An Introduction to the hardware of your PC

Know your tools!

We need to understand what the computer does before
we can write fast programs

Understanding hardware is important

¢ Steps in executing a program
¢ We write our code in a high-level language
¢ The compiler translates the program to machine language
¢ The computer executes the machine language program

¢ We want to write a fast program

¢ Need to understand hardware limitations
¢ Need to understand what the compiler does

¢ This week
¢ Introduction to main hardware components
¢ Understanding the limitations

Schematic diagram of a computer

Memory

L2 cache

!

Bus interface unit

' 3

System bus

ins(t:lgéﬂieon L1 data cache
' ¢
Fetch and . .
Decode unit - Execution unit
Components of the CPU

¢ The main components of the central processing unit (CPU) are:

¢ Memory controller
¢ Manages loading from and storing to memory

¢ Registers
4 Can store integer or floating point numbers
4 Values can be set to specifed constants
4 Values can be loaded from or stored into memory

¢ Arithmetic and logical units (ALU)

¢ Performs arithmetic operations and comparisons

¢ Operates on values in the registers (very fast)

4 On some CPUs they can operate on contents of memory (slow)
¢ Fetch and decode unit

¢ Fetches the next instruction from memory
¢ Interprets the numerical value of the instruction and decides what to do

¢ Dispatches operations to ALU and memory controller to perform the operation
¢ Be aware that modern CPUs are more complex (see later)

Machine code and assembly language

¢ The CPU performs instructions read from memory
¢ Instructions are given in machine code
¢ These are just numbers which are interpreted as instructions
¢ Ugly and nearly impossible to interpret
¢ Assembly language
¢ |s a one-to-one translation from machine code to a readable text form
¢ |s non-portable: differs depending on CPU-type
¢ Typical instructions
¢ Load values into registers
¢ Load data from memory into register or store registers into memory
¢ Perform arithmetic and logical instructions on registers
¢ Jump (branch) to another instruction

Types of CPUs

¢ CISC (complex instruction set)

¢ RISC (reduced instruction set)

¢ post-RISC (superscalar)

¢ EPIC (explicitly parallel instruction set)

¢ Vector

CISC CPUs

¢ Complex instruction set
¢ Many high-level instructions (example: sin-cos-instruction)

¢ Take many cycles to execute
¢ High clock rate does not tell everything

¢ Examples

¢ Intel IA-32/EM64T
¢ AMD x86_64

¢ Advantage
¢ High level instructions makes assembly language programming easy

¢ Disadvantage
¢ Very complex CPU for high level instructions

RISC CPUs

¢ Reduced instruction set

¢ Only low level instructions
¢ E.g. load from memory into register, add values in registers, ...

¢ But very fast execution speed (few cycles per instruction)
¢ Many registers in the CPU

¢ Example:

¢ IBM Power and PowerPC
¢ E.g. IBM BlueGene/P JUGENE: PowerPC 450 850 MHz

¢ Advantages
¢ fast and can be pipelined
¢ Small and use little power

¢ Disadvantage
¢ More machine language instructions needed

RISC vs CISC in modern supercomputers

CPU type % systems % Rmax
PowerPC 11 26
Intel EM64T 78.6 50
AMD x86_64 8.6 20
Intel 1A-64 1.2 1.2
Name CPU type Vendor
Roadrunner Cell / Opteron IBM
Jaguar Opteron Cray
JUGENE PowerPC IBM
Pleiades Xeon SGl

Pipelining

¢ Is used to speed up execution

¢ Second (independent) instruction can be started before first one

finishes

-

ns.

Fetéh Decode

Ins.
Decode

v§0b. .
i Fetch

Ins, Ins.
Fetch ;Decode

z

i Op.
i Fetch

Exec { Writeback |

Time

10

Example of a pipeline

¢ Imagine a loop
for (int i=0; i <102400; ++1i)
a[i]=b[i]+c[i];

¢ Consecutive iterations are independent and can be executed in
parallel after unrolling

for (int i=0; i <102400; i+=4){
a[i]=b[i]+c[i];
a[i+tl]=b[i+1l]+c[i+1];
a[i+2]=b[i+2]+c[i+2];
a[i+3]=b[i+3]+c[i+3];

Let us look at some examples

¢ Set up CVSROOT as last week and check out week3

¢ Example1: simpleadd.C
¢ Add two floating point numbers

¢ Example 2: loopadd.C
¢ Add two arrays of floating point numbers

11

12

Looking at the assembly code

¢ Run, one after the other
¢ g++ -save-temps -c -03 simpleadd.C
¢ g++ -save-temps -c -03 loopadd.C
¢ g++ -save-temps -c -03 -funroll-loops loopadd.C

¢ Let us take a look at the created intermediate *.s files

¢ simpleadd.s
¢ Can you understand the addition?
¢ Can you see the difference between RISC (Mac) and CISC (Pentium)

¢ loopadd.s
¢ Can you see the loop?
¢ Can you see the unrolling and potential for pipelining?

Branch prediction

¢ At each branch (i f-statement, ...) the pipelines stall

¢ Have to wait for end of execution before starting one of the branches
¢ Solution: branch prediction
¢ Predict (clever compiler, clever hardware) which branch is more likely
4 E.g. in loop will usually repeat the loop

¢ Start executing more likely branch
¢ |f correct prediction: pipeline runs on without any cost
¢ |If wrong prediction: abort pipeline and start right branch

Branch

Fetch %Decode Operand Ex\gc Write §

...... TR Fetch Decode | Operdpd Exec Write E

" Fetch | Decode\: Operand | Exec Write [

| Fetch A Decode i Operand ;| Exec

Fetch Decode : Operand

| Fetch i Decode F

13

14

Superscalar and post-RISC processors

¢ Have more than one pipeline
¢ Can execute instructions in parallel
¢ Can reorder instructions
¢ Even better execution speed

¢ But also get more complex than simple RISC processors

mul r1,r2,r3

EPIC and Intel TA-64

¢ Explicitly Parallel Instruction set
¢ E.g. Intel ltanium (IA-64)

¢ The machine language can specify which instructions can run
simultaneously

¢ CPU simplified since no automatic detection of independent
instructions

¢ Compilers get harder to write

15

16

Diagram of a PowerPC G4 CPU

I
! ; Instruction fetch | | -
letion |~s—w it - .
| compg on Branch unit - | Instruction
! unit y - I cache
1
i v ¥ : (32 KB)
1
| SEQUENCER | i
: Dispatch unit BHT/BTIC | !
i UNIT |
! A !
| ¥ Y Y :
1| AltiVec issue GPR issue FPR issue '
| I
! 1
i U U p—— —
Y ' Y Y
I I P i FPRs |
B 2] X |- s LSU |««—m=| Rename ~| FPU
Ol || o 5] &3 -t buffers Lt
YRV}
——eeaee == — o _
I I A SR I
! -t
= 8]e|2lelng? i Data cache tlgtrfgf::ry
Q o | o - D|
@I EIE|E |lelS g*;—, it (32KB) sub-system
| glo|&| | =2 !
1 ol i
| ALTIVEC ENGINE | %
_________________________ S
| Unified L2 cache (256 KB) and L3 cache tag control }— :
T -
| System interface unit |

™ system bus

Summary of CPUs

¢ Several types of architectures
¢ CISC
¢ RISC
¢ Post-RISC

¢ Differences start to disappear

¢ E.g. Pentium converts CISC instructions into RISC-like microcode
which then executes fast

¢ We have very fast CPUs, but the rest of the system cannot keep
up with the speed

17

18

Moore’s law

¢ “The number of transistors on a chip doubles every 18 months”
¢ More transistors means smaller transistors
¢ Smaller transistors => shorter distances => faster signals
¢ Smaller transitors => fewer charges => faster switching
¢ Thus also the CPU speed increases exponentially

¢ Has worked for the past 30 years!

¢ How long will it continue?
¢ Current prototype chips at 10 GHz
¢ Insulating layers only 4 atoms thick!
¢ Can we still reduce the size??
¢ Moore’s law will probably stop working in the next decade
¢ Software optimization will become more important

Moore’s law for Intel CPUs

http://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2008.svg 10/6/09 10:46 PM

CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 — buaCore tamtum a1 ¥ QUaG-Goro Hanium T
POWERS. WGT200
1,000,000,000 — NERD g 7o
\\\\\\\\\\\\\\\\\\ /' P
o 2Quad” .,
\\\\\\\\ v . I Lo
100,000,000 — ik
. +" wsarton wAtom
= ., /;K77
g Curve shows ‘Moore’s Law’: R e
Q 10,000,000 — transistor count doubling R S
8 every two years 7 wks
8 - ®Pentium
3 1,000,000 .
c ’ ’ L
e .
= 386 9-”
100,000 —| o
,.réol
10,000 —
,‘/aoso
2,300 — 400 X 3008
1971 1980 1990 2000 2008

Date of introduction

Moore’s law for supercomputers

@500c Projected Performance Development

100PFlops

-@- #1
o #500
-@- Sum
— #1 Trend
Line

— #500 Trend
17088 Line

oP —— Sum Trend

i nnJ:F' Line

10 PFlops

1 PFlops

100 TFlops

10 TFlops

1 TFlops

Performance

100 GFlops

10 GFlops 1 D;upn

e

1 GFlops ;I%Bu

NI | 5 (aTo R o o o B e

2011
2013
2015
2017
2019

How about the other components of a computer?

¢ Transistor density doubles every 18 months

¢ PC speed doubles every 2-2.5 years
¢ Are now as fast as supercomputers were a decade ago

¢ Supercomputer speed doubles every year
¢ PCs will not catch up with supercomputers

¢ But the rest of the system does not catch up

¢ RAM speed increases slower
¢ Disk speed increases even slower

21

22

Memory versus CPU speed

¢ DRAM has gotten cheap over the past decades but not much
faster

10000 E T T T T | T T T T | T T T T | T =
- Memory vs. CPU pert. o
= o = CPU -
= 1000 & ORAM
o - o = DRAM :
2 - :
g i ° -
«
19 B -
o Lo
I
A 100 — —
O z
10 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1990 1995 2000 2005
Year
Memory (RAM)

¢ SRAM (static random access memory)
¢ Very fast access but very expensive
¢ Data stored in state of transistors (flip-flop)
¢ Data stays as long as there is power

¢ DRAM (dynamic random access memory)
¢ Much cheaper then SRAM but slower
¢ Data stored in tiny capacitor which discharge slowly
¢ Capacitors need to be recharged regularly (hence dynamic)

¢ SDRAM (synchronous dynamic random access memory)
¢ Variant of DRAM, with a clock synchronized with caches,
¢ allows faster reading of successive data

23

24

Faster RAM technologies

¢ DDR RAM (double data rate)
¢ Can send data twice per clock cycle
¢ Send data on rising and falling edge of clock signal

¢ DRDRAM (Rambus DRAM)

¢ Adds fast logic to RAM chips to allow faster data exchange between
CPU and memory

¢ For more information see http://rambus.org
¢ Market share negligible

¢ Interleaved memory systems
¢ Use more than one bank of memory chips
¢ Used in vector machines and most 64-bit systems

¢ Can read simultaneously from each bank
¢ increases bandwidth
¢ Does not change latency (access time)

Improving memory speed by using caches

¢ Are added to speed up memory access (Opteron Barcelona)
¢ Many GByte of slow DRAM
¢ 2 MByte of fast and expensive L3-Cache
¢ 512 kByte of even faster and more expensive L2-Cache per core

¢ 2x64 kByte of the fastest and most expensive L1-Cache (instruction
and data cache) per core

¢ Problems needing little memory will run faster!

25

26

Comparison of memory/cache speeds

Pentium III memory access data
channel: M & L2 L2+ LI L1 <+ Reg.
width 64-bit 64-bit 64-bit
size 256KB (L.2) | 8KB (L1) | 8-16B (SIMD)
clocking 133 MHz | 275 MHz 550 Mhz
bandwidth 1.06 GB/s | 2.2 GB/s 4.4 GB/s
Pentium 4 memory access data
channel: M & L2 L2+ LI L1 <+ Reg.
width 64-bit 256-bit 256-bit
size 256KB (L2) | 8KB (L1) | 8-16B (SIMD)
clocking 533 MHz | 3.06 GHz 3.06 GHz
bandwidth 4.3 GB/s 98 GB/s 98 GB/s

How does a cache work?

¢ CPU requests a word (e.g. 4 bytes) from memory

¢ Afull “cache line” (Opteron: 64 bytes) is read from memory and stored
in the cache

¢ The first word is sent to the CPU

¢ CPU requests another word from memory

® Cache checks whether it has already read that part as part of the
previous cache line

¢ If yes, it the word is sent quickly from cache to CPU
¢ If not, a new cache line is read

¢ Once the cache is full, the oldest data is overwritten

¢ [ocality of memory references are important for speed

27

28

Types of caches

¢ Direct mapped

¢ Each memory location can be
stored only in one cache location

¢ “cache trashing” occurs if we
access in strides of the cache
size, always replacing the
previous date

¢ n-way associative

¢ Each memory location can be
stored in n cache locations

¢ Better performance, more
expensive

¢ Fully associative

¢ Each memory location can be
stored anywhere

¢ Best but most expensive

Fully associative 2 way associative

Direct mapped 12mod 4

\12mod8

4 Memory 12

Exercises about caches

¢ Exercise 1:

¢ Write a program to measure the number and size of caches in your

machine

¢ Exercise 2 (bonus):

¢ Write a program to determine the type of associativity of your L1-

cache. Is it
4 Direct mapped?
¢ n-way associative?
¢ Fully associative?

29

30

Virtual memory: memory is actually even slower

¢ What if more than one program runs on a machine?
¢ What if we need more memory than we have RAM?

¢ Solution 1: virtual memory
¢ Programs run in a “logical” address space
¢ Hardware maps “logical” to “physical” address

¢ Solution 2: swap space
¢ Some physical memory may be on a hard disk
¢ |If accessed it is first read from disk into memory
¢ This is even slower!

Virtual memory logic:

¢ Memory is organized in “pages” of e.g. 4 Kbyte

¢ Addresses are translated from logical to physical
address space

||

¢ Lookup in page table L1-cache
4 |f in memory, access to memory | |
¢ If on disk, read from disk first (slow!!!) L2-cache
||
¢ Access to page table needs reading from L3-cache
memory [——
. . . = paze ()
¢ Solution: translation lookaside buffer (TLB) [E table 3
¢ s a cache for the page table

¢ It is again important to keep memory references
local

memory

| |

disk

31

32

Virtual memory: the worst case

Request an address
Cache miss in L1
Cache miss in L2
Cache miss in L3
Lookup physical address
¢ Cache miss in TLB
¢ Request page table entry
¢ Load page table from memory (slow)
¢ Page fault in page table
¢ Store a page to disk (extremely slow)
¢ Create and initialize a new page (very slow)
¢ Load page from disk (extremely slow)
¢ Load value from memory (slow)

L 2R BRI B 2

¢ Try to reuse data as much as possible

)

||

L

1-cache

| |

L

2-cache

|

L

3-cache

page
table

—O)

memory

| |

disk

33

