Sheet VI

Due: week of 2 November

Question 1 [Killing vector field]:
(i) On sheet III, Question 2(i) we showed that

$$
L_{X} Y=[X, Y]
$$

and in the lecture we proved that

$$
[X, Y]=X^{a} \nabla_{a} Y-Y^{a} \nabla_{a} X
$$

Combining these two equations it therefore follows that

$$
\left(L_{X} Y\right)^{b}=X^{a} \nabla_{a} Y^{b}-Y^{a} \nabla_{a} X^{b} .
$$

Since the Lie derivative has the Leibnitz property and commutes with contractions (why?), deduce from this result the action of the Lie derivative on 1-forms

$$
\begin{equation*}
\left(L_{X} \omega\right)_{b}=X^{a} \nabla_{a} \omega_{b}+\omega_{a} \nabla_{b} X^{a} \tag{1}
\end{equation*}
$$

and on 2-forms

$$
\begin{equation*}
\left(L_{X} T\right)_{a b}=X^{c} \nabla_{c} T_{a b}+T_{c b} \nabla_{a} X^{c}+T_{a c} \nabla_{b} X^{c} . \tag{2}
\end{equation*}
$$

Hint: By definition, $L_{X} f=X f=X^{a} \nabla_{a} f$.
(ii) By expressing the difference of two covariant derivatives in terms of the tensor $C_{b c}^{a}=C_{c b}^{a}$ show that the formulae (1) \& (2) are in fact independent of the choice of covariant derivative.
(iii) Suppose $\phi_{t}: M \rightarrow M$ is a one-parameter group of isometries, $\phi_{t}^{*} g=g$, where g is the metric on M. Show that the generating vector field X satisfies the Killing vector equation

$$
\nabla_{a} X_{b}+\nabla_{b} X_{a}=0
$$

where ∇_{a} is the covariant derivative with respect to which the metric is covariantly constant.

Question 2 [Affine parametrisations of curves]:
(i) A geodesic $\gamma(t)$ is characterised by the property that the tangent vector is parallely propagated along itself, i.e. that the tangent vector $T=\frac{d \gamma(t)}{d t}$ satisfies

$$
\begin{equation*}
T^{a} \nabla_{a} T^{b}=\alpha T^{b} \tag{3}
\end{equation*}
$$

where α is some constant. Show that one can always find a parametrisation of the curve $t \equiv t(s)$ so that (3) becomes

$$
S^{a} \nabla_{a} S^{b}=0
$$

where S is the tangent vector with respect to s. (The resulting parametrisation is called the affine parametrisation.)
Hint: Work in coordinates!
(ii) Let t be an affine parameter of a geodesic γ. Show that any other affine parameter s of γ takes the form $s=a t+b$, where a and b are constants.
(iii) Let $\gamma_{s}(t)$ be a smooth one-parameter family of geodesics, i.e. for each $s \in \mathbb{R}, \gamma_{s}(t)$ is a geodesic parametrised by an affine parameter t. The vector field $X=\frac{\partial}{\partial s}$ represents the displacement of nearby geodesics and is called the deviation vector. Because of (ii) there is a 'gauge freedom' in the definition of X since we can change the t-parametrisations in an s-dependent manner, i.e.

$$
t \mapsto t^{\prime}=a(s) t+b(s)
$$

Show that this modifies X by adding to it a multiple of $T=\frac{\partial}{\partial t}$. For the case where the geodesics are timelike or spacelike show that we can use this gauge freedom to choose X^{a} always orthogonal to T^{b}, i.e.

$$
g_{a b} X^{a} T^{b}=0
$$

Question 3 [Inverse metric]:
Use the formula for the inverse of a matrix to show that

$$
g^{\nu \sigma} \partial_{\mu} g_{\nu \sigma}=\frac{1}{g} \frac{\partial g}{\partial x^{\mu}},
$$

where $g=\operatorname{det}\left(g_{\mu \nu}\right)$.
Hint: The determinant depends on x^{μ} via the matrix elements $g_{\mu \nu}$. Use column expansion!

