
Solutions 1 - reminder of Newtonian mechanics

September 21, 2009

1. Geostationary space station

a) The observer must be on the equator of the earth. The orbit of the space
station is a large circle in the equatorial plane with center at the center of the
earth.

b) Since the centripetal force is equal to the gravitational force we have

mv2

R
=

GM⊕m

R2
, (1)

where M⊕ is the mass of the earth, v is the circular velocity and R the orbital
radius of the space station. With

v =
s

t
=

2πR

T
(2)

we find the following distance L between the observer and the space station:

L = R−R⊕ =
(

GMT 2

4π2

)1/3

−R⊕. (3)

with T = 24h, M⊕ = 6.0 · 1025kg and R⊕ = 6.4 · 106m we finally obtain

L = 3.6 · 104km. (4)

2. Circling particle

a) The tension in the string provides the centripetal force needed for the circular
motion, hence F = mv2

0/R0.

b) The angular momentum of the mass m is J = mv0R0, the kinetic energy is
T = mv2

0/2.
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c) The radius of the circular motion of the mass m decreases when the tension
in the string is increased gradually. The angular momentum is conserved, thus

mv0R0 = mv1(
R0

2
) =⇒ v1 = 2v0. (5)

The final kinetic energy is then

T1 =
1
2
mv2

1 = 2mv2
0 . (6)

The reason why the pulling of the string should be gradual is that the vectors
r and v must stay approximately perpendicular.

3. Fast rotating planet

The conservation of energy can be written as the statement

E = T (R) + U(R) = T (∞) + U(∞) = const. (7)

The escape velocity ve can now be determined by setting T (∞) to zero. This
leads to

1
2
mv2

e(R) =
∫ ∞

R

F (r)dr = GMm

∫ ∞

R

1
r2

dr =
GMm

R
,

ve(R) =

√
2GM

R
.

(8)

On our fast rotation planet we have gpol = 2geq, as well as

gpol =
GM

R2
geq =

GM

R2
− v2

R
, (9)

what leads to the equation
GM

R
= 2v2. (10)

Substituting eq. (10) into eq. (8) gives the final result

ve = 2v. (11)

3. Sphere

a) Conservation of energy gives (see Fig. 1)

E = mg(2R) =
1
2
mv2 + mgR(1 + cos θ),

1
2
mv2 = mgR(1− cos θ).

(12)
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Figure 1: Particle falling from a sphere.

The radial force the sphere exerts on the particle is

F = mg cos θ − mv2

R
. (13)

When F = 0, the constraint vanishes and the particle leaves the sphere. At this
instance we have

v2 = gR cos θ v2 = 2gR(1− cos θ) (14)

giving

cos θ = 2/3, v =

√
2gR

3
. (15)

b) After leaving the sphere, the particle follows a parabolic trajectory until it
hits the plane. The trajectory is described by

x(t) = vt cos θ + x0

y(t) = −1
2
gt2 − vt sin θ + y0

(16)

with the initial conditions x0 = R sin θ and y0 = R(1 + cos θ). This can also be
written as

y(x) = y0 − tan θ(x− x0)− g

2v2 cos2 θ
(x− x0)2 (17)

Setting y(x) = 0 and solving for x leads to

x− x0 =
v

g
cos θ

(
−v sin θ ±

√
v2 sin2 θ +

1
2
gy0

)
. (18)

Substituting θ and v and only considering the positive solution leads to

x =
√

5
27

(5 + 2
√

13)R ' 1.01R. (19)

The result is independent of g!
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5. Enjoying wine in a train

Figure 2: Illustration of the the bottle.

Let us study a bottle that has been tilted as in Fig. 2. To simplify calculations,
we ignore the fact that the surface of the wine is always horizontal. When the
center of mass rcm lies on the y-axis, there is no net torque. Let us call the angle
that gives us this configuration θeq. For θ < θeq, torque will force the bottle
back into a standing position and for θ > θeq the bottle will fall. In essence, the
larger θeq is, the more stable is the bottle!

The setup is shown in Fig. 2. The equilibrium angle is calculated through

R/rcm = tan(θeq), (20)

where R is the radius of the bottle. Maximizing θeq is equivalent to minimizing
rcm which is given by

rcm =
mb

L
2 + mwxL

2

mb + mw
, (21)

where mb is the mass of an empty wine bottle, mw is mass of the wine and x
is the fraction of wine in the bottle. By using the fact that the wine mass is
mw = xmw,f , where mw,f is the mass of wine in a full bottle we can expand
into

rcm =
mb

L
2 + mw,f

L
2 x2

mb + mw,fx
. (22)

The sought solution is when drcm
dx = 0 and d2rcm

dx2 > 0 (minimum of function).
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The derivative is

drcm

dx
=

(mb + mw,fx)mw,fLx−mw,f(mb
L
2 + mw,f

L
2 x2)

(mb + mw,fx)2
(23)

Equating this to zero and simplifying renders the quadratic equation

x2 + 2
mb

mw,f
x− mb

mw,f
= 0 (24)

which has the solution

x = − mb

mw,f
±

√(
mb

mw,f

)2

+
mb

mw,f
. (25)

We see that the optimum amount of wine in the bottle only depends on the
mass of the glass bottle itself and the mass of the wine itself in a full bottle. By
using mb = 450g and mw,f = 750g we get x = 0.3798 ≈ 3/8. For a standard
bottle of wine, R ≈ L/6. Using this, and the solution for x, in Eq. 20 we see
that the maximum angle of stability is θeq ≈ 23.7.
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