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1. Reminder of Newtonian mechanics

Answer:

(a) The equation of motion for the center of mass simply reads

zcm(t) =
g

2
t2. (1)

(b) At t = 0 (immediately after cutting the rope), the spring is still in equi-
librium elongation.

m1z̈1,l(0) = m1g + m2g (2)

m2z̈2,l(0) = 0, (3)

where the index l denotes the lab system.

(c) We now switch to the accelerated center of mass frame as our frame of
reference. There, the gravitational forces mi~g are canceled by the fictitious
forces. Therefore, it can be regarded as a closed inertial system.

The spring exerts equal forces on both masses, such that in the center of
mass the force balance reads

m1z̈1(t) = −m2z̈2(t) (4)

⇒ z̈2(t) = −
m1

m2
z̈1(t). (5)

Since the two masses are oscillating in push–pull mode, it follows that

z2(t) = −
m1

m2
z1(t). (6)

Therefore,

m1z̈1 = D(z2 − z1) = −D

(

1 +
m1

m2

)

z1(t) (7)

⇒ z̈1 +
D

m
z1 = 0, (8)
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where we have defined the so–called reduced mass

m :=
m1m2

m1 + m2
. (9)

The frequency ω =
√

D/m follows immediately from the ansatz

z1(t) = A1 cos (ωt − φ1). (10)

(d) From equation (6) we know that

A2 =
m1

m2
A1. (11)

Furthermore, the initial elongation ∆s equals the sum of the oscillation
amplitudes:

∆s =
m2g

D
= A1 + A2. (12)

Equations (11) and (12) then lead to

A1 =
mg

D

m2

m1
, (13)

A2 =
mg

D
. (14)

(15)

2. Chopper carrying load on a rope – a pendulum with moving pivot:

Answer:

We choose the generalized variables x and φ. The pivot has the coor-
dinates r1 = (x, 0, 0) while the oscillating point mass is given by r2 =
(x + l sin φ, 0,−l cosφ). The kinetic and potential energies are

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2

V = m2gr2 · ez

(a) We substitute ri by their parametrization and find for the Lagrangian

L = T − V

=
1

2
(m1 + m2) ẋ2 + m2lẋφ̇ cosφ +

1

2
m2l

2φ̇2 + m2gl cosφ .

(b) We determine now the Euler-Lagrange equations

d

dt

∂L

∂q̇i

−
∂L

∂qi

= 0

for q1 = x and q2 = φ.
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(a) q1 = x :

∂L

∂x
= 0 , (16)

∂L

∂ẋ
= (m1 + m2) ẋ + m2lφ̇ cosφ . (17)

The quantity of equation (17) (the canonical momentum) is con-
served due to equation (16). Thus we can write

ẋ =
P − m2lφ̇ cosφ

m1 + m2
, (18)

where P is the constant value of (16).

(b) q2 = φ :

∂L

∂φ
= −m2l sin φ

(

g + ẋφ̇
)

, (19)

∂L

∂ẋ
= m2lẋ cosφ + m2l

2φ̇ . (20)

After dropping a factor m2l we find the equation of motion

lφ̈ = −ẍ cosφ − g sin φ . (21)

(c) We can eliminate ẍ from (21) using (18) and get:

lφ̈

(

1 −
m1

m1 + m2
cos2 φ

)

+
m2

m1 + m2
φ̇2 sin φ cosφ = −g sinφ .

The initial conditions at time t0 are

x(t0) = x0 , φ(t0) = φ0 ,

ẋ(t0) = v0 , φ̇(t0) = ω0 .

For small displacements we have cosφ ≈ 1 and sinφ ≈ φ. We find

ẍ = −lφ̈ − gφ , (22)

φ̈ = −
(m1 + m2)g

m1l
φ −

m2

m1
φ̇2φ . (23)

If we linearize the second equation (assuming
∣

∣

∣

m2

m1

φ̇2
∣

∣

∣
<< (m1+m2)g

m1l
),

we recognize the equation of a harmonic oscillation with solution

φ(t) = A cosΩ(t−t0)+B sinΩ(t−t0) with Ω =

√

(m1 + m2)g

m1l
.
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The coefficients A and B are to be determined from the initial con-
ditions:

φ(t0) = A
!
= φ0 ,

φ̇(t0) = BΩ
!
= ω0 .

Thus we we find A = φ0 and B = ω0

Ω . We plug this solution into (22)
and find

ẋ =
P

m1 + m2
−

m2l

m1 + m2
(−Ωφ0 sin Ω(t − t0) + ω0 cosΩ(t − t0))

⇒x = x0 + v0t −
gm2

m1Ω2

(

φ0 cosΩ(t − t0) +
ω0

Ω
sin Ω(t − t0)

)

,

where v0 = P
m1+m2

.

(d) The forces of constraints follow from

F′

i = mir̈i − FG,i ,

where FG,i is the gravitational force acting on particle i and ri is the
trajectory of particle i as follows from the calculation above.
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