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Exercise 10.1 Time evolution of a density operator

We consider a spin-1
2 particle moving in an homogeneous magnetic field ~B = B ~n (|~n| = 1).

Forgetting about the spatial degrees of freedom, the Hamiltonian operator is then

H = µ ~B · ~S, (1)

where ~S = ~
2~σ is the spin operator defined on the Hilbert space H = C2 as ~S = ~

2~σ, and ~σ is the
vector of Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2)

In this exercise, we want to compute the time evolution of a density operator ρ0. Since the Pauli
matrices together with the identity form a basis for the 2 × 2 Hermitian matrices, ρ0 can be
written as

ρ0 =
1
2

(1+ ~a · ~σ) , |a| ≤ 1. (3)

a) We have checked in exercise 8.3 that {σi, σj} = 2δij1 and [σi, σj ] = 2εijkσk. Use these
properties to show that (~a · ~σ)(~b · ~σ) = (~a ·~b)1+ i(~a×~b) · ~σ, and in particular (~n · ~σ)2 = 1.

b) Using the Taylor expansion for the time-evolution operator

U(t) := exp (−itH/~) =
∞∑

k=0

(−itH/~)k

k!
, (4)

show that it can be written

U(t) = cos
(

t
µB

2

)
1− i sin

(
t
µB

2

)
~n · ~σ. (5)

Compute U(t)−1.

c) Use these results to compute ρ(t) = U(t)ρ0U(t)−1.

Show that if ~a ‖ ~B, ρ(t) is constant in time.

Exercise 10.2 Combination of two spins 1
2

Consider two systems described by 2-dimensional Hilbert spaces H1 = H2 = C2 and two spin
operators ~S1, ~S2 acting respectively on those two Hilbert spaces, and represented by ~Si = ~

2~σ(i),
where ~σ(i) is again the vector of Pauli matrices acting on Hi.
We want to construct the eigenstates of the total spin operator S = S1 +S2 in the Hilbert space
H1 ⊗H2.

a) Using the relation ~S = (~S1 ⊗ 1) + (1 ⊗ ~S2), write explicitly the three components of ~S as
4× 4 matrices and check that the relation [Si, Sj ] = i~ εijkSk holds. Compute S2.



b) Check that the elements of the basis B1 = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} are all eigenvectors of Sz,
but not of S2.

Find a set of normalized eigenvectors of both Sz and S2.

c) Let |L, l〉 describe a state such that S2|L, l〉 = ~2 L(L + 1) |L, l〉 and Sz|L, l〉 = ~ l |L, l〉.
Show that B2 = {|1, 1〉, |1, 0〉, |1,−1〉, |0, 0〉} forms a basis of the Hilbert space H1 ⊗H2 and
give an explicit definition of the elements of B2 in the basis B1.

Check that under parity transformation (i.e. exchange of the two systems), the state |L, l〉
transforms as P |L, l〉 = (−1)L+1|L, l〉.

d) Let’s define S± = 1√
2
(Sx ± iSy). How do the states in B2 transform under the action of S±?

Exercise 10.3 The electron g-factor

The magnetic moment of a particle of charge q and mass m is related to its spin S through

µ = g
q

2m
S (6)

where g is a dimensionless constant called the g-factor.

a) Determine classically the g factor of the electron. In order to do so, let’s assume that the
electron is a sphere of radius R, of homogeneous mass and charge density, and rotating at
an angular velocity ω. Its spin is then equal to its angular momentum L = Iω, where I is
the moment of inertia of the sphere.

Hint: Remember that a charge q moving along a circular path yields a magnetic moment
~µ = 1

2q ~r × ~v, where r is the position of the charge relative to the center of the orbit and v
its velocity.

A quantum mechanical treatement of the problem yields however a different result, namely
g = 2. We want to show that a simple experiment can determine whether the g-factor of the
electron is exactly 2 or differs slightly.

b) Consider an electron storage ring, i.e. a device in which a beam of electron is kept running on
a circular orbit at constant velocity (for simplicity, the storage ring can be simply modelised
by a cavity in which a homogeneous magnetic field is present).

Show that the spin of an electron orbiting in the ring is precessing around the axis of the
magnetic field and compute the frequency of this precession (known as the Larmor preces-
sion).

c) Let’s assume that electrons are injected in the storage ring with a definite polarisation. Show
that if the g factor of the electron is exactly two, at a given point the electrons will always
have the same polarisation, and that this is not the case if g differs from 2, even slightly.

The experimentally measured value of g is actually slightly larger than 2, in agreement with the
prediction from quantum electrodynamics.


