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Exercise 5.1 Moving guiding curve : rotating pendulum
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Abbildung 1:

Let us take a frame of reference of origin O that moves with the circle, see Fig. 1. The
Poisson vector of this frame of reference is given by

Ω = Ωe3

where e3 is the unitary vector along the vertical symmetry axis of the circle. The Newton’s
equation expressed in the rotating axis is given by

m
δ2s

δt2
+ 2mΩ× δs

δt
+mΩ× (Ω× s) = mg + R,

where the second term of the left hand side (Coriolis force) and the third term are fictitious
forces due to the rotation of the circle, R = Rα+Rβ is the resultant of the reaction forces.

Performing the scalar product between the latter equation and the relative velocity
δs

δt
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which is always tangential to the curve, we get

δ2s

δt2
· δs
δt

+ (Ω · s)(Ω · δs
δt

)− Ω2s · δs
δt

= g · δs
δt
.

After integration we have

1

2

∥∥∥∥δsδt
∥∥∥∥2

+
1

2
(Ω · s)2 − 1

2
Ω2 ‖s‖2 = g · s + c, (1)

where c is a constant.
We take now the polar coordinates of the rotating plane such that

r = a ; s = aer ;
δs

δt
= aθ̇eθ.

We introduce the following dimensionless variable

τ = ωt

and the dimensionless number

n =
Ω

ω
where ω =

√
g

a

is the frequency of the simple pendulum with the same radius. We have

Ω · s = −Ωa cos θ

g · s = ga cos θ,

and the equation (1) can be rewritten as

θ̇2

ω2
+

Ω2

ω2
cos2 θ − Ω2

ω2
= 2 cos θ + 2c

and since

θ̇2 =

(
dθ

dτ

dτ

dt

)2

= θ̊2ω2

where˚is the derivative w.r.t τ , we finally have

θ̊2

2
− (

n2

2
sin2 θ + cos θ) = c

where c is a constant fixed by the initial conditions.
In the latter equation the first term of the left hand side can be considered as a dimen-
sionless kinetic energy T , the second term as a dimensionless potential energy

V(θ) = −n
2

2
sin2 θ − cos θ,

and the right hand side as the dimensionless total energy of the system, which is a constant
of the motion and fixed by initial conditions. Since the kinetic energy is definite positive
we have

T = c− V ≥ 0,
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which means that the motion is possible only when the last inequality is satisfied, i.e. only
for c ≥ V(θ).
In order to study the dynamics of this system we consider the function V(θ) which deri-
vatives are given by

V ′ = (1− n2 cos θ) sin θ

V ′′ = n2 + cos θ − 2n2 cos2 θ

V ′′′ = (4n2 cos θ − 1) sin θ

V ′′′′ = −4n2 − cos θ + 8n2 cos2 θ.

We distinguish three cases :

1. n < 1 (ω > Ω : the gravitational force is dominant).
We plot the function V(θ) in Fig. 2 (for n = 0.5) which shows a minimum at θ = 0
(stable relative equilibrium point) and a maximum at θ = π (unstable relative
equilibrium point; ”relative” because the stability is considered with respect to the
moving frame of reference). The motion is possible only if c ≥ min(V) = −1. In the
Fig. 3 we plot the trajectories in the phase diagram in terms of the couples (θ, θ̊).

• c = −1 : The only solution is θ = 2kπ. The particle is at the bottom of the
circle. This corresponds to the points (2kπ, 0) in the phase diagram.

• −1 < c < 1 : The particle is oscillating between two reflection angles ±θr. The
trajectories on the phase diagram are closed describing a periodic orbit.

• c = 1 : If the initial angle is such that θ0 6= (2k + 1)π the motion is asympto-
tically limited, the particle goes asymptotically to the top of the circle. The
corresponding trajectory in the phase diagram is the ones crossing the θ-axis
at (2k + 1)π. If the initial angle is such that θ0 = (2k + 1)π the particle stays
at the top of the circle.

• c > 1 : The motion of the particle is revolving. The trajectories do not cross
the θ-axis of the phase diagram.
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Abbildung 2: Dimensionless potential energy V(θ) for n = 0.5.
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Abbildung 3: Phase diagram.
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2. n > 1 (ω < Ω : the fictitious force due to the rotation of the circle is dominant).
The function V(θ) is plotted in Fig. (for n = 1.5). It shows two maxima at θ = 0 and
at θ = π, both unstable relative equilibrium point, and one minimum at θ = ±θm,
a stable relative equilibrium point, given by cos θm = 1/n2 (derived from the first
derivative of V). The phase diagram is plotted in Fig. 5.

The motion is possible only for c ≥ V(θm) = −n
4 + 1

2n2
.

• −(n4 + 1)/2n2 = c : There are two relative equilibrium points at θ = θm and
θ = −θm (stable). Those are the the two center located on the θ-axis (i.e.
θ̊ = 0) in the phase diagram.

• −(n4 + 1)/2n2 < c < −1 : The particle oscillates between two reflection angles
0 < θ1 ≤ θm ≤ θ2 (or −θ2 ≤ −θm ≤ −θ1 < 0). The trajectories in the phase
diagram are closed describing a periodic orbit.

• c = −1 : If the initial angle is such that θ0 6= 2kπ the motion is asymptotically
limited, the particle goes asymptotically to the bottom of the circle. The cor-
responding trajectory in the phase diagram is crossing the θ-axis at 2kπ (at
the point (0, 0) in Fig. 5). If the initial angle is such that θ0 = 2kπ the particle
stays at the bottom of the circle.

• −1 < c < 1 : The particle oscillates between two reflection angles ±θr passing
through the origin. The trajectories in the phase diagram are closed describing
a periodic orbit.

• c = 1 : Similar to the previous section.

• c > 1 : Similar to the previous section.

3. n = 1
The function V(θ) has one maximum at θ = (2k+1)π and one minimum at θ = 2kπ.
The discussion and the plots are similar to the case n < 1.
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Abbildung 4: Dimensionless potential energy V(θ) for n = 1.5.
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Abbildung 5: Phase diagram.
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Exercise 5.2 Variable mass system

The differential equation of motion of the space shuttle is

m(t)ṡ = m(t)g + P ,

where s is the position vector of the mass center of the shuttle and the thrust is given by

P =
dm

dt
w .

Since the space shuttle is starting at rest and that only vertical forces apply on it, the
motion is following the vertical axis Ez. Projecting the differential equation of motion on
Ez and using w = −wEz we get

m(t)z̈ = −m(t)g − dm

dt
w ,

and

z̈ = −g − w

m

dm

dt
.

In order to find the velocity of the shuttle at the end of the combustion we simply have
to integrate this equation over the time from t = 0 to the time tc. Since at tc all the fuel
is gone the total mass of the system is ml, i.e.

t = 0 ż = 0 m = ml +mf

t = tc ż = żc m = ml .

We then have ∫ tc

0

z̈dt = −
∫ tc

0

gdt−
∫ tc

0

w

m

dm

dt
dt ,

and

żc = −gtc −
∫ ml

ml+mf

w
md

m
= ,

and then

żc = −gtc − wln

(
ml

ml +mf

)
= −gtc + wln

(
1 +

mf

ml

)
.
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