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1. A Hamiltonian system

(i) In general, a Legendre transformation looks as follows:

H =
∂L

∂q̇
q̇ − L

We know that

∂H

∂p

∣∣∣∣
q

= q̇ ,
∂H

∂q

∣∣∣∣
p

= −ṗ = −∂L
∂q

.

and we can therefore express the above formula with

H = p
∂H

∂p
− L

Thus
L = p

∂H

∂p
−H .

We can see here that the inverse of a Legendre transformation is again a
Legendre transformation. L should depend on q and q̇.

(ii)
L(x, ẋ) = pẋ− c

√
(mc)2 + p2 − eE · x (1)

Here, L(x, ẋ) still contains p, on which it shouldn’t depend. Therefore, we
need to express p as a function of x and/or ẋ . Using

ẋ =
∂H

∂p
=

cp√
m2c2 + p2

(2)

we find
p = mẋc

1√
c2 − ẋ2

(3)

Now we can substitute p in L

L = mẋ2c
1√

c2 − ẋ2
− c

√
m2c2 +

m2c2ẋ2

c2 − ẋ2
− eE · x (4)
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and find by rearranging the terms above slightly

L(x, ẋ) = −cm
√
c2 − ẋ2 − eE · x (5)

Using
d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (6)

we obtain
d

dt
(

ẋ√
1− ẋ2

c2

) = − e

m
E (7)

Compare this to the non-relativistic equation:

d

dt
ẋ = − e

m
E (8)

The second equation of motion is here trivially

d

dt
x = ẋ (9)

Note: It is not possible to solve equation (7) for ẍ , since it is inside a
scalar product. However, ẍ is not a useful quantity in the relativistic case
anyway, as you will learn in your EM lecture.

2. Lennard-Jones Potential between two molecules

(a) The center of mass of the system is given by R = 1
2 (r1 +r2) = (x, y, z),

the reduced mass is µ = m2

m+m = m
2 , and the total mass is M = 2m. Let

r = r1 − r2. Then the kinetic energy of the system is

T =
1
2
MṘ2 +

1
2
µṙ

=
1
2
MṘ2 +

1
2
µ(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ)

and the Lagrangian is

L = T − V

=
1
2
M(ẋ2 + ẏ2 + ż2) +

1
2
µ(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) +

2A
r6
− B

r12
,

where r, θ, φ are the spherical coordinates of a frame fixed at the center of
mass. The generalized momenta are

px =
∂L

∂ẋ
= Mẋ, py =

∂L

∂ẏ
= Mẏ, pz =

∂L

∂ż
= Mż,

pr =
∂L

∂ṙ
= µṙ, pθ =

∂L

∂θ̇
= µr2θ̇, pϕ =

∂L

∂ϕ̇
= µr2ϕ̇ sin2 θ .
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The Hamiltonian is

H =
∑
i

piq̇i − L

=
1

2M
(p2
x + p2

y + p2
z) +

1
2µ

(
p2
r +

1
r2
p2
θ +

1
r2 sin2 θ

p2
ϕ

)
− 2A
r6

+
B

r12
.

(b) The lowest energy state corresponds to px = py = pz = pr = pθ =
pϕ = 0 and an r0 which minimizes

−2A
r6

+
B

r12
.

Letting
d

dt

(
−2A
r6

+
B

r12

)
= 0 ,

we obtain r0 = (B/A)1/6 as the distance between the two atoms for the
lowest energy classical state. For this state the energy of the system is

H =
−A2

B
.

(c) If the energy is only slightly higher than the lowest and the degrees of
freedom corresponding to x, y, z, θ, ϕ are not excited yet (px = py = pz =
pθ = pϕ = 0), we have

H =
p2
r

2µ
− 2A
r6

+
B

r12
.

As (
d2V

dr2

)
r0

= 72A
(
A

B

) 4
3

,

the Lagrangian is

L = T − V =
1
2
µṙ2 − 36A

(
A

B

) 4
3

(r − r0)2 =
1
2
µρ̇2 − 36A

(
A

B

) 4
3

ρ2 ,

where ρ = r − r0 � r0. Lagrange’s equations gives

µρ̈+ 72A
(
A

B

) 4
3

ρ = 0 .

Hence

ω =

√
72A
µ

(
A

B

) 4
3

= 12
(
A

m

) 1
2
(
A

B

) 2
3

.
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