What we
will see is that, surprisingly, the energy lost in each of this jumps is equivalent to the energy of a
photon of frequency νorbit(E).

10. Get the energy difference between two levels using Bohr’s expression.

11. Obtain an expression for the frequency of a photon emitted when an electron jumps from the nth
level to the n− kth level.

12. Evaluate the limit for large n and k = 1. You do not need to be very careful in the approximations,
it is enough to get

νjump =
2R

n3

13. We now say that for very large n this frequency is equivalent to the classical νorbit(E). Our
justification for this is that the variation of quantum numbers between nearest energy levels is very
small, so that the electron loses energy by a succession of many small quantum jumps. From each
jump to the next one the energy of the emitted photon does not change much, and the emission
spectrum is almost continuous, like in Rutherford’s prediction. According to the correspondence
principle, in the appropriate limit the quantum properties of a system must resemble the classical
ones. We will see that this limit applies here.

14. Consider νorbit ≈ νjump and obtain an expression for the Rydberg constant,

R =
2π2me4

h3
.

15. Now the surprising part: the experimental value of R agrees with this näıve prediction - the results
differ by less than a part in 104 .

b) Explain why an experiment to observe the trajectory of an electron orbiting the nucleus of a hydrogen
atom would not be realisable, without using Heisenberg’s uncertainty principle.
Tips:



1. Suppose you want to detect the electron by scattering with another particle (eg. a photon).

2. Which conditions would you have to impose on this particle in order to achieve resolution of the
order of the radius of the atom? (quantify it!)

3. What would happen to an electron hit by a particle fulfilling those conditions?

4. Can you think of another way of following the trajectory of the electron?

Exercise 3.3 Spatial quantisation: the Stern-Gerlach experiment

TYPO in the exercise sheet: ”electrons” → ”atoms” (you know how the “electrons” key is so close
to the “atoms” one in US keyboards....)
a) Consider an uniform magnetic field !B and the classical Hamiltonian

H = −!µ · !B,

with !µ = µB
!L.

Use the classical Poisson bracket formalism to derive the result

!̇L = µB
!L× !B.

Tips:

1. !L = (Lx, Ly, Lz) is the classical angular momentum, !L = !r × !p.

2. As you know, the Poisson brackets are defined as

{A, B} =
∑

k

∂A

∂xk

∂B

∂pk

− ∂A

∂pk

∂B

∂xk

where {xi}i are the spatial coordinates, {pi}i the momentum components and A and B are functions
of them.

3. Simple properties of Poisson brackets you might use ahead:

{A + B, Z} = {A, Z} + {B, Z}, {AB, Z} = B{A, Z} + A{B, Z}.

4. First you calculate the Poisson brackets of the angular momentum components, obtaining

{Li, Lj} = εijlLl

5. Note that !B is uniform, ie.,
∂Bi

∂xk

=
∂Bi

∂pk

= 0,∀i, k

6. Use the equations of motion,
dA

dt
=

(
∂A

∂t
− {H,A}

)

to derive an expression for L̇i.

7. Now obtain
!̇L = µB

!L× !B.

8. You may see that if !B = Bẑ, we have L̇z = 0.

b) Consider now that the electron has to travel through a segment of length l along the x̂ direction, where
there is a field !B = B(x, y, z)ẑ.
Using the relation !F = −∇H, derive an expression for the angle between the velocity of the electron as it
entered the field and its velocity after being deflected through by the magnetic field.
What can you conclude about the nature of !µ?
Tips:



1. In this case we have
H = −!µ× !B = −µBLzBz.

2. Don’t forget that Lz is still invariant!

3. Now
!F = −∇H = µB

(
Lz

∂Bz

∂x
, Lz

∂Bz

∂y
, Lz

∂Bz

∂z

)

.

4. Now we are going to make some approximations just to get a qualitative idea of what would happen
to particles in such a field. The approximations are:

∂Bz

∂x
;≈ 0

∂Bz

∂y
;≈ 0

∂Bz

∂z
≈ constant.

5. In this case, we have !F = Fz ẑ = µz
∂Bz
∂z ẑ .

6. We want to have a rough idea of the deflection they suffer, so we want to calculate the angle that
the velocity of the particles makes with the horizontal.

7. The particles take time T = l/v0 to cross the field.

8. The z-component of velocity after leaving the field is given by

vz =
∫ T

0
azdt =

1
m

∫ T

0
µz

∂Bz

∂z
dt

9. You will get

vz =
l

mv0
µz

∂Bz

∂z
.

10. And then to get the angle do simply

tanα =
vz

vx
=

l

mv0
2
µz

∂Bz

∂z

11. Conclusion: if the z-component of the magnetic moment of the particles could take any value (this
is, this magnetic moment could have any orientation), the angle spectrum would be continuum. As
only a limited number of spots are observed on the screen, µz can only take certain discrete values.


