Solutions 2 - Newtonian mechanics and Euler-Lagrange formalism

September 25, 2009

1. Reminder of Newtonian mechanics

Answer:
(a) The equation of motion for the center of mass simply reads

$$
\begin{equation*}
z_{\mathrm{cm}}(t)=\frac{g}{2} t^{2} . \tag{1}
\end{equation*}
$$

(b) At $t=0$ (immediately after cutting the rope), the spring is still in equilibrium elongation.

$$
\begin{align*}
m_{1} \ddot{z}_{1, l}(0) & =m_{1} g+m_{2} g \tag{2}\\
m_{2} \ddot{z}_{2, l}(0) & =0, \tag{3}
\end{align*}
$$

where the index l denotes the lab system.
(c) We now switch to the accelerated center of mass frame as our frame of reference. There, the gravitational forces $m_{i} \vec{g}$ are canceled by the fictitious forces. Therefore, it can be regarded as a closed inertial system.
The spring exerts equal forces on both masses, such that in the center of mass the force balance reads

$$
\begin{align*}
m_{1} \ddot{z}_{1}(t) & =-m_{2} \ddot{z}_{2}(t) \tag{4}\\
\Rightarrow \ddot{z}_{2}(t) & =-\frac{m_{1}}{m_{2}} \ddot{z}_{1}(t) . \tag{5}
\end{align*}
$$

Since the two masses are oscillating in push-pull mode, it follows that

$$
\begin{equation*}
z_{2}(t)=-\frac{m_{1}}{m_{2}} z_{1}(t) \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{array}{r}
m_{1} \ddot{z}_{1}=D\left(z_{2}-z_{1}\right)=-D\left(1+\frac{m_{1}}{m_{2}}\right) z_{1}(t) \\
\Rightarrow \ddot{z}_{1}+\frac{D}{m} z_{1}=0, \tag{8}
\end{array}
$$

where we have defined the so-called reduced mass

$$
\begin{equation*}
m:=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{9}
\end{equation*}
$$

The frequency $\omega=\sqrt{D / m}$ follows immediately from the ansatz

$$
\begin{equation*}
z_{1}(t)=A_{1} \cos \left(\omega t-\phi_{1}\right) . \tag{10}
\end{equation*}
$$

(d) From equation (6) we know that

$$
\begin{equation*}
A_{2}=\frac{m_{1}}{m_{2}} A_{1} \tag{11}
\end{equation*}
$$

Furthermore, the initial elongation Δs equals the sum of the oscillation amplitudes:

$$
\begin{equation*}
\Delta s=\frac{m_{2} g}{D}=A_{1}+A_{2} \tag{12}
\end{equation*}
$$

Equations (11) and (12) then lead to

$$
\begin{align*}
A_{1} & =\frac{m g}{D} \frac{m_{2}}{m_{1}} \tag{13}\\
A_{2} & =\frac{m g}{D} \tag{14}
\end{align*}
$$

2. Chopper carrying load on a rope - a pendulum with moving pivot:

Answer:
We choose the generalized variables x and ϕ. The pivot has the coordinates $\mathbf{r}_{1}=(x, 0,0)$ while the oscillating point mass is given by $\mathbf{r}_{2}=$ $(x+l \sin \phi, 0,-l \cos \phi)$. The kinetic and potential energies are

$$
\begin{aligned}
T & =\frac{1}{2} m_{1} \dot{\mathbf{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\mathbf{r}}_{2}^{2} \\
V & =m_{2} g \mathbf{r}_{2} \cdot \mathbf{e}_{z}
\end{aligned}
$$

(a) We substitute \mathbf{r}_{i} by their parametrization and find for the Lagrangian

$$
\begin{aligned}
L & =T-V \\
& =\frac{1}{2}\left(m_{1}+m_{2}\right) \dot{x}^{2}+m_{2} l \dot{x} \dot{\phi} \cos \phi+\frac{1}{2} m_{2} l^{2} \dot{\phi}^{2}+m_{2} g l \cos \phi .
\end{aligned}
$$

(b) We determine now the Euler-Lagrange equations

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0
$$

for $q_{1}=x$ and $q_{2}=\phi$.
(a) $q_{1}=x$:

$$
\begin{align*}
& \frac{\partial L}{\partial x}=0 \tag{16}\\
& \frac{\partial L}{\partial \dot{x}}=\left(m_{1}+m_{2}\right) \dot{x}+m_{2} l \dot{\phi} \cos \phi \tag{17}
\end{align*}
$$

The quantity of equation (17) (the canonical momentum) is conserved due to equation (16). Thus we can write

$$
\begin{equation*}
\dot{x}=\frac{P-m_{2} l \dot{\phi} \cos \phi}{m_{1}+m_{2}}, \tag{18}
\end{equation*}
$$

where P is the constant value of (16).
(b) $q_{2}=\phi$:

$$
\begin{align*}
& \frac{\partial L}{\partial \phi}=-m_{2} l \sin \phi(g+\dot{x} \dot{\phi}), \tag{19}\\
& \frac{\partial L}{\partial \dot{x}}=m_{2} l \dot{x} \cos \phi+m_{2} l^{2} \dot{\phi} . \tag{20}
\end{align*}
$$

After dropping a factor $m_{2} l$ we find the equation of motion

$$
\begin{equation*}
l \ddot{\phi}=-\ddot{x} \cos \phi-g \sin \phi . \tag{21}
\end{equation*}
$$

(c) We can eliminate \ddot{x} from (21) using (18) and get:

$$
l \ddot{\phi}\left(1-\frac{m_{1}}{m_{1}+m_{2}} \cos ^{2} \phi\right)+\frac{m_{2}}{m_{1}+m_{2}} \dot{\phi}^{2} \sin \phi \cos \phi=-g \sin \phi .
$$

The initial conditions at time t_{0} are

$$
\begin{array}{ll}
x\left(t_{0}\right)=x_{0}, & \phi\left(t_{0}\right)=\phi_{0} \\
\dot{x}\left(t_{0}\right)=v_{0}, & \dot{\phi}\left(t_{0}\right)=\omega_{0}
\end{array}
$$

For small displacements we have $\cos \phi \approx 1$ and $\sin \phi \approx \phi$. We find

$$
\begin{align*}
& \ddot{x}=-l \ddot{\phi}-g \phi \tag{22}\\
& \ddot{\phi}=-\frac{\left(m_{1}+m_{2}\right) g}{m_{1} l} \phi-\frac{m_{2}}{m_{1}} \dot{\phi}^{2} \phi \tag{23}
\end{align*}
$$

If we linearize the second equation (assuming $\left|\frac{m_{2}}{m_{1}} \dot{\phi}^{2}\right| \ll \frac{\left(m_{1}+m_{2}\right) g}{m_{1} l}$), we recognize the equation of a harmonic oscillation with solution
$\phi(t)=A \cos \Omega\left(t-t_{0}\right)+B \sin \Omega\left(t-t_{0}\right) \quad$ with $\quad \Omega=\sqrt{\frac{\left(m_{1}+m_{2}\right) g}{m_{1} l}}$.

The coefficients A and B are to be determined from the initial conditions:

$$
\begin{aligned}
& \phi\left(t_{0}\right)=A \stackrel{!}{=} \phi_{0} \\
& \dot{\phi}\left(t_{0}\right)=B \Omega \stackrel{!}{=} \omega_{0} .
\end{aligned}
$$

Thus we we find $A=\phi_{0}$ and $B=\frac{\omega_{0}}{\Omega}$. We plug this solution into (22) and find

$$
\begin{aligned}
\dot{x} & =\frac{P}{m_{1}+m_{2}}-\frac{m_{2} l}{m_{1}+m_{2}}\left(-\Omega \phi_{0} \sin \Omega\left(t-t_{0}\right)+\omega_{0} \cos \Omega\left(t-t_{0}\right)\right) \\
\Rightarrow & x=x_{0}+v_{0} t-\frac{g m_{2}}{m_{1} \Omega^{2}}\left(\phi_{0} \cos \Omega\left(t-t_{0}\right)+\frac{\omega_{0}}{\Omega} \sin \Omega\left(t-t_{0}\right)\right)
\end{aligned}
$$

where $v_{0}=\frac{P}{m_{1}+m_{2}}$.
(d) The forces of constraints follow from

$$
\mathbf{F}_{i}^{\prime}=m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{F}_{G, i},
$$

where $\mathbf{F}_{G, i}$ is the gravitational force acting on particle i and \mathbf{r}_{i} is the trajectory of particle i as follows from the calculation above.

