Sheet V
 Due: week of October 26

Question 1 [Christoffel Symbols and Geodesic Equation in Euclidean Space]:
The metric of Euclidean \mathbb{R}^{3} in spherical coordinates is

$$
d s^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

i) Calculate the Christoffel components $\Gamma_{\mu \nu}^{\sigma}$ in this coordinate system.
ii) Write down the components of the geodesic equation in this coordinate system, and verify that the solutions correspond to straight lines in Cartesian coordinates.

Question 2 [Riemann and Weyl Tensor]:
i) Show that in two dimensions, the Riemann tensor takes the form

$$
R_{a b c d}=R g_{a[c} g_{d] b}
$$

(Hint: First deduce that the Riemann tensor has only one independent component in two dimensions. Then show that $g_{a[c} g_{d] b}$ spans the vector space of tensors having the symmetries of the Riemann tensor.)
ii) By similar arguments show that in three dimensions the Weyl tensor

$$
C_{a b c d}=R_{a b c d}-\frac{2}{n-2}\left(g_{a[c} R_{d] b}-g_{b[c} R_{d] a}\right)+\frac{2}{(n-1)(n-2)} R g_{a[c} g_{d] b}
$$

vanishes identically. (Hint: In three dimensions the Riemann tensor has 6 independent components. Write down the different components of the Riemann tensor and express them in terms of the Ricci tensor $R_{a b}$ and the scalar curcature R.)

Question 3 [Metric and Riemann Tensor of a Sphere]:
i) Determine the metric on the surface of a sphere of radius r in the usual spherical coordinates (θ, ϕ). Determine also the inverse metric $g^{\alpha \beta}$.
ii) Calculate the Riemann curvature tensor of the sphere. (Hint: Because of Question 2 i) there is only one independent component which you can take to be $R_{\theta \phi \theta \phi}$. Determine all other components in terms of it.)

