Solutions 10: Hamiltonian formalism

December 7, 2009

1. Reviewed harmonic oscillator

a) (i) The Poisson bracket of the new variables with respect to the old is

$$
\begin{equation*}
\{Q, P\}=\frac{\partial Q}{\partial q} \frac{\partial P}{\partial p}-\frac{\partial Q}{\partial p} \frac{\partial P}{\partial q}=\cos \theta \cos \theta-\left(-\frac{1}{m \omega} \sin \theta\right)(m \omega \sin \theta)=1 . \tag{1}
\end{equation*}
$$

Since it equals 1 , the transformation from (q, p) to (Q, P) is canonical.
(ii) Suppose that we regard this as a type i transformation, taking the coordinates q and Q as the independent variables. The momenta p and P are then given by

$$
\begin{equation*}
p=m \omega\left(q \cot \theta-\frac{Q}{\sin \theta}\right), \quad P=m \omega\left(\frac{q}{\sin \theta}-Q \cot \theta\right) . \tag{2}
\end{equation*}
$$

Now consider the differential form

$$
\begin{align*}
p d q-P d Q & =m \omega\left(q \cot \theta-\frac{Q}{\sin \theta}\right) d q-m \omega\left(\frac{q}{\sin \theta}-Q \cot \theta\right) d Q \tag{3}\\
& =d\left(\frac{1}{2} m \omega\left(q^{2}+Q^{2}\right) \cot \theta-m \omega \frac{q Q}{\sin \theta}\right) \tag{4}
\end{align*}
$$

Since it is an exact differential, this again shows that the transformation is canonical. The type 1 generating function is

$$
\begin{equation*}
F_{1}(q, Q)=\frac{1}{2} m \omega\left(q^{2}+Q^{2}\right) \cot \theta-m \omega \frac{q Q}{\sin \theta} . \tag{5}
\end{equation*}
$$

b) The type 2 generating function $F_{2}(q, P)$ can be obtained by setting

$$
\begin{align*}
F_{2} & =F_{1}+P Q \tag{6}\\
& =\frac{1}{2} m \omega\left(q^{2}-Q^{2}\right) \cot \theta \tag{7}
\end{align*}
$$

We must still express this in terms of the appropriate type 2 variables, q and P, by setting

$$
\begin{equation*}
Q=\frac{q}{\cos \theta}-\frac{P}{m \omega} \tan \theta \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
F_{2}(q, P)=\frac{q P}{\cos \theta}-\frac{1}{2} m \omega\left(q^{2}+\frac{P^{2}}{m^{2} \omega^{2}}\right) \tan \theta \tag{9}
\end{equation*}
$$

To check this expression, we evaluate its derivatives

$$
\begin{equation*}
{\frac{\partial F_{2} *}{\partial q_{P}}}_{P}=\frac{P}{\cos \theta}-m \omega \tan \theta=p, \quad{\frac{\partial F_{2}}{\partial P}}_{q}=\frac{q}{\cos \theta}-\frac{P}{m \omega} \tan \theta=Q \tag{10}
\end{equation*}
$$

c) (i) We introduce the new canonical variables (Q, P) by setting,

$$
\begin{equation*}
q=Q \cos \theta+\frac{P}{m \omega} \sin \theta, \quad p=-m \omega Q \sin \theta+P \cos \theta \tag{11}
\end{equation*}
$$

The Hamiltonian for the new canonical variables is given by

$$
\begin{equation*}
K(Q, P, t)=H(q, p)+\left(\frac{\partial F_{2}}{\partial t}\right)_{q, P} \tag{12}
\end{equation*}
$$

where $F_{2}(q, P, t)$ is the type 2 generating function of the transformation (evaluated previously). The first term in $K(Q, P, t)$ is the old Hamiltonian $H(q, p)$, expressed in terms of the new variables,

$$
\begin{align*}
H(q, p) & =\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} q^{2} \tag{13}\\
& =\frac{1}{2 m} P^{2}+\frac{1}{2} m \omega^{2} Q^{2}=H(Q, P) \tag{14}
\end{align*}
$$

The second term in $K(Q, P, t)$ is the time derivative of the generating function,

$$
\begin{align*}
\left(\frac{\partial F_{2}}{\partial t}\right)_{q, P} & =\left[q P \sin \theta-\frac{1}{2} m \omega\left(q^{2}+\frac{P^{2}}{m^{2} \omega^{2}}\right)\right] \frac{\dot{\theta}}{\cos ^{2} \theta} \tag{15}\\
& =\left[q P \sin \theta-\frac{1}{2} m \omega\left(q^{2}+\frac{P^{2}}{m^{2} \omega^{2}}\right)\right] \frac{\dot{\theta}}{\cos ^{2} \theta} \tag{16}\\
& =-\left(\frac{P^{2}}{2 m \omega}+\frac{1}{2} m \omega Q^{2}\right) \dot{\theta}=-H(Q, P)(\dot{\theta} / \omega) . \tag{17}
\end{align*}
$$

The new Hamiltonian is then

$$
\begin{equation*}
K(Q, P, t)=H(Q, P)(1-\dot{\theta} / \omega) \tag{18}
\end{equation*}
$$

and reduces to zero if we take $\theta=\omega t$.
(ii) Hamilton's equation for the new variables are then

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{\partial K}{\partial P}=0, \quad \frac{d P}{d t}=-\frac{\partial K}{\partial Q}=0 \tag{19}
\end{equation*}
$$

so the new canonical variables are constants $Q=Q_{0}, P=P_{0}$. The equations of the canonical transformation then give the original variables (q, p) as functions of time,

$$
\begin{equation*}
q(t)=Q_{0} \cos \omega t+\frac{P_{0}}{m \omega} \sin \omega t, \quad p=-m \omega Q_{0} \sin \omega t+P_{0} \cos \omega t \tag{20}
\end{equation*}
$$

This is the well known solution to the harmonic oscillator problem. The new canonical variables $\left(Q_{0}, P_{0}\right)$ are the initial $(t=0)$ values of the original variables (q, p).

2. Charged particle in a uniform magnetic field

a) Starting from the Hamiltonian and the definition of the vector potential we have

$$
\begin{align*}
H & =\frac{1}{2 m}\left(|\vec{p}|^{2}-\frac{2 q}{c} \vec{p} \cdot \vec{A}+\frac{q^{2}}{c^{2}}|\vec{A}|^{2}\right) \tag{21}\\
& =\frac{1}{2 m}\left[\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)-\frac{B_{0} q}{c}\left(x p_{y}-y p_{x}\right)+\frac{B_{0}^{2} q^{2}}{4 c^{2}}\left(x^{2}+y^{2}\right)\right] \tag{22}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{\partial H}{\partial z}=0 \tag{23}
\end{equation*}
$$

we know that $p_{z} \equiv$ constant, so we can chose a frame in which $p_{z} \equiv 0$. The remaining Hamilton equations are

$$
\begin{align*}
& \dot{x}=\frac{\partial H}{\partial p_{x}}=\frac{1}{2 m}\left(2 p_{x}+\frac{B_{0} q}{c} y\right) \tag{24}\\
& \dot{y}=\frac{\partial H}{\partial p_{y}}=\frac{1}{2 m}\left(2 p_{y}-\frac{B_{0} q}{c} x\right) \tag{25}\\
& \dot{p}_{x}=-\frac{\partial H}{\partial x}=-\frac{B_{0} q}{2 m c}\left(\frac{B_{0} q}{2 c} x-p_{y}\right) \tag{26}\\
& \dot{p}_{y}=-\frac{\partial H}{\partial y}=-\frac{B_{0} q}{2 m c}\left(\frac{B_{0} q}{2 c} y+p_{x}\right) . \tag{27}
\end{align*}
$$

Combining eqs. (24) and (27) we find that

$$
\begin{equation*}
\frac{d}{d t}\left(2 p_{y}+\frac{B_{0} q}{c} x\right)=0 \quad \Longrightarrow \quad 2 p_{y}=-\frac{B_{0} q}{c}\left(x-2 x_{0}\right) \tag{28}
\end{equation*}
$$

and from eqs. (25) and (26) we get

$$
\begin{equation*}
\frac{d}{d t}\left(2 p_{x}-\frac{B_{0} q}{c} y\right)=0 \quad \Longrightarrow \quad 2 p_{x}=\frac{B_{0} q}{c}\left(y-2 y_{0}\right) \tag{29}
\end{equation*}
$$

(we include a factor 2 in the integration constants to simplify a bit the following steps). Replacing we have

$$
\begin{align*}
& \dot{x}=\omega_{c}\left(y-y_{0}\right) \tag{30}\\
& \dot{y}=-\omega_{c}\left(x-x_{0}\right), \tag{31}
\end{align*}
$$

and the solution to these first order linear equations is

$$
\begin{align*}
& x(t)=A \sin \left(\omega_{c} t+\phi\right)+x_{0} \tag{32}\\
& y(t)=A \cos \left(\omega_{c} t+\phi\right)+y_{0} \tag{33}
\end{align*}
$$

Going back to eqs. (28) and (29) we finally find

$$
\begin{align*}
& p_{x}(t)=\frac{m \omega_{c}}{2}\left(A \cos \left(\omega_{c} t+\phi\right)-y_{0}\right) \tag{34}\\
& p_{y}(t)=-\frac{m \omega_{c}}{2}\left(A \sin \left(\omega_{c} t+\phi\right)-x_{0}\right) \tag{35}
\end{align*}
$$

b) Going back to the original expresion of H and introducing the new coordinates and momenta we have

$$
\begin{align*}
H & =\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2} \tag{36}\\
& =\frac{1}{2 m}\left[\left(p_{x}+\frac{m \omega_{c}}{2} y\right)^{2}+\left(p_{y}-\frac{m \omega_{c}}{2} x\right)^{2}\right] \tag{37}\\
& =\frac{1}{2 m}\left[\left(\sqrt{2 m \omega_{c} p_{1}} \cos q_{1}\right)^{2}+\left(\sqrt{2 m \omega_{c} p_{1}} \sin q_{1}\right)^{2}\right] \tag{38}\\
& =\omega_{c} p_{1} \tag{39}
\end{align*}
$$

c) With the Hamiltonian expressed in terms of the new canonical variables there is just one non-trivial Hamilton equation:

$$
\begin{equation*}
\dot{q}_{1}=\frac{\partial H}{\partial p_{1}}=\omega_{c}, \tag{40}
\end{equation*}
$$

so

$$
\begin{equation*}
q_{1}(t)=\omega_{c} t+\phi . \tag{41}
\end{equation*}
$$

The other variables, namely q_{2}, p_{1}, and p_{2}, are just constants. Going back to the old coordinates, we easily recover the expression given in eqs. (32), (33), (34) and (35).

