Solutions 4

’1. Non-Uniqueness of the Lagrangian

We show that adding a total time derivative of a function of the generalised co-
ordinates to the Lagrangian L does not change the Euler-Lagrange equations,
by direct computation. The ¢;-Euler-Lagrange equation of L’ is given by
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Therefore L and L’ lead to the same Euler-Lagrange equations iff
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Using the fact that F' does not depend on ¢; and that the total time derivative
of F' ist given by
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we see that
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This proves the claim.

2. Point Particle Gliding in a Cone

We use spherical coordinates and the position & of the particle is given by
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where r is the distance of the particle from the apex and ¢ is an angular variable
around the axis of the cone. Note that r and ¢ are the generalised coordinates
of the system, but € isn’t, because 8 describes the constant aperture of the cone.
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To determine the kinetic energy we need the velocity of the particle
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The kinetic energy T and potential energy V are then given by

T= %fz = %(7'“2 + 7252 sin? ) U = mgr cos®,

resulting in the Lagrangian

L= %(7’2 + 72p% sin? 0) — mgr cos 6.

We first compute the Euler-Lagrange equation for ¢.
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The Euler-Lagrange equation for ¢ is therefore given by
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or
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where P, is a constant. Next we compute the Euler-Lagrange equation

for r.

0, L = mrg? sin?  — mg cos 6 0rL = mr-.

Cancelling the common factors of m and solving for 7 the Euler-Lagrange
equation for r reads

i =rp?sin? 6 — g cos 6.

The component L3 of the angular momentum & x mi along the axis of the
cone is mr2psin® @. This is just the left hand side of the Euler-Lagrange
equation for ¢. Therefore L3 = P, is constant.

To determine the solutions with constant » we must first eliminate ¢ from
the Euler-Lagrange equation for . We do this by first isolating ¢ in the
Euler-Lagrange equation for ¢
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and plugging the result into the Euler-Lagrange equation for r
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For solutions with constant » we have # = 0 and therefore
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3. Nut winding down a thread

We will refer to the hight of the centre of mass of the nut by z and how far it
has been rotated by ¢. Since z can be expressed as a function of ¢

wh

 is our only generalised coordinate.

a) To determine the Lagrangian we need the moment of inertia
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where m = mlp(R? — r?) is the total mass of the nut. The kinetic and
potential energies are then given by
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b) The ¢ and ¢ derivatives are
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Canceling the common factor m the Euler-Lagrange equation is therefore
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Assuming ¢(0) = ¢(0) = 0 the Euler-Lagrange equation integrates to

2

0= 5%
) T

or in terms of the vertical coordinate z
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The nut accelerates at a factor
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times the acceleration it would have when falling freely.



