## Mechanics Fall 2009, Solutions 8

## 1. Blasting of an industrial chimney

Since the chimney is rotating around 0 we get the equation of motion

$$
I \cdot \ddot{\varphi}=M g \frac{L}{2} \sin \varphi
$$

where

$$
I=\frac{M L^{2}}{3}
$$

is the moment of inertia of the the chimney. We therefore have an angular acceleration of

$$
\ddot{\varphi}=\frac{3}{2} \frac{g \sin \varphi}{L}
$$

In the frame of the falling chimney an element $d m=\frac{M}{L} d x$ experiences a perpendicular force given by

$$
d F=-\frac{M}{L} x \ddot{\varphi} d x+\frac{M}{L} g \sin \varphi d x
$$

An element at distance $x_{0}$ from 0 experiences a torque due to the rest of the chimney above it. This torque is given by

$$
\begin{aligned}
D\left(x_{0}\right) & =\frac{M}{L} \ddot{\varphi} \int_{x_{0}}^{L} x\left(x-x_{0}\right) d x-\frac{M}{L} g \sin \varphi \int_{x_{0}}^{L}\left(x-x_{0}\right) d x \\
& =\frac{M}{L}\left[\ddot{\varphi}\left(\frac{x_{0}^{3}}{6}-\frac{L^{2}}{2} x_{0}\right)+g \sin \varphi\left(L x_{0}-\frac{x_{0}^{2}}{2}\right)\right]+\mathrm{const}
\end{aligned}
$$

The extremal torque is found by

$$
\frac{d D\left(x_{0}\right)}{d x_{0}}=0
$$

with the solutions $x_{0}=L / 3$ (maximal torque) and $x_{0}=L$ (minimal torque). The maximum torque is therefore found at distance $x_{0}=L / 3$ from 0 . This is where the chimney might possibly break.

## 2. Moments of Inertia



Figure 1: Thin square plate
(a) Take the origin at the centre $O$ of the square. For a coordinate frame attached to the square, take the plane of the square as the $x y$-plane with the $x$ - and $y$-axis parallel to the sides. The $z$-axis, which is along the normal, makes an angle $\theta$ with the $z^{\prime}$-axis of the laboratory frame about which the square rotates, as shown in figure 1. We also assume that the $x$-, $z$ - and $z^{\prime}$-axes are coplanar.
Then by symmetry the $x$-, $y$ - and $z$-axes are the principal axes of inertia about $O$, with corresponding moments of inertia

$$
I_{x x}=I_{y y}=\frac{m a^{2}}{12}, \quad I_{z z}=\frac{m a^{2}}{6}
$$

where $m$ is the mass of the square.
(b) The angular momentum $\mathbf{J}$ resolved along the rotating frame coordinate axes is

$$
\left(\begin{array}{c}
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m a^{2}}{12} & 0 & 0 \\
0 & \frac{m a^{2}}{12} & 0 \\
0 & 0 & \frac{m a^{2}}{6}
\end{array}\right)\left(\begin{array}{c}
\omega \sin \theta \\
0 \\
\omega \cos \theta
\end{array}\right)=\left(\begin{array}{c}
\frac{m a^{2}}{12} \omega \sin \theta \\
0 \\
\frac{m a^{2}}{6} \omega \sin \theta
\end{array}\right)
$$

We can choose the laboratory frame so that its $y^{\prime}$-axis coincides witht the $y$-axis at $t=0$. Then the unit vectors of the two frames are
related by

$$
\begin{aligned}
& \mathbf{e}_{x}=\cos \theta \cos \omega t \mathbf{e}_{x^{\prime}}+\cos \theta \sin \omega t \mathbf{e}_{y^{\prime}}+\sin \theta \mathbf{e}_{z^{\prime}} \\
& \mathbf{e}_{y}=-\sin \omega t \mathbf{e}_{x^{\prime}}+\cos \omega t \mathbf{e}_{y^{\prime}} \\
& \mathbf{e}_{z}=-\sin \theta \cos \omega t \mathbf{e}_{x^{\prime}}-\sin \theta \sin \omega t \mathbf{e}_{y^{\prime}}+\cos \theta \mathbf{e}^{z^{\prime}}
\end{aligned}
$$

Hence the angular momentum resolved along the laboratory frame coordinate axes is

$$
\begin{aligned}
\left(\begin{array}{c}
J_{x^{\prime}} \\
J_{y^{\prime}} \\
J_{z^{\prime}}
\end{array}\right) & =\left(\begin{array}{ccc}
\cos \theta \cos \omega t & -\sin \omega t & -\sin \theta \cos \omega t \\
\cos \theta \sin \omega t & \cos \omega t & -\sin \theta \sin \omega t \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{c}
\frac{m a^{2}}{12} \omega \sin \theta \\
0 \\
\frac{m a^{2}}{6} \omega \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{c}
-\frac{m a^{2}}{12} \omega \sin \theta \cos \theta \cos \omega t \\
-\frac{m a^{2}}{12} \omega \sin \theta \cos \theta \sin \omega t \\
\frac{m a^{2}}{12} \omega\left(1+\cos ^{2} \theta\right)
\end{array}\right)
\end{aligned}
$$

(c) The torque on the axis in the laboratory frame is given by

$$
\mathbf{M}=\frac{\mathrm{d} \mathbf{J}}{\mathrm{~d} t}=\left(\begin{array}{c}
\frac{m a^{2}}{12} \omega^{2} \sin \theta \cos \theta \sin \omega t \\
-\frac{m a^{2}}{12} \omega^{2} \sin \theta \cos \theta \cos \omega t \\
0
\end{array}\right)
$$

