Programming techniques for physical simulations

Exercise 3

September 30, 2009

Simpson library

1.

If you have not yet done so, write a C++ function for the Simpson inte-
gration using function pointers.

. What are the arguments of the function? What are the preconditions and

the postconditions? Document your function thoroughly and check the
conditions using assertions.

. Take that function and copy it to a different file. Create a header file that

declares the function. Compile and link your program.

Create a Makefile that compiles the function for you. Make sure you get
the dependencies right. Always compile only the files that have changed.

Create a library libintegrate.a that contains your Simpson integration
function. Rewrite your Makefile to link against it.

Operator overloading and template functions - Implementation of a
finite group

Definition We will implement the finite group Zs with the following proper-

ties:

o 7o = {—l—,—}

e The group operation - is defined through

+t=——=+ (1)
b=t = 2)

e The representation of a group element g(u),u € Za on integer, real or

complex numbers is given by

9(#):{ i Z

+



Implementation To represent the group Z, in C++, we will use an enumer-
ation type and a function that returns the identity element:

enum Z2 { Plus, Minus };

template<class T> T identity_element() { return T(1); }
template<> Z2 identity_element<Z2>() { return Plus; }

This is a case of a fully specialized template function, which will be explained
in more detail later in the course. To implement the group operation, we will
overload the * operator, i.e. assign a meaning to expressions such as

22 p = Plus, m = Minus;
22 r = p*m;

To this end, we create the following function:
Z2 operator*(Z2 a, Z2 b);

Furthermore, we want to be able to print our result in a nice form, i.e. using
an expression such as cout << r << endl;. We will therefore overload

ostream& operator<<(ostream& os, Z2 a);

in such a way that Plus is printed for + and Minus for —.

To implement the action of a group element on a number, we will implement
the following template function (note that from the point of view of C++, a*b
is not necessarily the same as bxa):

template<class T> T operator*(T a, Z2 b);
template<class T> T operator*(Z2 a, T b);

Finally, we will implement a templated power function which only relies on
the multiplication, so that it can also be used on our Zs group:

template<class T> T mypow(T a, unsigned int n);

Note that for this, you might need to use the identity_element function from
above.

Exercise

e Implement the functions mentioned above; you can find a C++ file with
the necessary structure on the lecture website.

e For each of the templated functions, think about the concepts required
and document these!



