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1. Planets falling into each other

After the reduction to the one body equivalent problem the Lagrangian is

L =
µ

2
(ṙ2 + r2θ̇2) +

k

r
, (1)

where µ is the reduced mass, and the equation of motion for r reads

µr̈ = µrθ̇2 − k

r2
. (2)

For circular motion we have

r(t) = r0, r̈(t) = 0 ∀t (3)

θ̇ =
2π

T
. (4)

Pluging all this in the equation of motion (2) we get

r0 =

(
kT 2

4π2µ

) 1
3

. (5)

When the planets are stopped the angular velocity θ̇ goes to cero, and the
equation of motion becomes

r̈ = −k
µ

1

r2
. (6)

Multiplying both sides by 2ṙ we get

2ṙr̈ = −2k

µ

ṙ

r2
⇔ d

dt
(ṙ2) =

d

dt

(
2k

µr

)
⇔ ṙ2 =

2k

µr
+ c. (7)
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The constant c is determined by thee boundary condition, which in this case
states that it must be ṙ = 0 when r = r0, leading to

dr

dt
= −

√
2k

µ

(
1

r
− 1

r0

) 1
2

= −
√

2k

µ

(
r0 − r
r r0

) 1
2

. (8)

We could now solve the differential equation for r(t), but since we are actually
interested in finding the colliding time, it is more useful to invert (8) and solve
it for t(r):

∆t = −
∫ 0

r0

(
dt

dr

)
dr = −

∫ 0

r0

(
dr

dt

)−1

dr = −
√
µ

2k

∫ 0

r0

(
r r0
r0 − r

) 1
2

dr (9)

We substitute u = r/r0 and get

∆t = −
(
µr3

0

2k

) 1
2 ∫ 0

1

(
u

1− u

) 1
2

du. (10)

Now we change variables to u = sin2 x, du = 2 sin x cosxdx, and write the
integral as

∆t = −2

(
µr3

0

2k

) 1
2 ∫ 0

π/2
sin2 xdx =

(
2µr3

0

k

) 1
2 π

4
. (11)

Substituting here with (5) we get the final result

∆t =

(
2µ

k

kT 2

4π2µ

) 1
2 π

4
=

T

4
√

2
(12)

2. Preceding orbits

A. Since we don’t add any θ dependence to the problem

l = µr2θ̇ (13)

is still conserved. We can therefore write the equation of motion for the one
dimensional equivalent problem as

µr̈ =
l2

µr3
− k

r2
+

2c

r3
=
l2 + 2µc

µr3
− k

r2
(14)
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We assume that (
cµ

l

)2

<< 1 (15)

so that we can define
l′ = l +

cµ

l
(16)

and rewrite (14) as

µr̈ =
l′2

µr3
− k

r2
. (17)

This equation has the same form as the original Kepler equation, so we don’t
need to solve it again. We already know that the orbit is given by

r(θ′) =
a(1− ε2)

1 + ε cos θ′
, (18)

where θ′ is the angular velocity associated to l′. (Actually, we should have
written a′ and ε′, but they are constants). To find the equation for the orbit
as a function of the original angular variable θ we only have to find a relation
between θ′ and θ. Recalling that

l = µr2θ̇ l′ = µr2θ̇′ (19)

and
l′ = l +

cµ

l
(20)

we find that

µr2θ̇′ = µr2θ̇
(

1 +
cµ

l2

)
. (21)

Thus, we can identify
θ′ = αθ (22)

with
α = 1 +

cµ

l2
, (23)

and the equation of the orbit becomes

r(θ) =
a(1− ε2)

1 + ε cosαθ
. (24)
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B. α = 1 corresponds to c = 1, which reduces the problem to the ordi-
nary Kepler problem.

C. If α > 1 the orbit is a preceding ellipse. To find the precession veloc-
ity we can do the following analysis. Suppose we start measuring θ at a
perihelion. If there was no precession, after one year (τ) we would give a 2π
turn and we would be again at a perihelion. However, given the fact that
the ellipse is actually preceding, we know from (24) that the next perihelion
occurs at

θper =
2π

α
. (25)

Thus, we can calculate the precession velocity as

Ω =
1

τ

(
2π

α
− 2π

)
=

2π

τ

(
1

α
− 1

)
(26)
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