
Introdution to Classes	
 Week 4	

Programming techniques	
 1	

An Introduction to C++ 	

Part 4

Introduction to classes

Classes	

 Are a method to create new data types"
 E.g. a vector or matrix type"

 Object oriented programming:"
 Instead of asking: “What are the subroutines?”"
 We ask:"

 What are the abstract entities?"
 What are the properties of these entities?"
 How can they be manipulated?"

 Then we implement these entities as classes"
 Advantages:"

 High level of abstraction possible"
 Hiding of representation dependent details"
 Presentation of an abstract and simple interface"
 Encapsulation of all operations on a type within a class"

 allows easier debugging"

Introdution to Classes	
 Week 4	

Programming techniques	
 2	

A first simulation: biological aging	

 a simple model for death: 

 what about aging?"
 the remaining lifetime does not depend on current age."
 true for radioactive decay"
 not true for biology"

 what about age distribution?"
 exponential distribution!"
 also not what is seen in nature!"

 what is missing?"
 some kind of aging"
 we need to develop a model containing aging"

dN = −λNdt

The Penna model	

 A very simple model of biological aging"
 T.J.P. Penna, J. Stat. Phys 78, 1629 (1995)"

 Three important assumptions"
 finite age of adulthood"
 mutations of genetic material"
 limited resources"

 This allows to model many features of biological population
 dynamics:"
 pacific salmon dies after giving birth"
 redwood trees have offsprings for hundreds of generations"
 catastrophic decline of cod in Atlantic due to small increase in fishing"

 All these issues cannot be modeled without aging effects!"

Introdution to Classes	
 Week 4	

Programming techniques	
 3	

Details of the Penna model	

 Each animal contains genes determining the survival rate"
 Each gene relevant for one year of its life"
 animal dies when it has collected T bad genes"

 Limitation of resources"
 An animal that would survive because of its genes dies with a

 probability of N/N0!
 N…current population"
 N0… maximum sustainable population"

 Children"
 from an age of R years an animal gets a child asexually with a

 probability b (birthrate)"
 Mutations"

 The children have the genes of the parents but with M random
 mutations"

Program for the Penna model	

 First step: find the entities"

 What are the abstract ideas?"
 Genes"
 Animal"
 Population"

 Exercise: write a list of the properties of each of these entities"
 Representation (internal state)"
 Properties"
 Operations"
 Construction/destruction"

Introdution to Classes	
 Week 4	

Programming techniques	
 4	

What are classes?	

 Classes are collections of “members”, which can be"
 functions"
 data "
 types"

  representing one entity 

 These members can be split into"
 public, accessible interface to the outside"

 should not be modified later!"
 private, hidden representation of the concept"

 can be changed without breaking any program using the class"
 this is called “data hiding”"

 Objects of this type can be modified only by these member
 functions -> easier debugging"

How to design classes	

 ask yourself some questions"
 what are the logical entities (nouns)? "

 ® classes"

 what are the internal state variables ?"
 ® private data members"

 how will it be created/initialized and destroyed?"
 ® constructor and destructor"

 what are its properties (adjectives)?"
 ® public constant member functions"

 how can it be manipulated (verbs)?"
 ® public operators and member functions"

Introdution to Classes	
 Week 4	

Programming techniques	
 5	

A first class example: a traffic light	

 Property"
 The state of the traffic light (green, orange or red)"

 Operation"
 Set the state"

 Construction"
 Create a light in a default state (e.g. red)"
 Create a light in a given state "

 Destruction"
 Nothing special needs to be done"

  Internal representation"
 Store the state in a variable"
 Alternative: connect via a network to a real traffic light"

A first class example: a traffic light	

 Converting the design into a class"

class Trafficlight {  
};"

Introdution to Classes	
 Week 4	

Programming techniques	
 6	

A first class example: a traffic light	

 Add a public type member"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a private data member (variable) of that type:"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	
 Week 4	

Programming techniques	
 7	

A first class example: a traffic light	

 Add a const member function to access the state"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a non-const member function to change the state"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	
 Week 4	

Programming techniques	
 8	

A first class example: a traffic light	

 Add a default constructor to initialize it in the default way"
 a constructor has the same name as the class  

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a second constructor to construct it from a light"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	
 Week 4	

Programming techniques	
 9	

A first class example: a traffic light	

 And finish by adding a destructor (called to cleanup at destruction)"
 a destructor has the same name as the class, prefixed by ~  

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Data hiding and access	

 The concept expressed through the class is  
representation - independent"

 Programs using a class should thus also not depend on
 representation"

 Access declarators"
 public: only representation-independent interface, accessible to all"
 private: representation-dependent functions and data members"
 friend declarators allow related classes access to representation"

 Note: Since all data members are representations of concepts
 (numbers, etc.) they should be hidden (private)!"

 By default all members are private  
In a struct by default all are public"

Introdution to Classes	
 Week 4	

Programming techniques	
 10	

Member access	

class Trafficlight {"
public: "
 enum light  

{ green, orange, red};  

 Trafficlight();  
Trafficlight(light);  
~Trafficlight();  

light state() const;  
void set_state(light);"

private:  
light _state; "

};"

  Usage: 
Trafficlight
x(Trafficlight::green);  
Trafficlight::light l;  

l = x.state();  
l = Trafficlight::green;  

 Members accessed with  

variable_name.member_name 

  Type members accessed with  

class_name::member_name  

as they are not bound to specific
 object but common to all."

Special members	

 Constructors "
 initialize an object"
 same name as class"

 Destructors"
 do any necessary cleanup work when object is destroyed"
 have the class name prefixed by ~"

 Conversions"

 Operators "

Introdution to Classes	
 Week 4	

Programming techniques	
 11	

Illustration: a point in two dimensions	

  Internal state:"
 x- and y- coordinates"
  is one possible representation"

  Construction"
 default: (0,0)"
  from x- and y- values"
 same as another point"

  Properties:"
 distance to another point"
 x- and y- coordinates"
 polar coordinates"

 Operations"
  Inverting a point"
 assignment"

class Point {"
private:"
 float x_,y_;"
public:"
 Point(); // (0,0)"
 Point(float, float);"
 Point(const Point&);"
 float dist(const Point&) const;"
 float x() const;"
 float y() const;"
 float abs() const;"
 float angle() const;"
 void invert() ;"
 Point& operator=(const Point&);"
};"

Constructors and Destructors	

 Let us look at the point example:"
 public:  
 "Point(); // default constructor 
"Point(float, float); // constructor from two numbers 
"Point(const Point&); // copy constructor"

 Most classes should provide a default constructor"

 Copy constructor automatically generated as memberwise copy,
 unless otherwise specified  

 Destructor normally empty and automatically generated"

 Nontrivial destructor only if resources (memory) allocated by the
 object. This usually also requires nontrivial copy constructor and
 assignment operator. (example: array class)"

Introdution to Classes	
 Week 4	

Programming techniques	
 12	

Default members	

 Some member functions are implicitly created by the compiler"

 Copy constructor  
A::A(A const&);  
defaults to member-wise copy if not specified  

 Assignment operator  
A::operator=(A const&);  
also defaults to member-wise copy  

 Destructor  
A::~A()  
defaults to empty function"

Declaration, Definition and Implementation	

  Declaration"

class Point;"

  Definition"

class Point {"
private:"
 float x_,y_;"
public:"
 Point(); // (0,0)"
 Point(float, float);"
 ..."
};"

  Implementation"

float Point::abs() const {"
 return std::sqrt(x_*x

+y*y_)"
}"

  Constructors"

Point::Point(float x, float y)"
 : x_(x), y_(y)"
{} // preferred method"

  or"
Point::Point(float x, float y)"
{ x_ = x; y_ = y;}"

Introdution to Classes	
 Week 4	

Programming techniques	
 13	

Initializing a reference or a const member	

  The simple-minded way fails 

class A {  
 private:  
 int& x;  
 const int y;  
 public:  
 A(int& r, int s) {  
 x=r; // does not work 
 // what does x refer to ?  
 y=s; // does not compile 
 // y is const!  
 }  
};"

 We need the initialization syntax  

class A {  
 private:  
 int& x;  
 const int y;  
 public:  
 A(int& r, int s)  
 : x(r),  
 y(s)  
 {  
 }  
};"

  Stylistic advice: initialize all
 members in this way"

const and volatile	

 const"
 Variables or data members declared as const cannot be modified"
 Member functions declared as const do not modify the object"
 Only const member functions can be called for const objects 

 volatile"
 Volatile variables 
volatile int x;  
can be modified from outside the program! "

 Examples: multi-threaded programs and I/O ports"
 No optimization or caching allowed!"
 Only member functions declared volatile can be called for

 volatile objects"

Introdution to Classes	
 Week 4	

Programming techniques	
 14	

mutable	

  Problem: "
 want to count number of calls to ag

e() function of animal"
 Original source:"

class Animal() {"
public:"
 age_t age() const;"
private:"
 long cnt_;"
 age_t age_;"
};"

age_t Animal::age() const {"
 cnt_++; // error: const!"
 return age_;"
}"

  Solution:"
 mutable qualifier allows

 modification of member even in
 const object!"

 Modified source:"
class Animal() {"
 …"
private:"
 mutable long cnt_;"
 …"
};"

age_t Animal::age() const {"
 cnt_++; // now OK!"
 return age_;"
}"

friends	

  Consider geometrical objects:
 points, vectors, lines,..."
 class Point {  

…  
private:  
 float x,y,z;  
};  

class Vector {  
…  
private:  
 float x,y,z;  
};"

  For an efficient implementation
 these classes should have
 access to each others internal
 representation"

  Using friend declaration this is
 possible:"
 class Vector;  

class Point {  
…  
private:  
 float x,y,z;  
 friend class Vector;  
};  
class Vector {  
…  
private:  
 float x,y,z;  
 friend class Point;  
};"

  also functions possible:"
  friend Point::invert(…);"

Introdution to Classes	
 Week 4	

Programming techniques	
 15	

this	

 Sometimes the object needs to be accessed from a member
 function  

 this is a pointer to the object itself:"
  const Array& Array::operator=(const Array& o) {  

 if(this!=&o) {// do nothing if x=x;  
 // do assignment 
 …  
 }  
 return *this;  
}"

Inlining of member functions	

  For speed issues member
 functions can be inlined"

  Avoid excessive inlining as it
 leads to code-bloat 

  Either in-class definition:"

class complex {  
 float re_, im_;  

 public:  
 float real() const  
 {return re_;}  

 float imag() const  
 {return im_;}  
 …  
};"

  or out-of-class:"

class complex {  
float re_, im_;  

 public:  
 inline float real() const;  
 inline float imag() const;  
 …  
};  

float complex::real() const  
{  
 return re_;  
}  

float complex::imag() const  
{  
 return im_;  
}"

Introdution to Classes	
 Week 4	

Programming techniques	
 16	

Static members	

  are shared by all objects of a type"
  Act like global variables in a

 name space"

  exist even without an object,
 thus :: notation used:
 Genome::gene_number  
Genome::set_mutation_rate(2);"

  Static member functions can only
 access static member variables!  
Reason: which objectʼs members
 to use???"

 must be declared and defined!"
 will not link otherwise"

class Genome {"
public: "
 Genome(); // constructor 

 static const unsigned short  
 gene_number=64;  
 // static data member"

 Genome clone() const;  

 static void set_mutation_rate"
 (unsigned short);"
private:  

unsigned long gene_;  
static unsigned short  
 mutation_rate_;  
};  

// in source file:"
unsigned short

 Genome::mutation_rate_=2; //
 definition"

Class templates	

 same idea as function templates, classes for any given type T"
 Learn it by studying examples:"

  Array of objects of type T"
 Complex numbers based on real type T"
 Statistics class for observables of type T"

 Take care with syntax, where <T> must be used!"
 template <class T> class Array {  
 …  
 Array(const Array<T>&); // constructor! 
 …  
};"

 template <class T>  
Array<T>::Array(const Array<T>& cp)  
{ … }"

Introdution to Classes	
 Week 4	

Programming techniques	
 17	

The complex template	

 The standard complex class is defined as a template  

 template <class T> class complex;  

  It is specialized and optimized for"
 complex<float>"
 complex<double>"
 complex<long double>"

 but in principle also works for complex<int>, … 

  it is a good exercise in template class design to look at the
 <complex> header"

Do not avoid typedef!	

 Do not store the age of an animal in an int"
  Instead define a new type age_type"

 class Animal {  
 public:  
 typedef unsigned short age_t;  
 age_t age() const;  
 private:  
 age_t age_;  
};"

 Allows easy modifications. If we want to allow older ages, just
 change the typedef to:"
 typedef unsigned long age_t;"

 The rest of the code can remain unchanged!"

