Solutions 6 - Gravitational two body problems

October 23, 2009

1. Planets falling into each other

After the reduction to the one body equivalent problem the Lagrangian is

$$
\begin{equation*}
L=\frac{\mu}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{k}{r}, \tag{1}
\end{equation*}
$$

where μ is the reduced mass, and the equation of motion for r reads

$$
\begin{equation*}
\mu \ddot{r}=\mu r \dot{\theta}^{2}-\frac{k}{r^{2}} . \tag{2}
\end{equation*}
$$

For circular motion we have

$$
\begin{gather*}
r(t)=r_{0}, \quad \ddot{r}(t)=0 \quad \forall t \tag{3}\\
\dot{\theta}=\frac{2 \pi}{T} . \tag{4}
\end{gather*}
$$

Pluging all this in the equation of motion (2) we get

$$
\begin{equation*}
r_{0}=\left(\frac{k T^{2}}{4 \pi^{2} \mu}\right)^{\frac{1}{3}} \tag{5}
\end{equation*}
$$

When the planets are stopped the angular velocity $\dot{\theta}$ goes to cero, and the equation of motion becomes

$$
\begin{equation*}
\ddot{r}=-\frac{k}{\mu} \frac{1}{r^{2}} . \tag{6}
\end{equation*}
$$

Multiplying both sides by $2 \dot{r}$ we get

$$
\begin{equation*}
2 \dot{r} \ddot{r}=-\frac{2 k}{\mu} \frac{\dot{r}}{r^{2}} \Leftrightarrow \frac{d}{d t}\left(\dot{r}^{2}\right)=\frac{d}{d t}\left(\frac{2 k}{\mu r}\right) \Leftrightarrow \dot{r}^{2}=\frac{2 k}{\mu r}+c . \tag{7}
\end{equation*}
$$

The constant c is determined by thee boundary condition, which in this case states that it must be $\dot{r}=0$ when $r=r_{0}$, leading to

$$
\begin{equation*}
\frac{d r}{d t}=-\sqrt{\frac{2 k}{\mu}}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)^{\frac{1}{2}}=-\sqrt{\frac{2 k}{\mu}}\left(\frac{r_{0}-r}{r r_{0}}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

We could now solve the differential equation for $r(t)$, but since we are actually interested in finding the colliding time, it is more useful to invert (8) and solve it for $t(r)$:

$$
\begin{equation*}
\Delta t=-\int_{r_{0}}^{0}\left(\frac{d t}{d r}\right) d r=-\int_{r_{0}}^{0}\left(\frac{d r}{d t}\right)^{-1} d r=-\sqrt{\frac{\mu}{2 k}} \int_{r_{0}}^{0}\left(\frac{r r_{0}}{r_{0}-r}\right)^{\frac{1}{2}} d r \tag{9}
\end{equation*}
$$

We substitute $u=r / r_{0}$ and get

$$
\begin{equation*}
\Delta t=-\left(\frac{\mu r_{0}^{3}}{2 k}\right)^{\frac{1}{2}} \int_{1}^{0}\left(\frac{u}{1-u}\right)^{\frac{1}{2}} d u \tag{10}
\end{equation*}
$$

Now we change variables to $u=\sin ^{2} x, d u=2 \sin x \cos x d x$, and write the integral as

$$
\begin{equation*}
\Delta t=-2\left(\frac{\mu r_{0}^{3}}{2 k}\right)^{\frac{1}{2}} \int_{\pi / 2}^{0} \sin ^{2} x d x=\left(\frac{2 \mu r_{0}^{3}}{k}\right)^{\frac{1}{2}} \frac{\pi}{4} \tag{11}
\end{equation*}
$$

Substituting here with (5) we get the final result

$$
\begin{equation*}
\Delta t=\left(\frac{2 \mu}{k} \frac{k T^{2}}{4 \pi^{2} \mu}\right)^{\frac{1}{2}} \frac{\pi}{4}=\frac{T}{4 \sqrt{2}} \tag{12}
\end{equation*}
$$

2. Preceding orbits

A. Since we don't add any θ dependence to the problem

$$
\begin{equation*}
l=\mu r^{2} \dot{\theta} \tag{13}
\end{equation*}
$$

is still conserved. We can therefore write the equation of motion for the one dimensional equivalent problem as

$$
\begin{equation*}
\mu \ddot{r}=\frac{l^{2}}{\mu r^{3}}-\frac{k}{r^{2}}+\frac{2 c}{r^{3}}=\frac{l^{2}+2 \mu c}{\mu r^{3}}-\frac{k}{r^{2}} \tag{14}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
\left(\frac{c \mu}{l}\right)^{2} \ll 1 \tag{15}
\end{equation*}
$$

so that we can define

$$
\begin{equation*}
l^{\prime}=l+\frac{c \mu}{l} \tag{16}
\end{equation*}
$$

and rewrite (14) as

$$
\begin{equation*}
\mu \ddot{r}=\frac{l^{\prime 2}}{\mu r^{3}}-\frac{k}{r^{2}} . \tag{17}
\end{equation*}
$$

This equation has the same form as the original Kepler equation, so we don't need to solve it again. We already know that the orbit is given by

$$
\begin{equation*}
r\left(\theta^{\prime}\right)=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \theta^{\prime}} \tag{18}
\end{equation*}
$$

where θ^{\prime} is the angular velocity associated to l^{\prime}. (Actually, we should have written a^{\prime} and ε^{\prime}, but they are constants). To find the equation for the orbit as a function of the original angular variable θ we only have to find a relation between θ^{\prime} and θ. Recalling that

$$
\begin{equation*}
l=\mu r^{2} \dot{\theta} \quad l^{\prime}=\mu r^{2} \dot{\theta}^{\prime} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
l^{\prime}=l+\frac{c \mu}{l} \tag{20}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\mu r^{2} \dot{\theta}^{\prime}=\mu r^{2} \dot{\theta}\left(1+\frac{c \mu}{l^{2}}\right) . \tag{21}
\end{equation*}
$$

Thus, we can identify

$$
\begin{equation*}
\theta^{\prime}=\alpha \theta \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha=1+\frac{c \mu}{l^{2}}, \tag{23}
\end{equation*}
$$

and the equation of the orbit becomes

$$
\begin{equation*}
r(\theta)=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \alpha \theta} \tag{24}
\end{equation*}
$$

B. $\alpha=1$ corresponds to $c=1$, which reduces the problem to the ordinary Kepler problem.
C. If $\alpha>1$ the orbit is a preceding ellipse. To find the precession velocity we can do the following analysis. Suppose we start measuring θ at a perihelion. If there was no precession, after one year (τ) we would give a 2π turn and we would be again at a perihelion. However, given the fact that the ellipse is actually preceding, we know from (24) that the next perihelion occurs at

$$
\begin{equation*}
\theta_{p e r}=\frac{2 \pi}{\alpha} . \tag{25}
\end{equation*}
$$

Thus, we can calculate the precession velocity as

$$
\begin{equation*}
\Omega=\frac{1}{\tau}\left(\frac{2 \pi}{\alpha}-2 \pi\right)=\frac{2 \pi}{\tau}\left(\frac{1}{\alpha}-1\right) \tag{26}
\end{equation*}
$$

