Solutions 6 - Gravitational two body problems
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1. Planets falling into each other‘

After the reduction to the one body equivalent problem the Lagrangian is
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where p is the reduced mass, and the equation of motion for r reads
pit = prf* — o (2)
For circular motion we have
r(t) = ro, P(t) =0 VWt (3)
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Pluging all this in the equation of motion (2) we get
kT2 \ 5
= . 5
(k) )

When the planets are stopped the angular velocity 0 goes to cero, and the
equation of motion becomes
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Multiplying both sides by 27 we get
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The constant c is determined by thee boundary condition, which in this case
states that it must be » = 0 when r = ry, leading to
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We could now solve the differential equation for r(¢), but since we are actually
interested in finding the colliding time, it is more useful to invert (8) and solve
it for ¢(r):
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We substitute u = r/ry and get

3\3 .0 L
At =— | — . 1
t <2k> 1 \1l—u du (10)

Now we change variables to © = sin®z, du = 2sinx cos zdz, and write the
integral as
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Substituting here with (5) we get the final result
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2. Preceding orbits ‘

A. Since we don’t add any 6 dependence to the problem
= pur?0 (13)

is still conserved. We can therefore write the equation of motion for the one
dimensional equivalent problem as
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We assume that
cp\ 2
(l) <<1 (15)

so that we can define

and rewrite (14) as
) l/2 k
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This equation has the same form as the original Kepler equation, so we don’t
need to solve it again. We already know that the orbit is given by
a(l—¢e?)
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where €' is the angular velocity associated to . (Actually, we should have
written a’ and €', but they are constants). To find the equation for the orbit

as a function of the original angular variable 8 we only have to find a relation
between ¢’ and 6. Recalling that

| = pr?6 ' = uro’ (19)
and c
=1+ (20)
we find that -
w0 = uro (1 + l2> . (21)
Thus, we can identify
0 = ab (22)
with .
a=1+% (23)
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and the equation of the orbit becomes

r(8) = a(l —&?)
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B. @ = 1 corresponds to ¢ = 1, which reduces the problem to the ordi-
nary Kepler problem.

C. If a > 1 the orbit is a preceding ellipse. To find the precession veloc-
ity we can do the following analysis. Suppose we start measuring 6 at a
perihelion. If there was no precession, after one year (7) we would give a 27
turn and we would be again at a perihelion. However, given the fact that
the ellipse is actually preceding, we know from (24) that the next perihelion

occurs at 5
™
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Thus, we can calculate the precession velocity as
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