To code or not to code?

Programming techniques - week 10

Optimization and numerical libraries

Optimization

- ◆ First rule: Do not optimize!
- What if the program is too slow?
 - find optimal algorithm
 - use libraries
- What if the program is still too slow?
 - use profiling to determine which parts are slow
 - ◆ investigate slow part and check that data structures are optimal
 - ◆ are arrays, lists or trees better?
 - is the algorithm optimal?
 - ◆ check literature for better algorithms
 - ◆ use libraries
 - only then think about optimizing
- Consider parallelization or vectorization

Profiling

- is used top determine how much time is spent in which program parts
- Three easy steps:
 - ◆ compile the program with the -p option
 - run the program
 - use prof to look at the performance data
- Alternative using gprof:
 - ◆ compile with the -pg option
 - run the program
 - use gprof to look at the performance data
 - includes time spent in called functions
- See the man pages for details about these programs

Choice of data structures

- choose your data structures depending on the use
- was discussed before and in the exercises:
 - if you need random access use an array
 - if you need to insert in the middle use a list
 - ♦ if you need both use a tree
- use the standard C++ library containers wherever possible. They are (nearly) optimal.
- if you need a container not included:
 - design your own in the STL style
 - make it available to others

Example: the best data structure for the Penna model

- We picked a linked list because removal from the middle of a vector is slow
- However a vector might be faster:
 - ◆ We do not care about the order of the animals
 - ♦ We can implement a special remove_if:
 - ◆ Replaces the removed animal with the last one
 - ◆ This makes removal fast
- We can code a container derived from vector with a special remove if
 - ◆ Will be faster than a std::list
 - ◆ Will require only a one-line change in the Penna code
- Look at penna_vector.h

Choice of algorithms

- Look at the scaling of the algorithms with problem size:
- Fourier transform
 - ◆ Simple: O(N²)
 - ◆ Fast Fourier Transform: O(N log N)
- Matrix-Matrix multiplication
 - ◆ Simple: O(N³)
 - ◆ Strassen: O(N^{2.8})
 - ◆ Coppersmith and Winograd: O(N^{2.376})
- Eigenvalues:
 - ◆ all eigenvalues, dense matrix: O(N³)
 - ◆ some eigenvalues, dense matrix: O(N²)
 - ◆ some eigenvalues, sparse matrix: O(N)

Week 10 Optimization

The Strassen algorithm

- is one example why you should use libraries even for trivial-looking operations
- ◆ Normal matrix-matrix multiplication is order O(N³)
- ◆ Strassen algorithm is O(Nog7/log2)=O(N^{2.8})
 - write matrix as four submatrices

$$C = AB \qquad \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

use a clever scheme

$$Q_1 = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$C_{11} = Q_1 + Q_4 - Q_5 + Q_7$$

$$Q_2 = (a_{21} + a_{22})b_{11}$$

$$Q_3 = a_{11}(b_{12} - b_{22})$$

$$Q_4 = a_{11}(b_{12} - b_{22})$$

$$Q_2 = (a_{21} + a_{22})b_{11}$$

$$c_{21} = Q_2 + Q_4$$

$$Q_3 = a_{11}(b_{12} - b_{22})$$

$$c_{21} = Q_2 + Q$$

$$Q_4 = a_{22}(-b_{11} + b_{21})$$

$$c_{12} = Q_3 + Q_5$$

$$Q_5 = (a_{11} + a_{12})b_{22}$$

$$c_{22} = Q_1 + Q_3 - Q_2 + Q_6$$

$$Q_6 = (-a_{11} + a_{12})(b_{11} + b_{12})$$

$$Q_7 = (a_{12} - a_{22})(b_{21} + b_{22})$$

Comparing matrix multiplication algorithms

- ◆ Standard algorithm is O(N³)
 - ◆ N³ multiplications
 - \wedge $N^2(N-1)$ additions
- Strassen algorithm takes
 - ♦ 7 multiplications of matrices of size N
 - ◆ 18 additions of matrices of size N/2
- ♦ What is the complexity T_{strassen}(N) ?
 - $T_{\text{strassen}}(N) = 7 T_{\text{strassen}}(N/2) + 18/4 N^2$
- Assuming $T_{\text{strassen}}(N) > O(N^2)$
 - \diamond $O(T_{\text{strassen}}(N)) = 7 O(T_{\text{strassen}}(N/2))$
 - \bullet $O(T_{\text{strassen}}(2N)) = 7 O(T_{\text{strassen}}(N))$
 - \diamond => $T_{\text{strassen}}(N) = O(N^{\log 7/\log 2})$

How do we find the best algorithm?

- Look in books of Knuth
- Search the SIAM journals
- ◆ Do not trust the Numerical Recipes too much
- But the easiest solution is: use a library
 - bug free (less buggy than your codes)
 - optimized (probably better than you can do)
 - well documented (do you ever document your codes?)
 - supported on most architectures
- ◆ A huge collection is available on netlib at http://www.netlib.org/
- ♦ In the next weeks we will introduce a variety of useful libraries

How to optimize

- Generally you should use a library instead of optimizing yourself.
- But as computational scientists you will sometimes
 - have to write libraries
 - enter new research fields and algorithms where there is no library
- We will learn how to optimize
 - Optimization using assembly language
 - Classical optimization techniques for any language
 - Optimization in C++
- ◆ And look at libraries using these optimization techniques

Optimization in assembly language

- Sometimes the CPU possesses machine language instructions that cannot be used directly from a high level language
 - Bit counts
 - Vector instructions (discussed in "Numerisches Paralleles Rechnen")
 - ◆ MMX and SSE on Pentium
 - ◆ Altivec on PowerPC
- ◆ Assembly languages instructions can be mixed with C++
 - ◆ Advantage: can speed up code
 - Disadvantage: code becomes non-portable
 - ◆ useful only in very rare cases, but can potentially make a big difference
- Best approach
 - Encapsulate assembly language call in a library

Example: counting leading zeroes in an integer

- ◆ Problem: count the number of leading zeroes in a 32-bit integer
 - Can be used to get the position of the highest bit set
 - Can be used to calculates the logarithm base 2 of an integer
- Solution in C++: requires a loop

```
hint count_leading_zeroes(int x) {
    for (int i = 0 ; i<32 ;++i)
        if (x&(1<<(31-i)))
        return i;
    return 32;
}</pre>
```

Solution in PowerPC-assembler: (powerpc_asm.C)

```
hinline int count_leading_zeros (int x) {
  int c;
  asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );
  return c;
}
```

Inline assembly statements

• We used an inline assembly statement, which mixes assembly language with C++:

```
◆ asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );
```

- Explaining the syntax:
 - ◆ asm(...): inserts an inline assembly language statement
 - cntlzw r9,r15 : puts the number of leading zeroes in register 9 into register 15
 - ◆ cntlzw %1, %0 : we do not know which register the compiler will use and thus use placeholders %0 and %1 (use %2 ... if more registers are needed)
 - ◆: "=r" (c): puts the variable c into the register marked by %0 (and after the execution assigns the value of the register %0 to c
 - ♦: "r" (x): : The second: marks the input variables that will not be modified. This statement tells the compiler to load variable x into register %1
- ◆ To learn more, search the webs to find processor-specific instructions
 - But be warned that it is tricky

Another example: long integers

- How is 64-bit addition implemented on a 32-bit machine?
- ◆ Just as you learned adding numbers in primary school:
 - Add the low words and remember the carry
 - ◆ Add the high words and the carry
- Example: add64.C
 - ♦ g++ -c -save-temps -0 add64.C
 - ♦ Look at add64.s
- Compare to a 64-bit machine
 - Addition done in one step!

128 bit integers in int128.C

- If we need 128 bit integers we need to define a new class:
 - ◆ Build a 128 bit integer from two 64 bit ones:

```
struct int128 {
  unsigned long long low;
  long long high;
};
```

- How do we add them?
 - Adding low and high words separately will not be correct since the carry is not

```
int128 operator+(int128 x, int128 y) {
  int128 result;
  result.low=x.low+y.low;
  result.high=x.high+y.high;
  // wrong result: this does not use carry of previous addition
  return result;
}
```

 Inline assembly language can be used to change "add without carry" to "add with carry"

Helping the compiler optimize

- Using an optimizing compiler is easier than writing fast code in assembly language
- We will now discuss techniques to optimize code.
- Some can be done by the compiler
 - You need to know about them to realize which optimizations you do not need to perform
 - Not optimizing manually what the compiler can do for you can help keep the code cleaner
- Some have to be done by you
 - But only after you have determined by profiling that which function is the bottleneck

Copy propagation (automatic)

- is usually done by any modern compiler and need not be done by you.
- It changes

```
x = y;
z = 1 + x;
```

to

```
x = y;
z = 1 + y;
```

and allows pipelining of the two statements

Constant folding (automatic)

- ◆ Is also done by modern compilers and need not be done by you.
- It changes

```
const int x = 100;
int z = 2*x;
```

to

```
const int x = 100;
int z = 200;
```

◆ And performs the multiplication at compile-time

Dead code removal (automatic)

- Is most useful in connection with template parameters. The compiler can detect if a statement is never executed
- It changes

```
int n = 100;
if (n<1)
   std::cerr << "n less than one";
...</pre>
```

to

```
int n = 100;
```

thus removing the code that will never be executed

Strength reduction (automatic)

- The compiler often realizes how to simplify expressions, making them faster
- It changes

```
x = 2 * y;
```

to

```
x = y + y;
```

or (for integer y)

```
x = (y << 1);
```

♦ And performs the faster operation

Variable renaming (automatic)

- Is also often done by the compiler to expose potentials for pipelining
- It changes

```
int x = y * z;
int q = r + x * x;
    x = a + b;
```

to

```
int x0 = y * z;
int q = r + x0 * x0;
int x = a + b;
```

And can now pipeline the last two statements

Common subexpression elimination (automatic)

- Can be done by the compiler in simple cases:
- It changes

```
d = c * (a + b);

e = (a + b) / 2;
```

to

```
temp = (a + b);
d = c * temp
e = temp / 2;
```

And saves one addition

Common subexpression elimination (manual)

- ◆ If a function call is involved you have to perform common subexpression elimination manually!
- ♦ You have to manually change

```
d = c * f(x);

e = f(x) / 2;
```

to

```
temp = f(x);
d = c * temp
e = temp / 2;
```

- Since the compiler does not know whether f(x) is always the same number
 - ♦ maybe f is your name for a random number generator

Loop invariant code motion (automatic)

- Scientific programs spend most of their time in loops. We have to minimize the work done in those loops. A compiler can help in simple loops:
- It changes

```
for (int i=0; i<n; ++i) {
   a[i] = b[i] + c * d;
   e = g[k];
}</pre>
```

to

```
temp = c * d;
for (int i=0; i<n; ++i) {
   a[i] = b[i] + temp;
}
e = g[k];</pre>
```

Loop invariant code motion (manual)

- In complex loops or I function calls are involved, we have to manually optimize
- ♦ We have to manually change

```
for (int i=0; i<n; ++i) {
  a[i] = b[i] + f(x);
  e = g(y);
}</pre>
```

to

```
temp = f(x);
for (int i=0; i<n; ++i) {
   a[i] = b[i] + temp;
}
e = g(y);</pre>
```

Induction Variable Simplification (automatic / manual)

Induction variable simplification is changing

```
for (int i=0; i<n; ++i) {
   k = 4*i + m;
   ...
}</pre>
```

to

```
k = m;
for (int i=0; i<n; ++i) {
    ...
    k += 4;
}</pre>
```

Importance of Induction Variable Simplification

◆ Take care of hidden complexities in array subscripts: the code

```
for (int i=0; i<n; ++i) {
  x[4*i] = ...
}</pre>
```

Is actually

```
for (int i=0; i<n; ++i) {
   *(x+4*i) = ...
}</pre>
```

And is faster coded as

```
for (T* p=x; p<x+4*n; p+=4) {
   *p = ...
}</pre>
```

Loop unrolling (automatic / manual)

◆ The loop for a scalar product

```
double s=0.;
for (int i=0; i<3; ++i)
   s += x[i] * y[i];</pre>
```

♦ Is much faster when unrolled as

```
double s = x[0] * y[0] + x[1] * y[1] + x[2] * y[2];
```

- ♦ For two reasons:
 - ♦ No loop control statements
 - Easy pipelining
- Simple loops can be unrolled by compilers with high enough optimization settings (-funroll-loops on gcc)

Partial loop unrolling (automatic / manual)

♦ The loop for an array product

```
for (int i=0; i<N; ++i)
  a[i] = b[i] * c[i];</pre>
```

◆ Is much faster when partially unrolled as (for N a multiple of 4)

```
for (int i=0; i<N; i+=4) {
    a[i] = b[i] * c[i];
    a[i+1] = b[i+1] * c[i+1];
    a[i+2] = b[i+2] * c[i+2];
    a[i+3] = b[i+3] * c[i+3];
}</pre>
```

Because pipelining can again be used

Aiming for unit stride (manual)

The loop for a matrix sum

```
for (int i=0; i<N; ++i)
  for (int j=0; j<N; ++j)
   a[i][j] = b[i][j] + c[i][j];</pre>
```

♦ Is much faster than

```
for (int i=0; i<N; ++i)
  for (int j=0; j<N; ++j)
   a[j][i] = b[j][i] + c[j][i];</pre>
```

 Because the unit stride (sequential memory access) in the inner loop uses the cache much better

In-cache matrix-matrix multiplications

◆ The matrix multiplication

```
for (int i=0; i<N; ++i)
  for (int j=0; j<N; ++j)
  for (int k=0; k<N; ++k)
    a[i][j] += b[i][k] * c[k][j];</pre>
```

◆ Is better changed to get unit stride in the inner loop

```
for (int i=0; i<N; ++i)
  for (int k=0; k<N; ++k) {
    temp = b[i][k];
    for (int j=0; j<N; ++j)
       a[i][j] += temp * c[k][j];
}</pre>
```

Out-of-cache matrix multiplications: blocking

- Performance degrades if the matrix does not fit into the cache
- Split the matrix into smaller blocks and perform in-cache multiplications of the blocks:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

- lacklosh The size of the blocks a_{ij} , b_{ij} and c_{ij} depends on the types and sizes of the caches.
- This is tricky and we will learn about libraries doing it for you next week

Libraries for linear algebra

- Fortran libraries
 - ◆ BLAS
 - **♦** LAPACK
- C++ libraries
 - ♦ Blitz++
 - uBlas
 - ◆ ITL and IETL
 - ◆ POOMA
- ◆ The Fortran libraries are well optimized but difficult to call
- ◆ The C++ libraries are easier to use but not as complete yet
- ◆ Fortran can also be called from C++, as we will do in one of the exercises

Calling Fortran from C++

- declare the function extern "C"
- pass all parameters by pointers or reference
- The naming depends on the machine
 - ◆ Fortran FUNC -> C func_ with GNU or Intel compilers
 - ◆ Fortran FUNC -> C func with IBM or Cray compilers
- Program has to be linked with Fortran runtime libraries
- ◆ Take care of:
 - ◆ Fortran real is float on most workstations but double on Cray
 - ◆ Fortran integer is usually an int
 - Array indices in Fortran usually start from 1
 - Storage order of matrices is reversed
 - ◆ Fortran a(i,j) is C a[j-1][i-1]

A calling example: DDOT

◆ The DDOT function in the BLAS library calculates the scalar (dot) product of two double precision vectors:

```
◆ DOUBLE PRECISION FUNCTION DDOT(N,X,INCX,Y,INCY)
DOUBLE PRECISION X(*),Y(*)
INTEGER INCX,INCY,N
```

To call DDOT from C++ we need to declare it as:

- To link we need to add the following options:
 - ◆ On the D-PHYS Linux machines: -lblas -lg2c -lm
 - ◆ On MacOS X: -framework vecLib
 - How to find options for other machines will be explained in the exercises

BLAS

- is short for Basic Linear Algebra Subroutines
- is a Fortran library
- BLAS level 1
 - vector operations: addition, dot product, ...
- BLAS level 2
 - matrix-vector operations
- BLAS level 3
 - matrix-matrix operations
- use the BLAS wherever possible
 - optimized assembler code versions available on most machines
 - generic Fortran version available on www.netlib.org
- Homework: if you have a Unix or Linux machine at home download and install BLAS and LAPACK

ATLAS

- We learned in the last weeks that optimizing matrix operations can be tricky:
 - ◆ For which sizes should we use Strassen's algorithm?
 - How large should we choose sub-blocks to be get optimal cache effects by blocking?
- The Fortran BLAS on netlib works on all machines and thus cannot be optimized to the CPU, cache size and cache type of your machine
- On supercomputers the vendors provide a hand-optimized BLAS
- ATLAS is the solution for the rest of us:
 - ◆ A self-tuning library
 - When being installed it benchmarks hundreds of blocking strategies until it finds the optimal one for your machine
 - It then compiles a BLAS with these optimal settings

ATLAS benchmark example 1

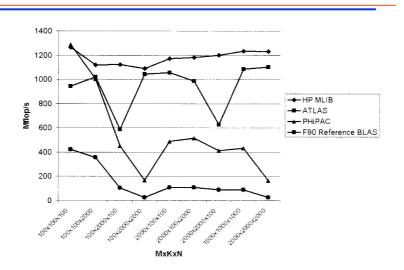
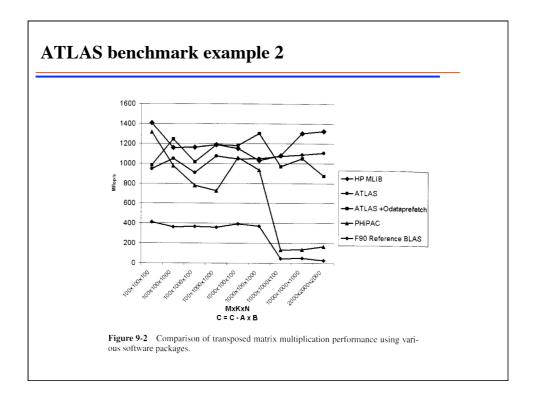


Figure 9-1 Comparison of matrix multiplication performance with various software packages.



LAPACK Overview

- is a Linear Algebra PACKage
- ScaLAPACK is the parallel version
- has functions for
 - eigenvalues and -vectors
 - ♦ linear equation solvers
 - matrix inversions
 - determinants
 - **•** ...
- special functions for
 - symmetric or Hermitian matrices
 - tridiagonal matrices
 - banded matrices

LAPACK & BLAS naming conventions

- functions are of the form
 - ◆ PTTXXX
- where P is the precision
 - ◆ S single precision real
 - ◆ **D** double precision real
 - ◆ **C** single precision complex
 - ◆ Z double precision complex
- TT is the matrix type:
 - ◆ GE general,
 - ◆ SY symmetric
 - ◆ HE Hermitian
 - **•** ...
- ◆ Example: DGEEV is the double precision general eigensolver

Important LAPACK functions

- ◆ Eigensolvers: ***EV for
 - we will use DSYEV or SSYEV for the exercises
- Linear equation solvers: ***SV
- ◆ Linear least squares: ***LS
- Factorizations:
 - **♦** LQ: ***LQF
 - ◆ QL: ***QLF
- Matrix inverse: ***TRI

◆ The fastest open source Fourier transfrom library is the self-tuning FFTW ("Fastest Fourier Transform in the West")

Available from http://www.fftw.org/

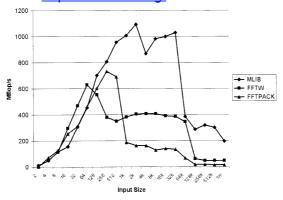


Figure 9-3 Comparison of one-dimensional, complex double precision FFT performance using various software packages.

Commercial libraries: NAG, IMSL, ...

- add many more functions, like:
 - optimizations
 - non-linear root solvers
 - interpolation
 - statistical functions
 - **♦** ...
- ◆ They are however not free but commercial libraries
 - cost a lot of money
 - not suitable for private use
 - ETH has a site license: you can us them in your research