Sheet VIII

Due: week of November 16

Question 1 [Linearised gravity]:

i) In linearised gravity we write $g_{ab} = \eta_{ab} + \gamma_{ab}$. We change coordinates by defining

$$\hat{x}^a = x^a - \epsilon \xi^a(x) + \mathcal{O}(\epsilon^2) ,$$

where $\xi^{a}(x)$ is a vector field. Show that under this change of coordinates, γ_{ab} changes to

$$\hat{\gamma}_{ab} = \gamma_{ab} + \epsilon (\partial_a \xi_b + \partial_b \xi_a) + \mathcal{O}(\epsilon^2)$$

ii) Calculate the Ricci tensor corresponding to $g_{ab} = \eta_{ab} + \gamma_{ab}$ to second order in γ_{ab} , starting from the definition of the Ricci tensor in terms of the metric and the Christoffel symbols,

$$R_{\mu\rho} = R_{\mu\nu\rho}^{\ \nu} = \frac{\partial}{\partial x^{\nu}} \Gamma^{\nu}_{\mu\rho} - \frac{\partial}{\partial x^{\mu}} \Gamma^{\nu}_{\nu\rho} + \Gamma^{\alpha}_{\mu\rho} \Gamma^{\nu}_{\alpha\nu} - \Gamma^{\alpha}_{\nu\rho} \Gamma^{\nu}_{\alpha\mu} \,.$$

Question 2 [Exterior and covariant derivative]:

The exterior derivative d of a p-form $\Omega_{\mu_1,\dots,\mu_p}$ is defined to be the (p+1)-form with components

$$(d\Omega)_{\mu_0,\dots,\mu_p} = \sum_{k=0}^p (-1)^k \frac{\partial}{\partial \mu_k} \Omega_{\mu_0\dots\widehat{\mu_k}\dots\mu_p} , \qquad (1)$$

where the 'hatted' index is left out. Show that this definition is unchanged if we replace the partial derivative in (1) by the covariant derivative.

Question 3 [*Gravitational waves*]: A binary star system consists of two stars of mass M and of negligible size in a nearly Newtonian circular orbit of radius R around each other. By gravitational wave radiation the system looses energy at the rate of

$$P = \frac{1}{45} \sum_{\mu,\nu=1}^{3} \left(\frac{d^3 Q_{\mu\nu}}{dt^3} \right)^2 \,.$$

where

$$Q_{\mu\nu} = q_{\mu\nu} - \frac{1}{3}\delta_{\mu\nu}q$$

with $q = \sum_{\mu} q_{\mu\mu}$ and

$$q_{\mu\nu} = 3 \int T^{00} x^{\mu} x^{\nu} d^3 x \; .$$

[Here T^{00} is the energy density of this system in the rest frame of the binary star system.] Calculate the rate of increase of the orbital frequency due to the emission of gravitational waves. (The observation of this frequency increase by Hulse & Taylor (Nobel prize 1993) for such a binary star system is one of the best confirmations of GR.)