Solutions 3

October 6, 2009

1. Throwing up a stone

Answer:
We consider the problem in the inertial system with the earth's centre as origin. The trajectory of the thrown body will lie on the plan $\operatorname{span}\left(\vec{v}_{i}, \vec{r}_{i}\right)(i \equiv$ initial $)$, as usual for a 2-bodies system.
Since the gravitational force has form $-\frac{k}{r^{2}} \vec{e}_{r}$ the Lenz vector

$$
\begin{equation*}
\vec{A}:=\vec{p} \times \vec{L}-k \cdot m \vec{e}_{r} \tag{1}
\end{equation*}
$$

is conserved. Remember that this vector points in the direction of the perihel of the trajectory.

$$
\begin{align*}
\vec{A} & =m \cdot\left(\vec{v}_{0}+\vec{v}_{R}\right) \times\left(\vec{r} \times\left(m \cdot\left(\vec{v}_{0}+\vec{v}_{R}\right)\right)\right)-G M m^{2} \vec{e}_{r}= \\
& =m \cdot\left(v_{0} \vec{e}_{r}+v_{R} \vec{e}_{\phi}\right) \times\left(r \vec{e}_{r} \times\left(m \cdot\left(v_{0} \vec{e}_{r}+v_{R} \vec{e}_{\phi}\right)\right)\right)-G M m^{2} \vec{e}_{r}= \\
& =m^{2} r v_{R} v_{0}\left(-\vec{e}_{\phi}\right)+m^{2} r v_{R}^{2} \vec{e}_{r}-G M m^{2} \vec{e}_{r} \tag{2}
\end{align*}
$$

where \vec{v}_{R} is the component of the initial velocity of the body due to the earth's rotation.
The angle between the 2 points in wich the ellipse of the body intersects the earth's surface will be called Θ. The angle between start point and Lenz vector is θ.(Note: $\Theta=2(\pi-\theta)$, since the top the the trajectory of the thrown body corresponds to the aphelion of the ellipse).

$$
\begin{equation*}
\cos \theta=\frac{\vec{A} \cdot \vec{e}_{r}}{|\vec{A}|}=\frac{v_{R}^{2}-G M / R}{\sqrt{\left(v_{R} v_{0}\right)^{2}+\left(v_{R}^{2}-G M / R\right)^{2}}} \tag{3}
\end{equation*}
$$

($R=$ earth's radius) or with $v_{R}=R \omega \cos (\phi)$

$$
\begin{align*}
\cos (\theta)=\frac{R \omega^{2} \cos (\phi)^{2}-g}{\sqrt{\omega^{2} \cos (\phi)^{2} v_{0}^{2}+\left(R \omega^{2} \cos (\phi)^{2}-g\right)^{2}}} & \approx-1+\frac{1}{2}\left(\frac{\omega \cos (\phi) v_{0}}{g-R \omega^{2} \cos (\phi)^{2}}\right)^{2} \tag{4}\\
\Longrightarrow-1+\frac{1}{2}(\pi-\theta)^{2} & \approx-1+\left(\frac{v_{0} \omega \cos (\phi)}{g}\right)^{2} \tag{5}\\
& \Longrightarrow \Delta x_{s}=R \Theta \approx \frac{2 v_{0} R \omega \cos (\phi)}{g} \tag{6}
\end{align*}
$$

$\left(g=\frac{G M}{R^{2}}\right)$.We assumed $\omega \ll 1$, and we worked in 1 .order. While the body has accomplished his trajectory, our position changed (in 1. order in $v_{0} \omega$ we have $\Delta t \omega \approx \frac{2 \omega v_{0}}{g}$.

$$
\begin{equation*}
\Delta x_{o b s}=R \cos (\phi) \omega \Delta t \tag{7}
\end{equation*}
$$

We calculate $\Delta t\left(\omega, v_{0}\right)$ in 0 .order in ω and 1.order in v_{0}^{2} (or equiv. 1.order in $(r-R)$),i.e

$$
\begin{array}{r}
F_{\text {grav }}(h:=(r-R)) \approx-g+2 \frac{g}{R} h \\
h^{\prime \prime}=-g+2 \frac{g}{R} h \\
\Longrightarrow h_{0}=-\frac{g}{2} t^{2}+v_{0} t \\
\Longrightarrow h_{1}=\left(-\frac{g}{2} t^{2}+v_{0} t\right)+\frac{g}{R}\left(-\frac{g}{12} t^{4}+\frac{v_{0}}{3} t^{3}\right) \tag{11}
\end{array}
$$

From

$$
\begin{equation*}
h_{1}(\Delta t)=0 \tag{12}
\end{equation*}
$$

It follows ($\Delta t=2 v_{0} / g+\epsilon$) by considering just terms linear in ϵ

$$
\begin{array}{r}
\epsilon \approx \frac{4 v_{0}^{3}}{3 g^{2} R} \\
\Longrightarrow \Delta x:=\Delta x_{o b s}-\Delta x_{s} \approx \frac{4 v^{3} \omega \cos (\phi)}{3 g^{2}} \tag{14}
\end{array}
$$

Äquivalent solution We have the potential field $U=-m \mathbf{g r}$ where \mathbf{g} is the acceleration. The rotation of the earth is uniform so that $\Omega=0$. Neglecting the centrifugal force we have the equation

$$
\begin{equation*}
\dot{\mathbf{v}}=2 \mathbf{v} \times \boldsymbol{\Omega}+\mathbf{g} \tag{15}
\end{equation*}
$$

We solve the equation through successive approximation. Take $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$ where $\dot{\mathbf{v}}_{\mathbf{1}}=\mathbf{g}$ and consequently $\mathbf{v}_{\mathbf{1}}=\mathbf{g} t+\mathbf{v}_{\mathbf{0}}$. We insert in the right hand side of equation 15 only $\mathbf{v}_{\mathbf{1}}$ so the equation simplifies to

$$
\begin{align*}
& \dot{\mathbf{v}}=2 \mathbf{v}_{\mathbf{1}} \times \Omega+\mathbf{g} \tag{16}\\
& \Longrightarrow \dot{\mathbf{v}}_{\mathbf{2}}=2 t \mathbf{g} \times \Omega+2 \mathbf{v}_{\mathbf{0}} \times \Omega \tag{17}
\end{align*}
$$

And we have the equation for $\mathbf{v}_{\mathbf{2}}$. After integration of $\dot{\mathbf{v}}=\dot{\mathbf{v}}_{\mathbf{1}}+\dot{\mathbf{v}_{\mathbf{2}}}$ using the equation 17 and $\mathbf{v}_{\mathbf{1}}=\mathbf{g}$ we get

$$
\begin{equation*}
\mathbf{r}=\frac{t^{3}}{3} \mathbf{g} \times \Omega+t^{2} \mathbf{v}_{\mathbf{0}} \times \Omega+\frac{t^{2}}{2} \mathbf{g}+t \mathbf{v}_{\mathbf{0}}+\mathbf{r}_{\mathbf{0}} \tag{18}
\end{equation*}
$$

We choose the coordinate system with z-axis pointing upwards and the x-axis pointing from the meridian zero to the north pole. Then we have $g_{x}=g_{y}=0$ and $g_{z}=-g$ as well as $\Omega_{x}=\Omega \cos \lambda, \Omega_{y}=0$ and $\Omega_{z}=\Omega \sin \lambda$, where λ is the latitude. As initial conditions we have $\mathbf{r}_{\mathbf{0}}=0$ and $\mathbf{v}_{\mathbf{0}}=v_{z} \mathbf{e}_{\mathbf{z}}$, inserting them in 18 we get

$$
\begin{align*}
& r_{y}=-\frac{1}{3} t^{3} g \Omega \cos \lambda+v_{z} t^{2} \Omega \cos \lambda \tag{19}\\
& r_{z}=-\frac{1}{2} g t^{2}+v_{z} t \tag{20}
\end{align*}
$$

For the flying time of the stone you get $t=\frac{2 v_{z}}{g}$ by equating $r_{z}=0$ and inserting this in 19 we get the horizontal diplacement in $\mathbf{e}_{\mathbf{y}}$ direction of the stone

$$
\begin{equation*}
y=-\frac{8 v_{z}^{3}}{3 g^{2}} \Omega \cos \lambda+4 \frac{v_{z}^{3}}{g^{2}} \Omega \cos \lambda=\frac{4 v_{z}^{3}}{3 g^{2}} \Omega \cos \lambda \tag{21}
\end{equation*}
$$

2. Euler-Lagrange

Answer:

1. The moment of inertia is defined as

$$
\begin{equation*}
I=\int_{V} r^{2} \rho(\vec{r}) d V \tag{22}
\end{equation*}
$$

where r is the distance to the rotation axis and ρ is the density. For a homogeneous cylinder of radius r and length l we have in cylinder coordinates

$$
\begin{align*}
I & =\int_{0}^{l} \int_{0}^{2 \pi} \int_{0}^{r} r^{\prime 2} \rho r^{\prime} d r^{\prime} d \phi d l^{\prime} \\
& =\rho l \pi r^{2} \frac{r^{2}}{2} \\
& =m \frac{r^{2}}{2} \tag{23}
\end{align*}
$$

where we used the formula

$$
\begin{equation*}
m=\rho l \pi r^{2} \tag{24}
\end{equation*}
$$

for the mass.
2. The Lagrangian is given by

$$
\begin{equation*}
L=T-V \tag{25}
\end{equation*}
$$

There are 3 contributions to the kinetic energy T. The angular momentum of m_{1} and m_{2} and the linear momentum of m_{2}. Using

$$
\begin{equation*}
z=\varphi_{1} r_{1}+\varphi_{2} r_{2} \tag{26}
\end{equation*}
$$

we find

$$
\begin{equation*}
T=\frac{I_{1}}{2} \dot{\varphi}_{1}^{2}+\frac{I_{2}}{2} \dot{\varphi}_{2}^{2}+\frac{m_{2}}{2}\left(\dot{\varphi}_{1} r_{1}+\dot{\varphi}_{2} r_{2}\right)^{2} \tag{27}
\end{equation*}
$$

The gravitation potential is given by

$$
\begin{equation*}
V=-m_{2} g\left(\varphi_{1} r_{1}+\varphi_{2} r_{2}\right) \tag{28}
\end{equation*}
$$

Thus

$$
\begin{equation*}
L=\frac{m_{1} r_{1}^{2}}{4} \dot{\varphi}_{1}^{2}+\frac{m_{2} r_{2}^{2}}{4} \dot{\varphi}_{2}^{2}+\frac{m_{2}}{2}\left(\dot{\varphi}_{1} r_{1}+\dot{\varphi}_{2} r_{2}\right)^{2}+m_{2} g\left(\varphi_{1} r_{1}+\varphi_{2} r_{2}\right) \tag{29}
\end{equation*}
$$

3. Inserting the Lagrangian in the Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\varphi}_{i}}\right)-\frac{\partial L}{\partial \dot{\varphi}_{i}}=0 \tag{30}
\end{equation*}
$$

we find

$$
\begin{align*}
\left(\frac{m_{1}}{2}+m_{2}\right) r_{1} \ddot{\varphi}_{1}+m_{2} r_{2} \ddot{\varphi}_{2}-m_{2} g & =0 \tag{31}\\
\frac{3}{2} m_{2} r_{2} \ddot{\varphi}_{2}+m_{2} r_{1} \ddot{\varphi}_{1}-m_{2} g & =0 \tag{32}
\end{align*}
$$

Finally

$$
\begin{align*}
\ddot{\varphi}_{1} & =\frac{2 m_{2} g}{\left(3 m_{1}+2 m_{2}\right) r_{1}} \tag{33}\\
\ddot{\varphi}_{2} & =\frac{2 m_{1} g}{\left(3 m_{1}+2 m_{2}\right) r_{2}} \tag{34}
\end{align*}
$$

4. The time evolution of φ_{i} is given by

$$
\begin{equation*}
\varphi_{i}(t)=\frac{a_{i}}{2} t^{2} \tag{35}
\end{equation*}
$$

where a_{i} is the constant acceleration given in the equations of motion. Substituting for φ_{i} in the expression of z we find

$$
\begin{align*}
z(t) & =\left(r_{1} \varphi_{1}+r_{2} \varphi_{2}\right) \\
& =g \frac{m_{1}+m_{2}}{3 m_{1}+2 m_{2}} t^{2} . \tag{36}
\end{align*}
$$

