Solutions 3

October 6, 2009

1. Throwing up a stone

Answer:

We consider the problem in the inertial system with the earth's centre as origin. The trajectory of the thrown body will lie on the plan $span(\vec{v}_i, \vec{r}_i)(i \equiv \text{initial})$, as usual for a 2-bodies system.

Since the gravitational force has form $-\frac{k}{r^2}\vec{e_r}$ the Lenz vector

$$\vec{A} := \vec{p} \times \vec{L} - k.m\vec{e_r} \tag{1}$$

is conserved. Remember that this vector points in the direction of the perihel of the trajectory.

$$\vec{A} = m \cdot (\vec{v}_0 + \vec{v}_R) \times (\vec{r} \times (m \cdot (\vec{v}_0 + \vec{v}_R))) - GMm^2 \vec{e}_r =
= m \cdot (v_0 \vec{e}_r + v_R \vec{e}_\phi) \times (r \vec{e}_r \times (m \cdot (v_0 \vec{e}_r + v_R \vec{e}_\phi))) - GMm^2 \vec{e}_r =
= m^2 r v_R v_0 (-\vec{e}_\phi) + m^2 r v_R^2 \vec{e}_r - GMm^2 \vec{e}_r$$
(2)

where \vec{v}_R is the component of the initial velocity of the body due to the earth's rotation.

The angle between the 2 points in wich the ellipse of the body intersects the earth's surface will be called Θ . The angle between start point and Lenz vector is θ .(Note: $\Theta = 2(\pi - \theta)$, since the top the the trajectory of the thrown body corresponds to the aphelion of the ellipse).

$$\cos\theta = \frac{\vec{A} \cdot \vec{e_r}}{|\vec{A}|} = \frac{v_R^2 - GM/R}{\sqrt{(v_R v_0)^2 + (v_R^2 - GM/R)^2}}$$
(3)

 $(R = \text{earth's radius}) \text{ or with } v_R = R\omega \cos(\phi)$

$$\cos(\theta) = \frac{R\omega^2 \cos(\phi)^2 - g}{\sqrt{\omega^2 \cos(\phi)^2 v_0^2 + (R\omega^2 \cos(\phi)^2 - g)^2}} \approx -1 + \frac{1}{2} \left(\frac{\omega \cos(\phi) v_0}{g - R\omega^2 \cos(\phi)^2}\right)^2 \quad (4)$$

$$\implies -1 + \frac{1}{2}(\pi - \theta)^2 \approx -1 + \left(\frac{v_0 \omega \cos(\phi)}{g}\right)^2 \quad (5)$$

$$\implies \Delta x_s = R\Theta \approx \frac{2v_0 R\omega \cos(\phi)}{g} \quad (6)$$

 $(g = \frac{GM}{R^2})$. We assumed $\omega \ll 1$, and we worked in 1.order. While the body has accomplished his trajectory, our position changed (in 1. order in $v_0\omega$ we have $\Delta t\omega \approx \frac{2\omega v_0}{g}$).

$$\Delta x_{obs} = Rcos(\phi)\omega\Delta t \tag{7}$$

We calculate $\Delta t(\omega, v_0)$ in 0.order in ω and 1.order in v_0^2 (or equiv. 1.order in (r-R)), i.e

$$F_{grav}(h := (r - R)) \approx -g + 2\frac{g}{R}h$$
(8)

$$h'' = -g + 2\frac{g}{R}h\tag{9}$$

$$\implies h_0 = -\frac{g}{2}t^2 + v_0t \tag{10}$$

$$\implies h_1 = \left(-\frac{g}{2}t^2 + v_0t\right) + \frac{g}{R}\left(-\frac{g}{12}t^4 + \frac{v_0}{3}t^3\right) \tag{11}$$

From

$$h_1(\Delta t) = 0 \tag{12}$$

It follows $(\Delta t = 2v_0/g + \epsilon)$ by considering just terms linear in ϵ

$$\epsilon \approx \frac{4v_0^3}{3g^2R} \tag{13}$$

$$\Longrightarrow \Delta x := \Delta x_{obs} - \Delta x_s \approx \frac{4v^3 \omega \cos(\phi)}{3g^2} \tag{14}$$

Äquivalent solution We have the potential field $U = -m\mathbf{gr}$ where \mathbf{g} is the acceleration. The rotation of the earth is uniform so that $\dot{\Omega} = 0$. Neglecting the centrifugal force we have the equation

$$\dot{\mathbf{v}} = 2\mathbf{v} \times \mathbf{\Omega} + \mathbf{g} \tag{15}$$

We solve the equation through successive approximation. Take $\mathbf{v} = \mathbf{v_1} + \mathbf{v_2}$ where $\mathbf{\dot{v_1}} = \mathbf{g}$ and consequently $\mathbf{v_1} = \mathbf{g}t + \mathbf{v_0}$. We insert in the right hand side of equation 15 only $\mathbf{v_1}$ so the equation simplifies to

$$\dot{\mathbf{v}} = 2\mathbf{v_1} \times \Omega + \mathbf{g} \tag{16}$$

$$\implies \mathbf{\dot{v_2}} = 2t\mathbf{g} \times \Omega + 2\,\mathbf{v_0} \times \Omega \tag{17}$$

And we have the equation for \mathbf{v}_2 . After integration of $\dot{\mathbf{v}} = \dot{\mathbf{v}_1} + \dot{\mathbf{v}_2}$ using the equation 17 and $\dot{\mathbf{v}_1} = \mathbf{g}$ we get

$$\mathbf{r} = \frac{t^3}{3}\mathbf{g} \times \Omega + t^2 \mathbf{v_0} \times \Omega + \frac{t^2}{2}\mathbf{g} + t\mathbf{v_0} + \mathbf{r_0}$$
(18)

We choose the coordinate system with z-axis pointing upwards and the x-axis pointing from the meridian zero to the north pole. Then we have $g_x = g_y = 0$ and $g_z = -g$ as well as $\Omega_x = \Omega \cos \lambda, \Omega_y = 0$ and $\Omega_z = \Omega \sin \lambda$, where λ is the latitude. As initial conditions we have $\mathbf{r_0} = 0$ and $\mathbf{v_0} = v_z \mathbf{e_z}$, inserting them in 18 we get

$$r_y = -\frac{1}{3}t^3g\Omega\cos\lambda + v_z t^2\Omega\cos\lambda \tag{19}$$

$$r_z = -\frac{1}{2}gt^2 + v_z t$$
 (20)

For the flying time of the stone you get $t = \frac{2v_z}{g}$ by equating $r_z = 0$ and inserting this in 19 we get the horizontal diplacement in $\mathbf{e}_{\mathbf{y}}$ direction of the stone

$$y = -\frac{8v_z^3}{3g^2}\Omega\cos\lambda + 4\frac{v_z^3}{g^2}\Omega\cos\lambda = \frac{4v_z^3}{3g^2}\Omega\cos\lambda$$
(21)

2. Euler-Lagrange

Answer:

1. The moment of inertia is defined as

$$I = \int_{V} r^2 \rho(\vec{r}) dV, \qquad (22)$$

where r is the distance to the rotation axis and ρ is the density. For a homogeneous cylinder of radius r and length l we have in cylinder coordinates

$$I = \int_{0}^{l} \int_{0}^{2\pi} \int_{0}^{r} r'^{2} \rho r' dr' d\phi \, dl'$$

= $\rho l \pi r^{2} \frac{r^{2}}{2}$
= $m \frac{r^{2}}{2}$, (23)

where we used the formula

$$m = \rho l \pi r^2 \tag{24}$$

for the mass.

2. The Lagrangian is given by

$$L = T - V. \tag{25}$$

There are 3 contributions to the kinetic energy T. The angular momentum of m_1 and m_2 and the linear momentum of m_2 . Using

$$z = \varphi_1 r_1 + \varphi_2 r_2, \tag{26}$$

we find

$$T = \frac{I_1}{2}\dot{\varphi}_1^2 + \frac{I_2}{2}\dot{\varphi}_2^2 + \frac{m_2}{2}\left(\dot{\varphi}_1r_1 + \dot{\varphi}_2r_2\right)^2.$$
 (27)

The gravitation potential is given by

$$V = -m_2 g \left(\varphi_1 r_1 + \varphi_2 r_2\right). \tag{28}$$

Thus

$$L = \frac{m_1 r_1^2}{4} \dot{\varphi}_1^2 + \frac{m_2 r_2^2}{4} \dot{\varphi}_2^2 + \frac{m_2}{2} \left(\dot{\varphi}_1 r_1 + \dot{\varphi}_2 r_2 \right)^2 + m_2 g \left(\varphi_1 r_1 + \varphi_2 r_2 \right).$$
(29)

3. Inserting the Lagrangian in the Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\varphi}_i}\right) - \frac{\partial L}{\partial \dot{\varphi}_i} = 0, \tag{30}$$

we find

$$\left(\frac{m_1}{2} + m_2\right)r_1\ddot{\varphi}_1 + m_2r_2\ddot{\varphi}_2 - m_2g = 0 \tag{31}$$

$$\frac{3}{2}m_2r_2\ddot{\varphi}_2 + m_2r_1\ddot{\varphi}_1 - m_2g = 0.$$
(32)

Finally

$$\ddot{\varphi}_1 = \frac{2m_2g}{(3m_1 + 2m_2)r_1} \tag{33}$$

$$\ddot{\varphi}_2 = \frac{2m_1g}{(3m_1 + 2m_2)r_2}.$$
(34)

4. The time evolution of φ_i is given by

$$\varphi_i(t) = \frac{a_i}{2}t^2,\tag{35}$$

where a_i is the constant acceleration given in the equations of motion. Substituting for φ_i in the expression of z we find

$$z(t) = (r_1\varphi_1 + r_2\varphi_2) = g \frac{m_1 + m_2}{3m_1 + 2m_2} t^2.$$
(36)