Solutions 2 - Newtonian mechanics and
Euler-Lagrange formalism

September 25, 2009

1. Reminder of Newtonian mechanics

Answer:

(a)

(b)

The equation of motion for the center of mass simply reads

Zem(t) = gt2. (1)

At t = 0 (immediately after cutting the rope), the spring is still in equi-
librium elongation.
m1211(0) = mig+mag (2)
mgég,l(O) = O, (3)
where the index [ denotes the lab system.
We now switch to the accelerated center of mass frame as our frame of

reference. There, the gravitational forces m;g are canceled by the fictitious
forces. Therefore, it can be regarded as a closed inertial system.

The spring exerts equal forces on both masses, such that in the center of
mass the force balance reads

miz1(t) = —maZa(t) (4)
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Since the two masses are oscillating in push—pull mode, it follows that

mi
t) = ———z1(1). 6
2a(t) = = 2a(l) (6)
Therefore,

mlfél = D(ZQ — 21) =-D (1 + m) Zl(t) (7)

m2

D
=Z1+ —21 =0, (8)

m



where we have defined the so—called reduced mass
mimso

mi= ——— (9)

my 4 msg
The frequency w = v/ D/m follows immediately from the ansatz
z1(t) = A cos (wt — ¢1). (10)

(d) From equation (6) we know that
Ay = —A;. (11)

Furthermore, the initial elongation As equals the sum of the oscillation

amplitudes:
As:%:AﬁAg. (12)
Equations (11) and (12) then lead to
mg mo
A = —=—= 13
! D ml’ ( )
m
Ay :-ﬁ. (14)

2. Chopper carrying load on a rope — a pendulum with moving pivot: ‘

Answer:

We choose the generalized variables x and ¢. The pivot has the coor-
dinates ry = (2,0,0) while the oscillating point mass is given by ry =
(x 4+ Isin g, 0, —l cos ¢). The kinetic and potential energies are

1 1
T:?mﬁ+?mﬁ

V = mogry - €,
(a) We substitute r; by their parametrization and find for the Lagrangian
L=T-V
1

. 1 .
:§mh+mgﬁ+mwmm@¢+?mﬁ&+mwm%¢.

(b) We determine now the Euler-Lagrange equations

ddL 9L

dtdg  dq;
for ¢ = x and ¢ = ¢.



oL

I 0, (16)
oL . .

ot (m1 4 ma) &+ maldcosd . (17)

The quantity of equation (17) (the canonical momentum) is con-
served due to equation (16). Thus we can write

. megl(ﬁcosgb
PR dhindich o

mi + ma (18)
where P is the constant value of (16).
(b) g2 =¢:
g—z = —mgalsin ¢ (g + xqﬁ) , (19)
g—i = Myl cos ¢ + mal?d . (20)

After dropping a factor meol we find the equation of motion

I = —dcosp — gsin . (21)

(¢c) We can eliminate & from (21) using (18) and get:

lé (1 — Lcos2 qb) + &(b?sinqbcosqb = —gsing .

mi + meo mi + meo
The initial conditions at time tg are
z(to) = o , d(to) = ¢o ,
@(to) = vo , (to) = wo -

For small displacements we have cos ¢ &~ 1 and sin¢ ~ ¢. We find

i=—lp—go, (22)
&Z,w(ﬁ,@&(ﬁ, (23)
mll mq

<< (mitma)g ),

If we linearize the second equation (assuming ‘%qﬁ‘ p]

we recognize the equation of a harmonic oscillation with solution

(m1 +ma)g

o(t) = Acos Q(t—to)+Bsin Q(t—to) with Q= 7
my



The coefficients A and B are to be determined from the initial con-
ditions:

d(to) =A< g,

d(to) = BQ = wy .

Thus we we find A = ¢9 and B = . We plug this solution into (22)
and find

P l
= T (— Qg sin Qt — to) + wo cos At — o))

m1+mg M1+ me

=x =29 + vot — % (qbo cos Q(t —tg) + % sin Q(t — to)) ,

where Vo = it

The forces of constraints follow from
F, =m;t; —Fq, ,

where Fg ; is the gravitational force acting on particle ¢ and r; is the
trajectory of particle 7 as follows from the calculation above.



