
Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 1	

Templates and generic programming	

Improving on last week’s assignment	

♦ How did you calculate the machine precision?
♦ Did you just have a main() function

♦ Did you have three functions with different names?
♦ epsilon_float()
♦ epsilon_double()
♦ epsilon_long_double()

♦ Did you have three functions with the same name?
♦ epsilon(float x)
♦ epsilon(double x)
♦ epsilon(long double x)

♦ Or did you have just one function that could be used for any type?
♦ epsilon()

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 2	

♦ Algorithms are usually very generic:
♦ for min() all that is required is an order relation “<“

♦ Most programming languages require concrete types for the
function definition
♦ C:

♦ int min_int(int a, int b) { return a<b ? a : b;}
♦ float min_float (float a, float b) { return a<b ? a : b;}
♦ double min_double (double a, double b) { return a<b ? a : b;}
♦ …

♦ Fortran:
♦  MIN(), AMIN(), DMIN(), …

�

min(x,y) =
x if x < y
y otherwise

⎧
⎨
⎩

Generic algorithms versus concrete implementations	

♦ solves one problem immediately: we can use the same name
♦ int min(int a, int b) { return a<b ? a : b;}
♦ float min (float a, float b) { return a<b ? a : b;}
♦ double min (double a, double b) { return a<b ? a : b;}

♦ Compiler chooses which one to use
♦ min(1,3); // calls min(int, int)
♦ min(1.,3.); // calls min(double, double)

♦ However be careful:
♦ min(1,3.1415927); // Problem! which one?
♦ min(1.,3.1415927); // OK
♦ min(1,int(3.1415927)); // OK but does not make sense
♦ or define new function double min(int,float);

Function overloading in C++	

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 3	

C++ versus C linkage	

♦ How can three different functions have the same name?
♦ Look at what the compiler does

♦ cd PT
cvs update -d
cd week3
g++ -c -save-temps -O3 min.C

♦ Look at the assembly language file min.s and also at min.o
♦ nm min.o

♦ The functions actually have different names!
♦ Types of arguments appended to function name

♦ C and Fortran functions just use the function name
♦ Can declare a function to have C-style name by using extern “C”
extern “C” { short min(short x, short y);}

Using macros (is dangerous)	

♦ We still need many functions (albeit with the same name)

♦ In C we could use preprocessor macros:
♦ #define min(A,B) (A < B ? A : B)

♦ However there are serious problems:
♦ No type safety
♦ Clumsy for longer functions
♦ Unexpected side effects:

min(x++,y++); // will increment twice!!!
 // since this is: (x++ < y++ ? x++ : y++)

♦ Look at it:
♦ c++ -E minmacro.C

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 4	

Generic algorithms using templates in C++	

♦ C++ templates allow a generic implementation:

 template <class T>
inline T min (T x, T y)

 {

 return (x < y ? x : y);

 }

♦ Using templates we get functions that
♦ work for many types T
♦ are optimal and efficient since they can be inlined
♦ are as generic and abstract as the formal definition
♦ are one-to-one translations of the abstract algorithm

min(x,y) is
x if x < y
y otherwise

⎧
⎨
⎩

Usage Causes Instantiation	

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

int x = min(3, 5);
int y = min(x, 100);

float z = min(3.14159f, 2.7182f);

// T is int

int min<int>(int x, int y)
{
 return x < y ? x : y;
}

// T is float
float min<float>(float x, float y)
{
 return x < y ? x : y;
}

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 5	

Discussion	

“What is Polymorphism?”

Our definition:
 Using many different types through the same interface

Generic programming process	

♦ Identify useful and efficient algorithms

♦ Find their generic representation
♦ Categorize functionality of some of these algorithms
♦ What do they need to have in order to work in principle

♦ Derive a set of (minimal) requirements that allow these algorithms
to run (efficiently)
♦ Now categorize these algorithms and their requirements
♦ Are there overlaps, similarities?

♦ Construct a framework based on classifications and requirements

♦ Now realize this as a software library

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 6	

Generic Programming Process: Example	

♦ (Simple) Family of Algorithms: min, max
♦ Generic Representation

♦ Minimal Requirements?
♦ Find Framework: Overlaps, Similarities?

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎩

max(x, y) =
x if x > y
y otherwise

⎧
⎨
⎩

Generic Programming Process: Example	

♦ (Simple) Family of Algorithms: min, max
♦ Generic Representation

♦ Minimal Requirements yet?
♦ Find Framework: Overlaps, Similarities?

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎩

min(x, y) =
x if y < x
y otherwise

⎧
⎨
⎩

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 7	

Generic Programming Process: Example	

♦ Possible Implementation

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

♦ What are the Requirements on T?
♦ operator < , result convertible to bool

Generic Programming Process: Example	

♦ Possible Implementation

template <class T>
T min(T x, T y)
{
 return x < y ? x : y;
}

♦ What are the Requirements on T?
♦ operator < , result convertible to bool
♦ Copy construction: need to copy the result!

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 8	

Generic Programming Process: Example	

♦ Possible Implementation

template <class T>
T const& min(T const& x, T const& y)
{
 return x < y ? x : y;
}

♦ What are the Requirements on T?
♦ operator < , result convertible to bool
♦ that’s all!

Concepts	

♦ A concept is a set of requirements, consisting of valid expressions,
associated types, invariants, and complexity guarantees.

♦ A type that satisfies the requirements is said to model the concept.

♦ A concept can extend the requirements of another concept, which is
called refinement.

♦ A concept is completely specified by the following:

♦ Associated Types: The names of auxiliary types associated with the
concept.

♦ Valid Expressions: C++ expressions that must compile successfully.

♦ Expression Semantics: Semantics of the valid expressions.

♦ Complexity Guarantees: Specifies resource consumption (e.g.,
execution time, memory).

♦ Invariants: Pre and post-conditions that must always be true.

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 9	

Assignable concept	

♦ Notation
♦ X A type that is a model of Assignable
♦ x, y Object of type X

Expression! Return type! Semantics! Postcondition!

x=y;" X&" Assignment" X is equivalent to y"

swap(x,y)" void" Equivalent to"
{ "
 X tmp = x; "
 x = y; "
 y = tmp; "
}" "

CopyConstructible concept	

♦ Notation
♦ X A type that is a model of CopyConstructible
♦ x, y Object of type X

Expression! Return type! Semantics! Postcondition!
X(y)" X&" Return value is

equivalent to y"
X x(y);" Same as "

X x;"
x=y;"

x is equivalent to y"

X x=y;" Same as "
X x;"
x=y;"

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 10	

Documenting a template function	

♦ In addition to
♦ Preconditions
♦ Postconditions
♦ Semantics
♦ Exception guarantees

♦ The documentation of a template function must include

♦ Concept requirements on the types

♦ Note that the complete source code of the template function must
be in a header file

Argument Dependent Lookup	

♦ Also known as Koenig Lookup
♦ Applies only to unqualified calls

♦ Examines “associated classes
and namespaces”

♦ Adds functions to overload set
♦ Originally for operators, e.g.

operator<<(std::ostream&, T);

namespace lib {	

	
 template <class T> T abs(T x) 	

	
 	
 { return x > 0 ? x : -x; }	

	
 template <class T> 	

	
 T compute(T x) {	

	
 	
 …	

	
 	
 return abs(x);	

	
 }	

}	

namespace user {	

	
 class Num {};	

	
 Num abs(Num);	

	
 Num x = lib::compute(Num());	

}	

?

abs(x)	
 	
 	
 std::abs(x)	

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 11	

Examples: iterative algorithms for linear systems	

♦ Iterative template library (ITL)
♦ Rick Lee et al, Indiana

♦ generic implementation of
iterative solvers for linear
systems from the “Templates”
book

♦ Iterative Eigenvalue Template
Library (IETL)
♦ Prakash Dayal et al, ETH

♦ generic implementation of
iterative eigensolvers. partially
implements the eigenvalue
 templates book

The power method	

♦ Is the simplest eigenvalue solver
♦ returns the largest eigenvalue and corresponding eigenvector

♦ Only requirements:
♦ A is linear operator on a Hilbert space
♦ Initial vector y is vector in the same Hilbert space

♦ Can we write the code with as few constraints?

�

yn+1 = Axn

Templates and generic programming	
 Week 3	

Programming techniques for scientific
simulations	
 12	

Generic implementation of the power method	

♦ A generic implementation is possible

OP A;

V v,y;

T theta, tolerance, residual;

…

do {

 v = y / two_norm(y); // line (3)
 y = A * v; // line (4)
 theta = dot(v,y); // line (5)
 v *= theta; // line (6)
 v -= y;
 residual = two_norm(v); // ||θ v - Av||
} while(residual>tolerance*abs(theta));

Concepts for the power method	

♦ The triple of types (T,V,OP) models the Hilbertspace concept if

♦ T must be the type of an element of a field
♦ V must be the type of a vector in a Hilbert space over that field
♦ OP must be the type of a linear operator in that Hilbert space

♦ All the allowed mathematical operations in a Hilbert space have to exist:
♦ Let v, w be of type V
♦ Let r, s of type T
♦ Let a be of type OP.
♦ The following must compile and have the same semantics as in the

mathematical concept of a Hilbert space:
♦ r+s, r-s, r/s, r*s, -r have return type T
♦ v+w, v-w, v*r, r*v, v/r have return type V
♦ a*v has return type V
♦ two_norm(v) and dot(v,w) have return type T
♦ …

♦ Exercise: complete these requirement

