
Programming techniques for physical simulations

Exercise 3

September 30, 2009

Simpson library

1. If you have not yet done so, write a C++ function for the Simpson inte-
gration using function pointers.

2. What are the arguments of the function? What are the preconditions and
the postconditions? Document your function thoroughly and check the
conditions using assertions.

3. Take that function and copy it to a different file. Create a header file that
declares the function. Compile and link your program.

4. Create a Makefile that compiles the function for you. Make sure you get
the dependencies right. Always compile only the files that have changed.

5. Create a library libintegrate.a that contains your Simpson integration
function. Rewrite your Makefile to link against it.

Operator overloading and template functions - Implementation of a
finite group

Definition We will implement the finite group Z2 with the following proper-
ties:

• Z2 = {+,−}

• The group operation · is defined through

+ ·+ = − · − = + (1)
− ·+ = + · − = −. (2)

• The representation of a group element g(µ), µ ∈ Z2 on integer, real or
complex numbers is given by

g(µ) =
{

+1 : µ = +
−1 : µ = −

1



Implementation To represent the group Z2 in C++, we will use an enumer-
ation type and a function that returns the identity element:

enum Z2 { Plus, Minus };

template<class T> T identity_element() { return T(1); }
template<> Z2 identity_element<Z2>() { return Plus; }

This is a case of a fully specialized template function, which will be explained
in more detail later in the course. To implement the group operation, we will
overload the * operator, i.e. assign a meaning to expressions such as

Z2 p = Plus, m = Minus;
Z2 r = p*m;

To this end, we create the following function:

Z2 operator*(Z2 a, Z2 b);

Furthermore, we want to be able to print our result in a nice form, i.e. using
an expression such as cout << r << endl;. We will therefore overload

ostream& operator<<(ostream& os, Z2 a);

in such a way that Plus is printed for + and Minus for −.
To implement the action of a group element on a number, we will implement

the following template function (note that from the point of view of C++, a*b
is not necessarily the same as b*a):

template<class T> T operator*(T a, Z2 b);
template<class T> T operator*(Z2 a, T b);

Finally, we will implement a templated power function which only relies on
the multiplication, so that it can also be used on our Z2 group:

template<class T> T mypow(T a, unsigned int n);

Note that for this, you might need to use the identity element function from
above.

Exercise

• Implement the functions mentioned above; you can find a C++ file with
the necessary structure on the lecture website.

• For each of the templated functions, think about the concepts required
and document these!

2


