# Solutions 1 - reminder of Newtonian mechanics 

September 21, 2009

## 1. Geostationary space station

a) The observer must be on the equator of the earth. The orbit of the space station is a large circle in the equatorial plane with center at the center of the earth.
b) Since the centripetal force is equal to the gravitational force we have

$$
\begin{equation*}
\frac{m v^{2}}{R}=\frac{G M_{\oplus} m}{R^{2}} \tag{1}
\end{equation*}
$$

where $M_{\oplus}$ is the mass of the earth, $v$ is the circular velocity and $R$ the orbital radius of the space station. With

$$
\begin{equation*}
v=\frac{s}{t}=\frac{2 \pi R}{T} \tag{2}
\end{equation*}
$$

we find the following distance $L$ between the observer and the space station:

$$
\begin{equation*}
L=R-R_{\oplus}=\left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}-R_{\oplus} \tag{3}
\end{equation*}
$$

with $T=24 h, M_{\oplus}=6.0 \cdot 10^{25} \mathrm{~kg}$ and $R_{\oplus}=6.4 \cdot 10^{6} \mathrm{~m}$ we finally obtain

$$
\begin{equation*}
L=3.6 \cdot 10^{4} \mathrm{~km} . \tag{4}
\end{equation*}
$$

## 2. Circling particle

a) The tension in the string provides the centripetal force needed for the circular motion, hence $F=m v_{0}^{2} / R_{0}$.
b) The angular momentum of the mass $m$ is $J=m v_{0} R_{0}$, the kinetic energy is $T=m v_{0}^{2} / 2$.
c) The radius of the circular motion of the mass $m$ decreases when the tension in the string is increased gradually. The angular momentum is conserved, thus

$$
\begin{equation*}
m v_{0} R_{0}=m v_{1}\left(\frac{R_{0}}{2}\right) \quad \Longrightarrow \quad v_{1}=2 v_{0} \tag{5}
\end{equation*}
$$

The final kinetic energy is then

$$
\begin{equation*}
T_{1}=\frac{1}{2} m v_{1}^{2}=2 m v_{0}^{2} \tag{6}
\end{equation*}
$$

The reason why the pulling of the string should be gradual is that the vectors $\mathbf{r}$ and $\mathbf{v}$ must stay approximately perpendicular.

## 3. Fast rotating planet

The conservation of energy can be written as the statement

$$
\begin{equation*}
E=T(R)+U(R)=T(\infty)+U(\infty)=\text { const. } \tag{7}
\end{equation*}
$$

The escape velocity $v_{e}$ can now be determined by setting $T(\infty)$ to zero. This leads to

$$
\begin{align*}
& \frac{1}{2} m v_{e}^{2}(R)=\int_{R}^{\infty} F(r) d r=G M m \int_{R}^{\infty} \frac{1}{r^{2}} d r=\frac{G M m}{R} \\
& v_{e}(R)=\sqrt{\frac{2 G M}{R}} \tag{8}
\end{align*}
$$

On our fast rotation planet we have $g_{p o l}=2 g_{e q}$, as well as

$$
\begin{equation*}
g_{p o l}=\frac{G M}{R^{2}} \quad g_{e q}=\frac{G M}{R^{2}}-\frac{v^{2}}{R} \tag{9}
\end{equation*}
$$

what leads to the equation

$$
\begin{equation*}
\frac{G M}{R}=2 v^{2} \tag{10}
\end{equation*}
$$

Substituting eq. (10) into eq. (8) gives the final result

$$
\begin{equation*}
v_{e}=2 v \tag{11}
\end{equation*}
$$

## 3. Sphere

a) Conservation of energy gives (see Fig. 1)

$$
\begin{align*}
& E=m g(2 R)=\frac{1}{2} m v^{2}+m g R(1+\cos \theta),  \tag{12}\\
& \frac{1}{2} m v^{2}=m g R(1-\cos \theta) .
\end{align*}
$$



Figure 1: Particle falling from a sphere.

The radial force the sphere exerts on the particle is

$$
\begin{equation*}
F=m g \cos \theta-\frac{m v^{2}}{R} \tag{13}
\end{equation*}
$$

When $F=0$, the constraint vanishes and the particle leaves the sphere. At this instance we have

$$
\begin{equation*}
v^{2}=g R \cos \theta \quad v^{2}=2 g R(1-\cos \theta) \tag{14}
\end{equation*}
$$

giving

$$
\begin{equation*}
\cos \theta=2 / 3, \quad v=\sqrt{\frac{2 g R}{3}} \tag{15}
\end{equation*}
$$

b) After leaving the sphere, the particle follows a parabolic trajectory until it hits the plane. The trajectory is described by

$$
\begin{align*}
& x(t)=v t \cos \theta+x_{0} \\
& y(t)=-\frac{1}{2} g t^{2}-v t \sin \theta+y_{0} \tag{16}
\end{align*}
$$

with the initial conditions $x_{0}=R \sin \theta$ and $y_{0}=R(1+\cos \theta)$. This can also be written as

$$
\begin{equation*}
y(x)=y_{0}-\tan \theta\left(x-x_{0}\right)-\frac{g}{2 v^{2} \cos ^{2} \theta}\left(x-x_{0}\right)^{2} \tag{17}
\end{equation*}
$$

Setting $y(x)=0$ and solving for $x$ leads to

$$
\begin{equation*}
x-x_{0}=\frac{v}{g} \cos \theta\left(-v \sin \theta \pm \sqrt{v^{2} \sin ^{2} \theta+\frac{1}{2} g y_{0}}\right) . \tag{18}
\end{equation*}
$$

Substituting $\theta$ and $v$ and only considering the positive solution leads to

$$
\begin{equation*}
x=\frac{\sqrt{5}}{27}(5+2 \sqrt{13}) R \simeq 1.01 R \tag{19}
\end{equation*}
$$

The result is independent of $g$ !

## 5. Enjoying wine in a train



Figure 2: Illustration of the the bottle.
Let us study a bottle that has been tilted as in Fig. 2. To simplify calculations, we ignore the fact that the surface of the wine is always horizontal. When the center of mass $r_{\mathrm{cm}}$ lies on the $y$-axis, there is no net torque. Let us call the angle that gives us this configuration $\theta_{\text {eq }}$. For $\theta<\theta_{\text {eq }}$, torque will force the bottle back into a standing position and for $\theta>\theta_{\text {eq }}$ the bottle will fall. In essence, the larger $\theta_{\text {eq }}$ is, the more stable is the bottle!

The setup is shown in Fig. 2. The equilibrium angle is calculated through

$$
\begin{equation*}
R / r_{\mathrm{cm}}=\tan \left(\theta_{\mathrm{eq}}\right) \tag{20}
\end{equation*}
$$

where R is the radius of the bottle. Maximizing $\theta_{\text {eq }}$ is equivalent to minimizing $r_{\mathrm{cm}}$ which is given by

$$
\begin{equation*}
r_{\mathrm{cm}}=\frac{m_{\mathrm{b}} \frac{L}{2}+m_{\mathrm{w}} x \frac{L}{2}}{m_{\mathrm{b}}+m_{\mathrm{w}}}, \tag{21}
\end{equation*}
$$

where $m_{\mathrm{b}}$ is the mass of an empty wine bottle, $m_{\mathrm{w}}$ is mass of the wine and $x$ is the fraction of wine in the bottle. By using the fact that the wine mass is $m_{\mathrm{w}}=x m_{\mathrm{w}, \mathrm{f}}$, where $m_{\mathrm{w}, \mathrm{f}}$ is the mass of wine in a full bottle we can expand into

$$
\begin{equation*}
r_{\mathrm{cm}}=\frac{m_{\mathrm{b}} \frac{L}{2}+m_{\mathrm{w}, \mathrm{f}} \frac{L}{2} x^{2}}{m_{\mathrm{b}}+m_{\mathrm{w}, \mathrm{f}} x} \tag{22}
\end{equation*}
$$

The sought solution is when $\frac{d r_{\mathrm{cm}}}{d x}=0$ and $\frac{d^{2} r_{\mathrm{cm}}}{d x^{2}}>0$ (minimum of function).

The derivative is

$$
\begin{equation*}
\frac{d r_{\mathrm{cm}}}{d x}=\frac{\left(m_{\mathrm{b}}+m_{\mathrm{w}, \mathrm{f}} x\right) m_{\mathrm{w}, \mathrm{f}} L x-m_{\mathrm{w}, \mathrm{f}}\left(m_{\mathrm{b}} \frac{L}{2}+m_{\mathrm{w}, \mathrm{f}} \frac{L}{2} x^{2}\right)}{\left(m_{\mathrm{b}}+m_{\mathrm{w}, \mathrm{f}} x\right)^{2}} \tag{23}
\end{equation*}
$$

Equating this to zero and simplifying renders the quadratic equation

$$
\begin{equation*}
x^{2}+2 \frac{m_{\mathrm{b}}}{m_{\mathrm{w}, \mathrm{f}}} x-\frac{m_{\mathrm{b}}}{m_{\mathrm{w}, \mathrm{f}}}=0 \tag{24}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
x=-\frac{m_{\mathrm{b}}}{m_{\mathrm{w}, \mathrm{f}}} \pm \sqrt{\left(\frac{m_{\mathrm{b}}}{m_{\mathrm{w}, \mathrm{f}}}\right)^{2}+\frac{m_{\mathrm{b}}}{m_{\mathrm{w}, \mathrm{f}}}} . \tag{25}
\end{equation*}
$$

We see that the optimum amount of wine in the bottle only depends on the mass of the glass bottle itself and the mass of the wine itself in a full bottle. By using $m_{\mathrm{b}}=450 g$ and $m_{\mathrm{w}, \mathrm{f}}=750 g$ we get $x=0.3798 \approx 3 / 8$. For a standard bottle of wine, $R \approx L / 6$. Using this, and the solution for $x$, in Eq. 20 we see that the maximum angle of stability is $\theta_{\text {eq }} \approx 23.7$.

