Solutions 4

1. Non-Uniqueness of the Lagrangian

We show that adding a total time derivative of a function of the generalised coordinates to the Lagrangian L does not change the Euler-Lagrange equations, by direct computation. The q_{i}-Euler-Lagrange equation of L^{\prime} is given by

$$
\begin{aligned}
0 & =\partial_{q_{i}} L^{\prime}-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{\dot{q}_{i}} L^{\prime}=\partial_{q_{i}} L-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{\dot{q}_{i}} L+\partial_{q_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} F-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{\dot{q}_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} F \\
& =\partial_{q_{i}} L-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{\dot{q}_{i}} L+\frac{\mathrm{d}}{\mathrm{~d} t}\left[\partial_{q_{i}} F-\partial_{\dot{q}_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} F\right] .
\end{aligned}
$$

Therefore L and L^{\prime} lead to the same Euler-Lagrange equations iff

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\partial q_{i} F-\partial_{\dot{q}_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} F\right]=0
$$

Using the fact that F does not depend on q_{i} and that the total time derivative of F ist given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F=\partial_{t} F+\sum_{j=1}^{n} \dot{q}_{j} \partial_{q_{j}} F
$$

we see that

$$
\partial_{\dot{q}_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} F=\partial_{q_{i}} F .
$$

This proves the claim.

2. Point Particle Gliding in a Cone

We use spherical coordinates and the position \vec{x} of the particle is given by

$$
\vec{x}=r\left(\begin{array}{c}
\cos \varphi \sin \theta \\
\sin \varphi \sin \theta \\
\cos \theta
\end{array}\right)
$$

where r is the distance of the particle from the apex and φ is an angular variable around the axis of the cone. Note that r and φ are the generalised coordinates of the system, but θ isn't, because θ describes the constant aperture of the cone.
a) To determine the kinetic energy we need the velocity of the particle

$$
\dot{\vec{x}}=\dot{r}\left(\begin{array}{c}
\cos \varphi \sin \theta \\
\sin \varphi \sin \theta \\
\cos \theta
\end{array}\right)+r \dot{\varphi} \sin \theta\left(\begin{array}{c}
-\sin \varphi \\
\cos \varphi \\
0
\end{array}\right)
$$

The kinetic energy T and potential energy V are then given by

$$
T=\frac{m}{2} \dot{\vec{x}}^{2}=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2} \sin ^{2} \theta\right) \quad U=m g r \cos \theta
$$

resulting in the Lagrangian

$$
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2} \sin ^{2} \theta\right)-m g r \cos \theta
$$

b) We first compute the Euler-Lagrange equation for φ.

$$
\partial_{\varphi} L=0 \quad \partial_{\dot{\varphi}} L=m r^{2} \dot{\varphi} \sin ^{2} \theta
$$

The Euler-Lagrange equation for φ is therefore given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} m r^{2} \dot{\varphi} \sin ^{2} \theta=0
$$

or

$$
m r^{2} \dot{\varphi} \sin ^{2} \theta=P_{\varphi}
$$

where P_{φ} is a constant. Next we compute the Euler-Lagrange equation for r.

$$
\partial_{r} L=m r \dot{\varphi}^{2} \sin ^{2} \theta-m g \cos \theta \quad \partial_{\dot{r}} L=m \dot{r}
$$

Cancelling the common factors of m and solving for \ddot{r} the Euler-Lagrange equation for r reads

$$
\ddot{r}=r \dot{\varphi}^{2} \sin ^{2} \theta-g \cos \theta .
$$

c) The component L_{3} of the angular momentum $\vec{x} \times m \dot{\vec{x}}$ along the axis of the cone is $m r^{2} \dot{\varphi} \sin ^{2} \theta$. This is just the left hand side of the Euler-Lagrange equation for φ. Therefore $L_{3}=P_{\varphi}$ is constant.
d) To determine the solutions with constant r we must first eliminate $\dot{\varphi}$ from the Euler-Lagrange equation for r. We do this by first isolating $\dot{\varphi}$ in the Euler-Lagrange equation for φ

$$
\dot{\varphi}=\frac{P_{\varphi}}{m r^{2} \sin ^{2} \theta}
$$

and plugging the result into the Euler-Lagrange equation for r

$$
\ddot{r}=\frac{P_{\varphi}^{2}}{m^{2} r^{3} \sin ^{2} \theta}-g \cos \theta
$$

For solutions with constant r we have $\ddot{r}=0$ and therefore

$$
r=\left(\frac{P_{\varphi}^{2}}{m^{2} g \cos \theta \sin ^{2} \theta}\right)^{1 / 3}
$$

3. Nut winding down a thread

We will refer to the hight of the centre of mass of the nut by z and how far it has been rotated by φ. Since z can be expressed as a function of φ

$$
z(\varphi)=-\frac{\varphi h}{2 \pi}
$$

φ is our only generalised coordinate.
a) To determine the Lagrangian we need the moment of inertia

$$
\begin{aligned}
I & =\rho \int_{0}^{\ell} \int_{0}^{2 \pi} \int_{r}^{R} \tilde{r}^{2} \mathrm{~d} \tilde{r} r \mathrm{~d} \varphi \mathrm{~d} z \\
& =\left.2 \pi \ell \rho \frac{\tilde{r}^{4}}{4}\right|_{r} ^{R}=2 \pi \ell \rho \frac{R^{4}-r^{4}}{4} \\
& =2 \pi \ell \rho \frac{R^{2}-r^{2}}{4}\left(R^{2}+r^{2}\right)=\frac{m}{2}\left(R^{2}+r^{2}\right)
\end{aligned}
$$

where $m=\pi \ell \rho\left(R^{2}-r^{2}\right)$ is the total mass of the nut. The kinetic and potential energies are then given by

$$
\begin{aligned}
T & =\frac{m}{2} \frac{\dot{\varphi}^{2} h^{2}}{(2 \pi)^{2}}+\frac{m}{4}\left(R^{2}+r^{2}\right) \dot{\varphi}^{2} \\
V & =-m g \frac{h \varphi}{2 \pi}
\end{aligned}
$$

and the Lagrangian by

$$
L=\frac{m}{2} \frac{\dot{\varphi}^{2} h^{2}}{(2 \pi)^{2}}+\frac{m}{4}\left(R^{2}+r^{2}\right) \dot{\varphi}^{2}+m g \frac{h \varphi}{2 \pi} .
$$

b) The φ and $\dot{\varphi}$ derivatives are

$$
\begin{aligned}
\partial_{\varphi} L=m g \frac{h}{2 \pi} \quad \partial_{\dot{\varphi}} L & =m \frac{\dot{\varphi} h^{2}}{(2 \pi)^{2}}+\frac{m}{2}\left(R^{2}+r^{2}\right) \dot{\varphi} \\
& =\left(\frac{h^{2}}{(2 \pi)^{2}}+\frac{R^{2}+r^{2}}{2}\right) m \dot{\varphi}
\end{aligned}
$$

Canceling the common factor m the Euler-Lagrange equation is therefore

$$
\ddot{\varphi}=\frac{g}{\frac{h}{2 \pi}+\left(R^{2}+r^{2}\right) \frac{\pi}{h}} .
$$

Assuming $\varphi(0)=\dot{\varphi}(0)=0$ the Euler-Lagrange equation integrates to

$$
\varphi(t)=\frac{g t^{2}}{\frac{h}{\pi}+2\left(R^{2}+r^{2}\right) \frac{\pi}{h}}
$$

or in terms of the vertical coordinate z

$$
z(t)=-\frac{1}{2} \frac{g h t^{2}}{h+2\left(R^{2}+r^{2}\right) \frac{\pi^{2}}{h}} .
$$

The nut accelerates at a factor

$$
\frac{h}{h+2\left(R^{2}+r^{2}\right) \frac{\pi^{2}}{h}} \leq 1
$$

times the acceleration it would have when falling freely.

