Problems 10: Hamiltonian formalism

To be handed in ETH: Mon 14.12, UNI: Wed 16.12

1. The harmonic oscillator revisited

a) Show that

$$
\begin{aligned}
& Q=q \cos \theta-\frac{p}{m \omega} \sin \theta \\
& P=m \omega q \sin \theta+p \cos \theta
\end{aligned}
$$

is a canonical transformation,
(i) by evaluating the Poisson bracket $\{Q, P\}$
(ii) by expressing $p d q-P d Q$ as an exact differential $d F_{1}(q, Q, t)$. Hence find the type 1 generating function of the transformation equations to express p, P in terms of q, Q.
b) Use the relation $F_{2}=F_{1}+P Q$ to find the type 2 generating function $F_{2}(q, P)$, and check your results by showing that F_{2} indeed generates the transformation.
c) Assuming that the (q, p) are canonical variables for a simple harmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}
$$

(i) Find the Hamiltonian $K(Q, P, t)$ for the new canonical variables (Q, P), assuming that the parameter θ is some function of time. Show that we can choose $\theta(t)$ so that $K=0$.
(ii) With this choice of $\theta(t)$ solve the new canonical equations to find the original variables (q, p) as function of time.

2. Charged particle in a uniform magnetic field

The Hamiltonian for a charged particle in a uniform magnetic field $\vec{B}=B_{0} \hat{z}$ is

$$
H=\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2},
$$

where

$$
\vec{A}=\frac{B_{0}}{2}(-y \hat{x}+x \hat{y})
$$

is the vector potential.
a) Find and solve the Hamilton equations for this system
b) Find the Hamiltonian and the Hamilton equations for the new variables $q_{1}, q_{2}, p_{1}, p_{2}$ defined as

$$
\begin{aligned}
& x=\frac{1}{\sqrt{m \omega_{c}}}\left(\sqrt{2 p_{1}} \sin q_{1}+p_{2}\right) \\
& p_{x}=\frac{\sqrt{m \omega_{c}}}{2}\left(\sqrt{2 p_{1}} \cos q_{1}-q_{2}\right) \\
& y=\frac{1}{\sqrt{m \omega_{c}}}\left(\sqrt{2 p_{1}} \cos q_{1}+q_{2}\right) \\
& p_{y}=\frac{\sqrt{m \omega_{c}}}{2}\left(-\sqrt{2 p_{1}} \sin q_{1}+p_{2}\right)
\end{aligned}
$$

with

$$
\omega_{c}=\frac{B_{0} q}{m c}
$$

c) Solve the Hamilton equation for the canonically transformed variables, and express your result in terms of the old x, y, p_{x}, p_{y}

