
Introdution to Classes	

 Week 4	

Programming techniques	

 1	

An Introduction to C++ 	

Part 4

Introduction to classes

Classes	

 Are a method to create new data types"
 E.g. a vector or matrix type"

 Object oriented programming:"
 Instead of asking: “What are the subroutines?”"
 We ask:"

 What are the abstract entities?"
 What are the properties of these entities?"
 How can they be manipulated?"

 Then we implement these entities as classes"
 Advantages:"

 High level of abstraction possible"
 Hiding of representation dependent details"
 Presentation of an abstract and simple interface"
 Encapsulation of all operations on a type within a class"

 allows easier debugging"

Introdution to Classes	

 Week 4	

Programming techniques	

 2	

A first simulation: biological aging	

 a simple model for death: 

 what about aging?"
 the remaining lifetime does not depend on current age."
 true for radioactive decay"
 not true for biology"

 what about age distribution?"
 exponential distribution!"
 also not what is seen in nature!"

 what is missing?"
 some kind of aging"
 we need to develop a model containing aging"

dN = −λNdt

The Penna model	

 A very simple model of biological aging"
 T.J.P. Penna, J. Stat. Phys 78, 1629 (1995)"

 Three important assumptions"
 finite age of adulthood"
 mutations of genetic material"
 limited resources"

 This allows to model many features of biological population
 dynamics:"
 pacific salmon dies after giving birth"
 redwood trees have offsprings for hundreds of generations"
 catastrophic decline of cod in Atlantic due to small increase in fishing"

 All these issues cannot be modeled without aging effects!"

Introdution to Classes	

 Week 4	

Programming techniques	

 3	

Details of the Penna model	

 Each animal contains genes determining the survival rate"
 Each gene relevant for one year of its life"
 animal dies when it has collected T bad genes"

 Limitation of resources"
 An animal that would survive because of its genes dies with a

 probability of N/N0!
 N…current population"
 N0… maximum sustainable population"

 Children"
 from an age of R years an animal gets a child asexually with a

 probability b (birthrate)"
 Mutations"

 The children have the genes of the parents but with M random
 mutations"

Program for the Penna model	

 First step: find the entities"

 What are the abstract ideas?"
 Genes"
 Animal"
 Population"

 Exercise: write a list of the properties of each of these entities"
 Representation (internal state)"
 Properties"
 Operations"
 Construction/destruction"

Introdution to Classes	

 Week 4	

Programming techniques	

 4	

What are classes?	

 Classes are collections of “members”, which can be"
 functions"
 data "
 types"

  representing one entity 

 These members can be split into"
 public, accessible interface to the outside"

 should not be modified later!"
 private, hidden representation of the concept"

 can be changed without breaking any program using the class"
 this is called “data hiding”"

 Objects of this type can be modified only by these member
 functions -> easier debugging"

How to design classes	

 ask yourself some questions"
 what are the logical entities (nouns)? "

 ® classes"

 what are the internal state variables ?"
 ® private data members"

 how will it be created/initialized and destroyed?"
 ® constructor and destructor"

 what are its properties (adjectives)?"
 ® public constant member functions"

 how can it be manipulated (verbs)?"
 ® public operators and member functions"

Introdution to Classes	

 Week 4	

Programming techniques	

 5	

A first class example: a traffic light	

 Property"
 The state of the traffic light (green, orange or red)"

 Operation"
 Set the state"

 Construction"
 Create a light in a default state (e.g. red)"
 Create a light in a given state "

 Destruction"
 Nothing special needs to be done"

  Internal representation"
 Store the state in a variable"
 Alternative: connect via a network to a real traffic light"

A first class example: a traffic light	

 Converting the design into a class"

class Trafficlight {  
};"

Introdution to Classes	

 Week 4	

Programming techniques	

 6	

A first class example: a traffic light	

 Add a public type member"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a private data member (variable) of that type:"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	

 Week 4	

Programming techniques	

 7	

A first class example: a traffic light	

 Add a const member function to access the state"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a non-const member function to change the state"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	

 Week 4	

Programming techniques	

 8	

A first class example: a traffic light	

 Add a default constructor to initialize it in the default way"
 a constructor has the same name as the class  

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

A first class example: a traffic light	

 Add a second constructor to construct it from a light"

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Introdution to Classes	

 Week 4	

Programming techniques	

 9	

A first class example: a traffic light	

 And finish by adding a destructor (called to cleanup at destruction)"
 a destructor has the same name as the class, prefixed by ~  

class Trafficlight {  
 public: // access declaration 
 enum light { green, orange, red}; // type member 
 Trafficlight(); // default constructor 
 Trafficlight(light); // constructor 
 ~Trafficlight(); // destructor 

 light state() const; //function member 
 void set_state(light);  
 private: // this is hidden  
 light state_; // data member 
};"

Data hiding and access	

 The concept expressed through the class is  
representation - independent"

 Programs using a class should thus also not depend on
 representation"

 Access declarators"
 public: only representation-independent interface, accessible to all"
 private: representation-dependent functions and data members"
 friend declarators allow related classes access to representation"

 Note: Since all data members are representations of concepts
 (numbers, etc.) they should be hidden (private)!"

 By default all members are private  
In a struct by default all are public"

Introdution to Classes	

 Week 4	

Programming techniques	

 10	

Member access	

class Trafficlight {"
public: "
 enum light  

{ green, orange, red};  

 Trafficlight();  
Trafficlight(light);  
~Trafficlight();  

light state() const;  
void set_state(light);"

private:  
light _state; "

};"

  Usage: 
Trafficlight
x(Trafficlight::green);  
Trafficlight::light l;  

l = x.state();  
l = Trafficlight::green;  

 Members accessed with  

variable_name.member_name 

  Type members accessed with  

class_name::member_name  

as they are not bound to specific
 object but common to all."

Special members	

 Constructors "
 initialize an object"
 same name as class"

 Destructors"
 do any necessary cleanup work when object is destroyed"
 have the class name prefixed by ~"

 Conversions"

 Operators "

Introdution to Classes	

 Week 4	

Programming techniques	

 11	

Illustration: a point in two dimensions	

  Internal state:"
 x- and y- coordinates"
  is one possible representation"

  Construction"
 default: (0,0)"
  from x- and y- values"
 same as another point"

  Properties:"
 distance to another point"
 x- and y- coordinates"
 polar coordinates"

 Operations"
  Inverting a point"
 assignment"

class Point {"
private:"
 float x_,y_;"
public:"
 Point(); // (0,0)"
 Point(float, float);"
 Point(const Point&);"
 float dist(const Point&) const;"
 float x() const;"
 float y() const;"
 float abs() const;"
 float angle() const;"
 void invert() ;"
 Point& operator=(const Point&);"
};"

Constructors and Destructors	

 Let us look at the point example:"
 public:  
 "Point(); // default constructor 
"Point(float, float); // constructor from two numbers 
"Point(const Point&); // copy constructor"

 Most classes should provide a default constructor"

 Copy constructor automatically generated as memberwise copy,
 unless otherwise specified  

 Destructor normally empty and automatically generated"

 Nontrivial destructor only if resources (memory) allocated by the
 object. This usually also requires nontrivial copy constructor and
 assignment operator. (example: array class)"

Introdution to Classes	

 Week 4	

Programming techniques	

 12	

Default members	

 Some member functions are implicitly created by the compiler"

 Copy constructor  
A::A(A const&);  
defaults to member-wise copy if not specified  

 Assignment operator  
A::operator=(A const&);  
also defaults to member-wise copy  

 Destructor  
A::~A()  
defaults to empty function"

Declaration, Definition and Implementation	

  Declaration"

class Point;"

  Definition"

class Point {"
private:"
 float x_,y_;"
public:"
 Point(); // (0,0)"
 Point(float, float);"
 ..."
};"

  Implementation"

float Point::abs() const {"
 return std::sqrt(x_*x

+y*y_)"
}"

  Constructors"

Point::Point(float x, float y)"
 : x_(x), y_(y)"
{} // preferred method"

  or"
Point::Point(float x, float y)"
{ x_ = x; y_ = y;}"

Introdution to Classes	

 Week 4	

Programming techniques	

 13	

Initializing a reference or a const member	

  The simple-minded way fails 

class A {  
 private:  
 int& x;  
 const int y;  
 public:  
 A(int& r, int s) {  
 x=r; // does not work 
 // what does x refer to ?  
 y=s; // does not compile 
 // y is const!  
 }  
};"

 We need the initialization syntax  

class A {  
 private:  
 int& x;  
 const int y;  
 public:  
 A(int& r, int s)  
 : x(r),  
 y(s)  
 {  
 }  
};"

  Stylistic advice: initialize all
 members in this way"

const and volatile	

 const"
 Variables or data members declared as const cannot be modified"
 Member functions declared as const do not modify the object"
 Only const member functions can be called for const objects 

 volatile"
 Volatile variables 
volatile int x;  
can be modified from outside the program! "

 Examples: multi-threaded programs and I/O ports"
 No optimization or caching allowed!"
 Only member functions declared volatile can be called for

 volatile objects"

Introdution to Classes	

 Week 4	

Programming techniques	

 14	

mutable	

  Problem: "
 want to count number of calls to ag

e() function of animal"
 Original source:"

class Animal() {"
public:"
 age_t age() const;"
private:"
 long cnt_;"
 age_t age_;"
};"

age_t Animal::age() const {"
 cnt_++; // error: const!"
 return age_;"
}"

  Solution:"
 mutable qualifier allows

 modification of member even in
 const object!"

 Modified source:"
class Animal() {"
 …"
private:"
 mutable long cnt_;"
 …"
};"

age_t Animal::age() const {"
 cnt_++; // now OK!"
 return age_;"
}"

friends	

  Consider geometrical objects:
 points, vectors, lines,..."
 class Point {  

…  
private:  
 float x,y,z;  
};  

class Vector {  
…  
private:  
 float x,y,z;  
};"

  For an efficient implementation
 these classes should have
 access to each others internal
 representation"

  Using friend declaration this is
 possible:"
 class Vector;  

class Point {  
…  
private:  
 float x,y,z;  
 friend class Vector;  
};  
class Vector {  
…  
private:  
 float x,y,z;  
 friend class Point;  
};"

  also functions possible:"
  friend Point::invert(…);"

Introdution to Classes	

 Week 4	

Programming techniques	

 15	

this	

 Sometimes the object needs to be accessed from a member
 function  

 this is a pointer to the object itself:"
  const Array& Array::operator=(const Array& o) {  

 if(this!=&o) {// do nothing if x=x;  
 // do assignment 
 …  
 }  
 return *this;  
}"

Inlining of member functions	

  For speed issues member
 functions can be inlined"

  Avoid excessive inlining as it
 leads to code-bloat 

  Either in-class definition:"

class complex {  
 float re_, im_;  

 public:  
 float real() const  
 {return re_;}  

 float imag() const  
 {return im_;}  
 …  
};"

  or out-of-class:"

class complex {  
float re_, im_;  

 public:  
 inline float real() const;  
 inline float imag() const;  
 …  
};  

float complex::real() const  
{  
 return re_;  
}  

float complex::imag() const  
{  
 return im_;  
}"

Introdution to Classes	

 Week 4	

Programming techniques	

 16	

Static members	

  are shared by all objects of a type"
  Act like global variables in a

 name space"

  exist even without an object,
 thus :: notation used:
 Genome::gene_number  
Genome::set_mutation_rate(2);"

  Static member functions can only
 access static member variables!  
Reason: which objectʼs members
 to use???"

 must be declared and defined!"
 will not link otherwise"

class Genome {"
public: "
 Genome(); // constructor 

 static const unsigned short  
 gene_number=64;  
 // static data member"

 Genome clone() const;  

 static void set_mutation_rate"
 (unsigned short);"
private:  

unsigned long gene_;  
static unsigned short  
 mutation_rate_;  
};  

// in source file:"
unsigned short

 Genome::mutation_rate_=2; //
 definition"

Class templates	

 same idea as function templates, classes for any given type T"
 Learn it by studying examples:"

  Array of objects of type T"
 Complex numbers based on real type T"
 Statistics class for observables of type T"

 Take care with syntax, where <T> must be used!"
 template <class T> class Array {  
 …  
 Array(const Array<T>&); // constructor! 
 …  
};"

 template <class T>  
Array<T>::Array(const Array<T>& cp)  
{ … }"

Introdution to Classes	

 Week 4	

Programming techniques	

 17	

The complex template	

 The standard complex class is defined as a template  

 template <class T> class complex;  

  It is specialized and optimized for"
 complex<float>"
 complex<double>"
 complex<long double>"

 but in principle also works for complex<int>, … 

  it is a good exercise in template class design to look at the
 <complex> header"

Do not avoid typedef!	

 Do not store the age of an animal in an int"
  Instead define a new type age_type"

 class Animal {  
 public:  
 typedef unsigned short age_t;  
 age_t age() const;  
 private:  
 age_t age_;  
};"

 Allows easy modifications. If we want to allow older ages, just
 change the typedef to:"
 typedef unsigned long age_t;"

 The rest of the code can remain unchanged!"

