Solutions 7 - Mechanics

November 2, 2009

1. A Foretaste of General Relativity:

a) In spherical coordinates the Lagrangian is given by

$$
\begin{equation*}
L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+\frac{M}{r}-\frac{\alpha}{r^{3}}, \tag{1}
\end{equation*}
$$

With the Euler-Lagrange equation we obtain the equations of motion

$$
\begin{align*}
& l=r^{2} \dot{\phi}=\text { const }, \\
& \ddot{r}-\frac{l^{2}}{r^{3}}+\frac{M}{r^{2}}-3 \frac{\alpha}{r^{4}}=0 . \tag{2}
\end{align*}
$$

Substituting $d \phi=l r^{-2} d t$ as well as $u=r^{-1}$ leads to the differential equation

$$
\begin{equation*}
u^{\prime \prime}(\phi)+u(\phi)=\frac{1}{l^{2}}\left(M-3 \alpha u^{2}(\phi)\right) . \tag{3}
\end{equation*}
$$

b) The unperturbed problem $(\alpha=0)$ has the solution

$$
\begin{align*}
u_{0}(\phi) & =A_{0} \sin \phi+A_{1} \cos \phi+\frac{M}{l^{2}} \tag{4}\\
& =\frac{M}{l^{2}}(1+\epsilon \cos \phi)
\end{align*}
$$

Here we have used the boundary conditions $u_{0}(0)=m l^{-2}(1+\epsilon)$ and $u_{0}^{\prime}(0)=0$. We now insert (4) into the right-hand side of (3) to obtain the inhomogeneous, but linear differential equation

$$
\begin{equation*}
u^{\prime \prime}+u=\frac{1}{l^{2}}\left[M-3 \alpha\left(\frac{M}{l^{2}}\right)^{2}\left(1+2 \epsilon \cos \phi+\epsilon^{2} \cos ^{2} \phi\right)\right]+O\left(\alpha^{2}\right) \tag{5}
\end{equation*}
$$

A particular solution of (5) is given by $u_{p}=A_{2}+\frac{1}{2} A_{3} \phi \sin \phi+\frac{1}{4} \epsilon A_{3}\left(1-\frac{1}{3} \cos 2 \phi\right)$, where $A_{2}=M l^{-2}-3 \alpha M^{2} l^{-6}$ and $A_{3}=-6 \alpha \epsilon M^{2} l^{-6}$. The general solution therefore is

$$
\begin{equation*}
u=A_{0} \sin \phi+A_{1} \cos \phi+A_{2}+\frac{A_{3}}{2}\left(\phi \sin \phi+\frac{1}{2} \epsilon-\frac{1}{6} \epsilon \cos 2 \phi\right)+O\left(\alpha^{2}\right) \tag{6}
\end{equation*}
$$

We again use the boundary conditions $u^{\prime}(0)=0$ and $u(0)=M l^{-2}(1+\epsilon)$ what leads to
$u=\frac{M}{l^{2}}(1+\epsilon) \cos \phi+A_{2}(1-\cos \phi)+\frac{A_{3}}{2}\left[\phi \sin \phi+\frac{1}{2} \epsilon-\frac{1}{3} \epsilon \cos \phi-\frac{1}{6} \epsilon \cos 2 \phi\right]+O\left(\alpha^{2}\right)$,
c) The perihelion is defined to be at $u^{\prime}=0$. Assuming a small shift $\Delta \phi$ we find by expanding

$$
\begin{equation*}
0=u^{\prime}(2 \pi+\Delta \phi)=u^{\prime}(2 \pi)+u^{\prime \prime}(2 \pi) \Delta \phi \quad \Longrightarrow \quad \Delta \phi \approx-\frac{u^{\prime}(2 \pi)}{u^{\prime \prime}(2 \pi)} \tag{8}
\end{equation*}
$$

From equation (7) we get

$$
\begin{align*}
u^{\prime}(2 \pi) & =-6 \pi \alpha \epsilon M^{2} l^{-6}+O\left(\alpha^{2}\right) \\
u^{\prime \prime}(2 \pi) & =-\epsilon M l^{-2}+O(\alpha) \tag{9}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\Delta \phi=-\frac{6 \pi \alpha M}{l^{4}}+O\left(\alpha^{2}\right)=-\frac{6 \pi \alpha}{M a^{2}\left(1-\epsilon^{2}\right)^{2}}+O\left(\alpha^{2}\right) \tag{10}
\end{equation*}
$$

Here we have used $l=M a\left(1-\epsilon^{2}\right)$.

2. Amplitude of Oscillation

The equation of the energy conservation reads

$$
\begin{equation*}
\frac{1}{2} m \dot{x}^{2}+V(x)=E \quad \Longrightarrow \quad \frac{d x}{d t}=\sqrt{\frac{2}{m}} \sqrt{E-V(x)} \tag{11}
\end{equation*}
$$

Denoting the positions of the points of reversal by $x_{1}(E)$ and $x_{2}(E)$, we can write the periodic time as

$$
\begin{equation*}
T(E)=\sqrt{2 m} \int_{x_{1}(E)}^{x_{2}(E)} \frac{d x}{\sqrt{E-V(x)}} \tag{12}
\end{equation*}
$$

After splitting the domain of integration, we can use V as an integration variable (note that $V\left(X_{1}\right)=V\left(x_{2}\right)=E$)

$$
\begin{align*}
T(E) & =\sqrt{2 m}\left\{\left.\int_{E}^{0} \frac{d V}{\sqrt{E-V}} \frac{d x}{d V}\right|_{x<0}+\left.\int_{0}^{E} \frac{d V}{\sqrt{E-V}} \frac{d x}{d V}\right|_{x>0}\right\} \tag{13}\\
& =\sqrt{2 m} \int_{0}^{E} \frac{d V}{\sqrt{E-V}}\left\{\frac{d x_{2}(V)}{V}-\frac{d x_{1}(V)}{V}\right\}
\end{align*}
$$

Now we have found an expression for $T(E)$ that can be inserted into the expression given on the exercise sheet:

$$
\begin{equation*}
\int_{0}^{E} \frac{T(K)}{\sqrt{E-K}} d K=\sqrt{2 m} \int_{0}^{E} d K \int_{0}^{K} d V \frac{1}{\sqrt{(E-K)(K-V)}}\left\{\frac{d x_{2}}{d V}-\frac{d x_{1}}{d V}\right\} \tag{14}
\end{equation*}
$$

The triangular domain of integration can be re-parametrized by choosing V instead of E as the independent variable:

$$
\begin{align*}
\int_{0}^{E} \frac{T(K)}{\sqrt{E-K}} d K & =\sqrt{2 m} \int_{0}^{E} d V\left\{\frac{d x_{2}}{d V}-\frac{d x_{1}}{d V}\right\} \underbrace{\int_{V}^{E} d K \frac{1}{\sqrt{(E-K)(K-V)}}}_{\pi} \\
& =\sqrt{2 m} \pi\left[x_{2}(E)-x_{1}(E)\right]=\sqrt{2 m} \pi d(E) \tag{15}
\end{align*}
$$

We therefore find the following expression for the peak-to-peak amplitude

$$
\begin{equation*}
d(E)=\frac{1}{\sqrt{2 m} \pi} \int_{0}^{E} \frac{T(K)}{\sqrt{E-K}} d K \tag{16}
\end{equation*}
$$

