
An Introduction to the hardware of your PC

Know your tools!

We need to understand what the computer does before
we can write fast programs

Understanding hardware is important

♦ Steps in executing a program
♦ We write our code in a high-level language
♦ The compiler translates the program to machine language
♦ The computer executes the machine language program

♦ We want to write a fast program
♦ Need to understand hardware limitations
♦ Need to understand what the compiler does

♦ This week
♦ Introduction to main hardware components
♦ Understanding the limitations

1

2

Schematic diagram of a computer

Components of the CPU

♦ The main components of the central processing unit (CPU) are:
♦ Memory controller

♦ Manages loading from and storing to memory
♦ Registers

♦ Can store integer or floating point numbers
♦ Values can be set to specifed constants
♦ Values can be loaded from or stored into memory

♦ Arithmetic and logical units (ALU)
♦ Performs arithmetic operations and comparisons
♦ Operates on values in the registers (very fast)
♦ On some CPUs they can operate on contents of memory (slow)

♦ Fetch and decode unit
♦ Fetches the next instruction from memory
♦ Interprets the numerical value of the instruction and decides what to do
♦ Dispatches operations to ALU and memory controller to perform the operation

♦ Be aware that modern CPUs are more complex (see later)

3

4

Machine code and assembly language

♦ The CPU performs instructions read from memory
♦ Instructions are given in machine code
♦ These are just numbers which are interpreted as instructions
♦ Ugly and nearly impossible to interpret

♦ Assembly language
♦ Is a one-to-one translation from machine code to a readable text form
♦ Is non-portable: differs depending on CPU-type

♦ Typical instructions
♦ Load values into registers
♦ Load data from memory into register or store registers into memory
♦ Perform arithmetic and logical instructions on registers
♦ Jump (branch) to another instruction

Types of CPUs

♦ CISC (complex instruction set)

♦ RISC (reduced instruction set)

♦ post-RISC (superscalar)

♦ EPIC (explicitly parallel instruction set)

♦ Vector

5

6

CISC CPUs

♦ Complex instruction set
♦ Many high-level instructions (example: sin-cos-instruction)
♦ Take many cycles to execute

♦ High clock rate does not tell everything

♦ Examples
♦ Intel IA-32/EM64T
♦ AMD x86_64

♦ Advantage
♦ High level instructions makes assembly language programming easy

♦ Disadvantage
♦ Very complex CPU for high level instructions

RISC CPUs

♦ Reduced instruction set
♦ Only low level instructions

♦ E.g. load from memory into register, add values in registers, …
♦ But very fast execution speed (few cycles per instruction)
♦ Many registers in the CPU

♦ Example:
♦ IBM Power and PowerPC

♦ E.g. IBM BlueGene/P JUGENE: PowerPC 450 850 MHz

♦ Advantages
♦ fast and can be pipelined
♦ Small and use little power

♦ Disadvantage
♦ More machine language instructions needed

7

8

RISC vs CISC in modern supercomputers

CPU type % systems % Rmax
PowerPC 11 26
Intel EM64T 78.6 50
AMD x86_64 8.6 20
Intel IA-64 1.2 1.2

Name CPU type Vendor
Roadrunner Cell / Opteron IBM
Jaguar Opteron Cray
JUGENE PowerPC IBM
Pleiades Xeon SGI

Pipelining

♦ Is used to speed up execution
♦ Second (independent) instruction can be started before first one

finishes

9

10

Example of a pipeline

♦ Imagine a loop
for (int i=0; i <102400; ++i)
 a[i]=b[i]+c[i];

♦ Consecutive iterations are independent and can be executed in
parallel after unrolling

for (int i=0; i <102400; i+=4){
 a[i]=b[i]+c[i];
 a[i+1]=b[i+1]+c[i+1];
 a[i+2]=b[i+2]+c[i+2];
 a[i+3]=b[i+3]+c[i+3];
}

Let us look at some examples

♦ Set up CVSROOT as last week and check out week3

♦ Example1: simpleadd.C
♦ Add two floating point numbers

♦ Example 2: loopadd.C
♦ Add two arrays of floating point numbers

11

12

Looking at the assembly code

♦ Run, one after the other
♦ g++ -save-temps -c -O3 simpleadd.C
♦ g++ -save-temps -c -O3 loopadd.C
♦ g++ -save-temps -c -O3 -funroll-loops loopadd.C

♦ Let us take a look at the created intermediate *.s files

♦ simpleadd.s
♦ Can you understand the addition?
♦ Can you see the difference between RISC (Mac) and CISC (Pentium)

♦ loopadd.s
♦ Can you see the loop?
♦ Can you see the unrolling and potential for pipelining?

Branch prediction

♦ At each branch (if-statement, …) the pipelines stall
♦ Have to wait for end of execution before starting one of the branches

♦ Solution: branch prediction
♦ Predict (clever compiler, clever hardware) which branch is more likely

♦ E.g. in loop will usually repeat the loop
♦ Start executing more likely branch

♦ If correct prediction: pipeline runs on without any cost
♦ If wrong prediction: abort pipeline and start right branch

13

14

Superscalar and post-RISC processors

♦ Have more than one pipeline
♦ Can execute instructions in parallel
♦ Can reorder instructions
♦ Even better execution speed

♦ But also get more complex than simple RISC processors

EPIC and Intel IA-64

♦ Explicitly Parallel Instruction set
♦ E.g. Intel Itanium (IA-64)

♦ The machine language can specify which instructions can run
simultaneously
♦ CPU simplified since no automatic detection of independent

instructions
♦ Compilers get harder to write

15

16

Diagram of a PowerPC G4 CPU

Summary of CPUs

♦ Several types of architectures
♦ CISC
♦ RISC
♦ Post-RISC

♦ Differences start to disappear
♦ E.g. Pentium converts CISC instructions into RISC-like microcode

which then executes fast

♦ We have very fast CPUs, but the rest of the system cannot keep
up with the speed

17

18

Moore’s law

♦ “The number of transistors on a chip doubles every 18 months”
♦ More transistors means smaller transistors
♦ Smaller transistors => shorter distances => faster signals
♦ Smaller transitors => fewer charges => faster switching
♦ Thus also the CPU speed increases exponentially

♦ Has worked for the past 30 years!

♦ How long will it continue?
♦ Current prototype chips at 10 GHz
♦ Insulating layers only 4 atoms thick!
♦ Can we still reduce the size??
♦ Mooreʼs law will probably stop working in the next decade
♦ Software optimization will become more important

Moore’s law for Intel CPUs

10/6/09 10:46 PMhttp://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2008.svg

Page 1 of 1

19

20

Moore’s law for supercomputers

How about the other components of a computer?

♦ Transistor density doubles every 18 months

♦ PC speed doubles every 2-2.5 years
♦ Are now as fast as supercomputers were a decade ago

♦ Supercomputer speed doubles every year
♦ PCs will not catch up with supercomputers

♦ But the rest of the system does not catch up
♦ RAM speed increases slower
♦ Disk speed increases even slower

21

22

Memory versus CPU speed

♦ DRAM has gotten cheap over the past decades but not much
faster

Memory (RAM)

♦ SRAM (static random access memory)
♦ Very fast access but very expensive
♦ Data stored in state of transistors (flip-flop)
♦ Data stays as long as there is power

♦ DRAM (dynamic random access memory)
♦ Much cheaper then SRAM but slower
♦ Data stored in tiny capacitor which discharge slowly
♦ Capacitors need to be recharged regularly (hence dynamic)

♦ SDRAM (synchronous dynamic random access memory)
♦ Variant of DRAM, with a clock synchronized with caches,
♦ allows faster reading of successive data

23

24

Faster RAM technologies

♦ DDR RAM (double data rate)
♦ Can send data twice per clock cycle
♦ Send data on rising and falling edge of clock signal

♦ DRDRAM (Rambus DRAM)
♦ Adds fast logic to RAM chips to allow faster data exchange between

CPU and memory
♦ For more information see http://rambus.org
♦ Market share negligible

♦ Interleaved memory systems
♦ Use more than one bank of memory chips
♦ Used in vector machines and most 64-bit systems
♦ Can read simultaneously from each bank

♦ increases bandwidth
♦ Does not change latency (access time)

Improving memory speed by using caches

♦ Are added to speed up memory access (Opteron Barcelona)
♦ Many GByte of slow DRAM
♦ 2 MByte of fast and expensive L3-Cache
♦ 512 kByte of even faster and more expensive L2-Cache per core
♦ 2x64 kByte of the fastest and most expensive L1-Cache (instruction

and data cache) per core
♦ Problems needing little memory will run faster!

25

26

Comparison of memory/cache speeds

How does a cache work?

♦ CPU requests a word (e.g. 4 bytes) from memory
♦ A full “cache line” (Opteron: 64 bytes) is read from memory and stored

in the cache
♦ The first word is sent to the CPU

♦ CPU requests another word from memory
♦ Cache checks whether it has already read that part as part of the

previous cache line
♦ If yes, it the word is sent quickly from cache to CPU
♦ If not, a new cache line is read

♦ Once the cache is full, the oldest data is overwritten

♦ Locality of memory references are important for speed

27

28

Types of caches

♦ Direct mapped
♦ Each memory location can be

stored only in one cache location
♦ “cache trashing” occurs if we

access in strides of the cache
size, always replacing the
previous date

♦ n-way associative
♦ Each memory location can be

stored in n cache locations
♦ Better performance, more

expensive

♦ Fully associative
♦ Each memory location can be

stored anywhere
♦ Best but most expensive

120

Fully associative

12 mod 4Direct mapped

12 mod 8

2 way associative

Memory4

Exercises about caches

♦ Exercise 1:
♦ Write a program to measure the number and size of caches in your

machine

♦ Exercise 2 (bonus):
♦ Write a program to determine the type of associativity of your L1-

cache. Is it
♦ Direct mapped?
♦ n-way associative?
♦ Fully associative?

29

30

Virtual memory: memory is actually even slower

♦ What if more than one program runs on a machine?
♦ What if we need more memory than we have RAM?

♦ Solution 1: virtual memory
♦ Programs run in a “logical” address space
♦ Hardware maps “logical” to “physical” address

♦ Solution 2: swap space
♦ Some physical memory may be on a hard disk
♦ If accessed it is first read from disk into memory
♦ This is even slower!

Virtual memory logic:

♦ Memory is organized in “pages” of e.g. 4 Kbyte
♦ Addresses are translated from logical to physical

address space
♦ Lookup in page table

♦ If in memory, access to memory
♦ If on disk, read from disk first (slow!!!)

♦ Access to page table needs reading from
memory

♦ Solution: translation lookaside buffer (TLB)
♦ Is a cache for the page table

♦ It is again important to keep memory references
local

L1-cache

L2-cache

L3-cache

disk

memory

page
table

31

32

Virtual memory: the worst case

♦ Request an address
♦ Cache miss in L1
♦ Cache miss in L2
♦ Cache miss in L3
♦ Lookup physical address

♦ Cache miss in TLB
♦ Request page table entry
♦ Load page table from memory (slow)

♦ Page fault in page table
♦ Store a page to disk (extremely slow)
♦ Create and initialize a new page (very slow)
♦ Load page from disk (extremely slow)

♦ Load value from memory (slow)

♦ Try to reuse data as much as possible

L1-cache

L2-cache

L3-cache

disk

memory

page
table

33

