Classical Mechanics Solution Sheet 5

Exercise 5.1 Moving guiding curve : rotating pendulum

Abbildung 1:
Let us take a frame of reference of origin O that moves with the circle, see Fig. 1. The Poisson vector of this frame of reference is given by

$$
\Omega=\Omega e_{3}
$$

where \boldsymbol{e}_{3} is the unitary vector along the vertical symmetry axis of the circle. The Newton's equation expressed in the rotating axis is given by

$$
m \frac{\delta^{2} \boldsymbol{s}}{\delta t^{2}}+2 m \boldsymbol{\Omega} \times \frac{\delta \boldsymbol{s}}{\delta t}+m \boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \boldsymbol{s})=m \boldsymbol{g}+\boldsymbol{R}
$$

where the second term of the left hand side (Coriolis force) and the third term are fictitious forces due to the rotation of the circle, $\boldsymbol{R}=\boldsymbol{R}_{\alpha}+\boldsymbol{R}_{\beta}$ is the resultant of the reaction forces. Performing the scalar product between the latter equation and the relative velocity $\frac{\delta s}{\delta t}$
which is always tangential to the curve, we get

$$
\frac{\delta^{2} \boldsymbol{s}}{\delta t^{2}} \cdot \frac{\delta s}{\delta t}+(\Omega \cdot \boldsymbol{s})\left(\Omega \cdot \frac{\delta \boldsymbol{s}}{\delta t}\right)-\Omega^{2} \boldsymbol{s} \cdot \frac{\delta \boldsymbol{s}}{\delta t}=\boldsymbol{g} \cdot \frac{\delta \boldsymbol{s}}{\delta t}
$$

After integration we have

$$
\begin{equation*}
\frac{1}{2}\left\|\frac{\delta \boldsymbol{s}}{\delta t}\right\|^{2}+\frac{1}{2}(\boldsymbol{\Omega} \cdot \boldsymbol{s})^{2}-\frac{1}{2} \Omega^{2}\|\boldsymbol{s}\|^{2}=\boldsymbol{g} \cdot \boldsymbol{s}+c \tag{1}
\end{equation*}
$$

where c is a constant.
We take now the polar coordinates of the rotating plane such that

$$
r=a ; \quad \boldsymbol{s}=a \boldsymbol{e}_{r} ; \quad \frac{\delta \boldsymbol{s}}{\delta t}=a \dot{\theta} \boldsymbol{e}_{\theta}
$$

We introduce the following dimensionless variable

$$
\tau=\omega t
$$

and the dimensionless number

$$
n=\frac{\Omega}{\omega} \quad \text { where } \quad \omega=\sqrt{\frac{g}{a}}
$$

is the frequency of the simple pendulum with the same radius. We have

$$
\begin{aligned}
\boldsymbol{\Omega} \cdot \boldsymbol{s} & =-\Omega a \cos \theta \\
\boldsymbol{g} \cdot \boldsymbol{s} & =g a \cos \theta
\end{aligned}
$$

and the equation (1) can be rewritten as

$$
\frac{\dot{\theta}^{2}}{\omega^{2}}+\frac{\Omega^{2}}{\omega^{2}} \cos ^{2} \theta-\frac{\Omega^{2}}{\omega^{2}}=2 \cos \theta+2 c
$$

and since

$$
\dot{\theta}^{2}=\left(\frac{d \theta}{d \tau} \frac{d \tau}{d t}\right)^{2}=\dot{\theta}^{2} \omega^{2}
$$

where ${ }^{\circ}$ is the derivative w.r.t τ, we finally have

$$
\frac{\dot{\theta}^{2}}{2}-\left(\frac{n^{2}}{2} \sin ^{2} \theta+\cos \theta\right)=c
$$

where c is a constant fixed by the initial conditions.
In the latter equation the first term of the left hand side can be considered as a dimensionless kinetic energy \mathcal{T}, the second term as a dimensionless potential energy

$$
\mathcal{V}(\theta)=-\frac{n^{2}}{2} \sin ^{2} \theta-\cos \theta
$$

and the right hand side as the dimensionless total energy of the system, which is a constant of the motion and fixed by initial conditions. Since the kinetic energy is definite positive we have

$$
\mathcal{T}=c-\mathcal{V} \geq 0
$$

which means that the motion is possible only when the last inequality is satisfied, i.e. only for $c \geq \mathcal{V}(\theta)$.
In order to study the dynamics of this system we consider the function $\mathcal{V}(\theta)$ which derivatives are given by

$$
\begin{aligned}
\mathcal{V}^{\prime} & =\left(1-n^{2} \cos \theta\right) \sin \theta \\
\mathcal{V}^{\prime \prime} & =n^{2}+\cos \theta-2 n^{2} \cos ^{2} \theta \\
\mathcal{V}^{\prime \prime \prime} & =\left(4 n^{2} \cos \theta-1\right) \sin \theta \\
\mathcal{V}^{\prime \prime \prime \prime} & =-4 n^{2}-\cos \theta+8 n^{2} \cos ^{2} \theta
\end{aligned}
$$

We distinguish three cases :

1. $n<1$ ($\omega>\Omega$: the gravitational force is dominant).

We plot the function $\mathcal{V}(\theta)$ in Fig. 2 (for $n=0.5$) which shows a minimum at $\theta=0$ (stable relative equilibrium point) and a maximum at $\theta=\pi$ (unstable relative equilibrium point; "relative" because the stability is considered with respect to the moving frame of reference). The motion is possible only if $c \geq \min (\mathcal{V})=-1$. In the Fig. 3 we plot the trajectories in the phase diagram in terms of the couples $(\theta, \overparen{\theta})$.

- $c=-1$: The only solution is $\theta=2 k \pi$. The particle is at the bottom of the circle. This corresponds to the points $(2 k \pi, 0)$ in the phase diagram.
- $-1<c<1$: The particle is oscillating between two reflection angles $\pm \theta_{r}$. The trajectories on the phase diagram are closed describing a periodic orbit.
- $c=1$: If the initial angle is such that $\theta_{0} \neq(2 k+1) \pi$ the motion is asymptotically limited, the particle goes asymptotically to the top of the circle. The corresponding trajectory in the phase diagram is the ones crossing the θ-axis at $(2 k+1) \pi$. If the initial angle is such that $\theta_{0}=(2 k+1) \pi$ the particle stays at the top of the circle.
- $c>1$: The motion of the particle is revolving. The trajectories do not cross the θ-axis of the phase diagram.

Abbildung 2: Dimensionless potential energy $\mathcal{V}(\theta)$ for $n=0.5$.

Abbildung 3: Phase diagram.
2. $n>1(\omega<\Omega$: the fictitious force due to the rotation of the circle is dominant). The function $\mathcal{V}(\theta)$ is plotted in Fig. (for $n=1.5$). It shows two maxima at $\theta=0$ and at $\theta=\pi$, both unstable relative equilibrium point, and one minimum at $\theta= \pm \theta_{m}$, a stable relative equilibrium point, given by $\cos \theta_{m}=1 / n^{2}$ (derived from the first derivative of \mathcal{V}). The phase diagram is plotted in Fig. 5.

The motion is possible only for $c \geq \mathcal{V}\left(\theta_{m}\right)=-\frac{n^{4}+1}{2 n^{2}}$.

- $-\left(n^{4}+1\right) / 2 n^{2}=c$: There are two relative equilibrium points at $\theta=\theta_{m}$ and $\theta=-\theta_{m}$ (stable). Those are the the two center located on the θ-axis (i.e. $\dot{\theta}=0$) in the phase diagram.
- $-\left(n^{4}+1\right) / 2 n^{2}<c<-1$: The particle oscillates between two reflection angles $0<\theta_{1} \leq \theta_{m} \leq \theta_{2}$ (or $-\theta_{2} \leq-\theta_{m} \leq-\theta_{1}<0$). The trajectories in the phase diagram are closed describing a periodic orbit.
- $c=-1$: If the initial angle is such that $\theta_{0} \neq 2 k \pi$ the motion is asymptotically limited, the particle goes asymptotically to the bottom of the circle. The corresponding trajectory in the phase diagram is crossing the θ-axis at $2 k \pi$ (at the point $(0,0)$ in Fig. 5). If the initial angle is such that $\theta_{0}=2 k \pi$ the particle stays at the bottom of the circle.
- $-1<c<1$: The particle oscillates between two reflection angles $\pm \theta_{r}$ passing through the origin. The trajectories in the phase diagram are closed describing a periodic orbit.
- $c=1$: Similar to the previous section.
- $c>1$: Similar to the previous section.

3. $n=1$

The function $\mathcal{V}(\theta)$ has one maximum at $\theta=(2 k+1) \pi$ and one minimum at $\theta=2 k \pi$. The discussion and the plots are similar to the case $n<1$.

Abbildung 4: Dimensionless potential energy $\mathcal{V}(\theta)$ for $n=1.5$.

Abbildung 5: Phase diagram.

Exercise 5.2 Variable mass system

The differential equation of motion of the space shuttle is

$$
m(t) \dot{\boldsymbol{s}}=m(t) \boldsymbol{g}+\mathcal{P}
$$

where s is the position vector of the mass center of the shuttle and the thrust is given by

$$
\mathcal{P}=\frac{d m}{d t} \boldsymbol{w}
$$

Since the space shuttle is starting at rest and that only vertical forces apply on it, the motion is following the vertical axis \boldsymbol{E}_{z}. Projecting the differential equation of motion on \boldsymbol{E}_{z} and using $\boldsymbol{w}=-w \boldsymbol{E}_{z}$ we get

$$
m(t) \ddot{z}=-m(t) g-\frac{d m}{d t} w
$$

and

$$
\ddot{z}=-g-\frac{w}{m} \frac{d m}{d t} .
$$

In order to find the velocity of the shuttle at the end of the combustion we simply have to integrate this equation over the time from $t=0$ to the time t_{c}. Since at t_{c} all the fuel is gone the total mass of the system is m_{l}, i.e.

$$
\begin{array}{c|cc}
t=0 & \dot{z}=0 & m=m_{l}+m_{f} \\
t=t_{c} & \dot{z}=\dot{z}_{c} & m=m_{l} .
\end{array}
$$

We then have

$$
\int_{0}^{t_{c}} \ddot{z} d t=-\int_{0}^{t_{c}} g d t-\int_{0}^{t_{c}} \frac{w}{m} \frac{d m}{d t} d t
$$

and

$$
\dot{z}_{c}=-g t_{c}-\int_{m_{l}+m_{f}}^{m_{l}} w \frac{m d}{m}=
$$

and then

$$
\dot{z}_{c}=-g t_{c}-w \ln \left(\frac{m_{l}}{m_{l}+m_{f}}\right)=-g t_{c}+w \ln \left(1+\frac{m_{f}}{m_{l}}\right) .
$$

