Mechanics Fall 2007, Solutions 9

1. A Hamiltonian system

(i) In general, a Legendre transformation looks as follows:

$$
H=\frac{\partial L}{\partial \dot{q}} \dot{q}-L
$$

We know that

$$
\left.\frac{\partial H}{\partial p}\right|_{q}=\dot{q},\left.\quad \frac{\partial H}{\partial q}\right|_{p}=-\dot{p}=-\frac{\partial L}{\partial q}
$$

and we can therefore express the above formula with

$$
H=p \frac{\partial H}{\partial p}-L
$$

Thus

$$
L=p \frac{\partial H}{\partial p}-H
$$

We can see here that the inverse of a Legendre transformation is again a Legendre transformation. L should depend on q and \dot{q}.

$$
\begin{equation*}
L(x, \dot{x})=p \dot{x}-c \sqrt{(m c)^{2}+p^{2}}-e \mathbf{E} \cdot \mathbf{x} \tag{ii}
\end{equation*}
$$

Here, $\mathrm{L}(x, \dot{x})$ still contains p, on which it shouldn't depend. Therefore, we need to express p as a function of x and/or \dot{x}. Using

$$
\begin{equation*}
\dot{x}=\frac{\partial H}{\partial p}=\frac{c p}{\sqrt{m^{2} c^{2}+p^{2}}} \tag{2}
\end{equation*}
$$

we find

$$
\begin{equation*}
p=m \dot{x} c \frac{1}{\sqrt{c^{2}-x^{2}}} \tag{3}
\end{equation*}
$$

Now we can substitute p in L

$$
\begin{equation*}
L=m \dot{x^{2}} c \frac{1}{\sqrt{c^{2}-\dot{x}^{2}}}-c \sqrt{m^{2} c^{2}+\frac{m^{2} c^{2} \dot{x}^{2}}{c^{2}-\dot{x}^{2}}}-e \mathbf{E} \cdot \mathbf{x} \tag{4}
\end{equation*}
$$

and find by rearranging the terms above slightly

$$
\begin{equation*}
L(x, \dot{x})=-c m \sqrt{c^{2}-\dot{x^{2}}}-e \mathbf{E} \cdot \mathbf{x} \tag{5}
\end{equation*}
$$

Using

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=0 \tag{6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\dot{\mathbf{x}}}{\sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}}\right)=-\frac{e}{m} \mathbf{E} \tag{7}
\end{equation*}
$$

Compare this to the non-relativistic equation:

$$
\begin{equation*}
\frac{d}{d t} \dot{\mathbf{x}}=-\frac{e}{m} \mathbf{E} \tag{8}
\end{equation*}
$$

The second equation of motion is here trivially

$$
\begin{equation*}
\frac{d}{d t} \mathbf{x}=\dot{\mathbf{x}} \tag{9}
\end{equation*}
$$

Note: It is not possible to solve equation (7) for \ddot{x}, since it is inside a scalar product. However, \ddot{x} is not a useful quantity in the relativistic case anyway, as you will learn in your EM lecture.

2. Lennard-Jones Potential between two molecules

(a) The center of mass of the system is given by $\mathbf{R}=\frac{1}{2}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)=(x, y, z)$, the reduced mass is $\mu=\frac{m^{2}}{m+m}=\frac{m}{2}$, and the total mass is $M=2 m$. Let $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$. Then the kinetic energy of the system is

$$
\begin{aligned}
T & =\frac{1}{2} M \dot{\mathbf{R}}^{2}+\frac{1}{2} \mu \dot{\mathbf{r}} \\
& =\frac{1}{2} M \dot{\mathbf{R}}^{2}+\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \dot{\varphi}^{2} \sin ^{2} \theta\right)
\end{aligned}
$$

and the Lagrangian is

$$
\begin{aligned}
L & =T-V \\
& =\frac{1}{2} M\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \dot{\varphi}^{2} \sin ^{2} \theta\right)+\frac{2 A}{r^{6}}-\frac{B}{r^{12}}
\end{aligned}
$$

where r, θ, ϕ are the spherical coordinates of a frame fixed at the center of mass. The generalized momenta are

$$
\begin{array}{llrl}
p_{x} & =\frac{\partial L}{\partial \dot{x}}=M \dot{x}, & p_{y}=\frac{\partial L}{\partial \dot{y}}=M \dot{y}, & p_{z}=\frac{\partial L}{\partial \dot{z}}=M \dot{z} \\
p_{r} & =\frac{\partial L}{\partial \dot{r}}=\mu \dot{r}, & p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=\mu r^{2} \dot{\theta}, & p_{\varphi}=\frac{\partial L}{\partial \dot{\varphi}}=\mu r^{2} \dot{\varphi} \sin ^{2} \theta
\end{array}
$$

The Hamiltonian is

$$
\begin{aligned}
H & =\sum_{i} p_{i} \dot{q}_{i}-L \\
& =\frac{1}{2 M}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{1}{2 \mu}\left(p_{r}^{2}+\frac{1}{r^{2}} p_{\theta}^{2}+\frac{1}{r^{2} \sin ^{2} \theta} p_{\varphi}^{2}\right)-\frac{2 A}{r^{6}}+\frac{B}{r^{12}} .
\end{aligned}
$$

(b) The lowest energy state corresponds to $p_{x}=p_{y}=p_{z}=p_{r}=p_{\theta}=$ $p_{\varphi}=0$ and an r_{0} which minimizes

$$
-\frac{2 A}{r^{6}}+\frac{B}{r^{12}}
$$

Letting

$$
\frac{d}{d t}\left(-\frac{2 A}{r^{6}}+\frac{B}{r^{12}}\right)=0
$$

we obtain $r_{0}=(B / A)^{1 / 6}$ as the distance between the two atoms for the lowest energy classical state. For this state the energy of the system is

$$
H=\frac{-A^{2}}{B}
$$

(c) If the energy is only slightly higher than the lowest and the degrees of freedom corresponding to x, y, z, θ, φ are not excited yet $\left(p_{x}=p_{y}=p_{z}=\right.$ $p_{\theta}=p_{\varphi}=0$), we have

$$
H=\frac{p_{r}^{2}}{2 \mu}-\frac{2 A}{r^{6}}+\frac{B}{r^{12}}
$$

As

$$
\left(\frac{d^{2} V}{d r^{2}}\right)_{r_{0}}=72 A\left(\frac{A}{B}\right)^{\frac{4}{3}}
$$

the Lagrangian is

$$
L=T-V=\frac{1}{2} \mu \dot{r}^{2}-36 A\left(\frac{A}{B}\right)^{\frac{4}{3}}\left(r-r_{0}\right)^{2}=\frac{1}{2} \mu \dot{\rho}^{2}-36 A\left(\frac{A}{B}\right)^{\frac{4}{3}} \rho^{2}
$$

where $\rho=r-r_{0} \ll r_{0}$. Lagrange's equations gives

$$
\mu \ddot{\rho}+72 A\left(\frac{A}{B}\right)^{\frac{4}{3}} \rho=0
$$

Hence

$$
\omega=\sqrt{\frac{72 A}{\mu}\left(\frac{A}{B}\right)^{\frac{4}{3}}}=12\left(\frac{A}{m}\right)^{\frac{1}{2}}\left(\frac{A}{B}\right)^{\frac{2}{3}} .
$$

