Sheet IV

Due: week of October 19

Question 1 [*Metric Transformations*]:

i) The metric of flat, three-dimensional Euclidean space is

$$ds^2 = dx^2 + dy^2 + dz^2. (1)$$

Show that the metric components $g_{\mu\nu}$ in spherical polar coordinates (r, θ, ϕ) defined by

$$r = \sqrt{x^2 + y^2 + z^2}, \quad \cos \theta = \frac{z}{r}, \quad \tan \phi = \frac{y}{x},$$

are given by

$$ds^{2} = dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}.$$
 (2)

ii) The spacetime metric of special relativity is

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}.$$
 (3)

Find the components $g_{\mu\nu}$ and $g^{\mu\nu}$ of the metric and the inverse metric, respectively, in 'rotation coordinates' defined by

$$t' = t$$
, $x' = \sqrt{x^2 + y^2} \cos(\phi - \omega t)$, $y' = \sqrt{x^2 + y^2} \sin(\phi - \omega t)$, $z' = z$, (4)

where ω is a constant.

Question 2 [Exterior Derivative in Action]:

- i) Let π be some *p*-form on \mathbb{R}^3 . Verify by explicit calculation in the standard Euclidean basis that $d^2\pi = 0$.
- ii) Let us define the one-form $\omega = xdz$. Rewrite ω in polar coordinates and find the two-form $\tilde{\omega} = d\omega$ in this basis. Show that $d^2\omega = 0$. Let $\tilde{\omega}_*$ denote the pull-back of $\tilde{\omega}$ onto the two-sphere S^2 under the natural embedding. Which value does the integral $\oint_{S^2} \tilde{\omega}_*$ take?

Hint: Stokes!

iii) Show that the one-form

$$\theta = \frac{ydx - xdy}{x^2 + y^2} \tag{5}$$

defined on $\mathbb{R}^2 \setminus \{0\}$ is closed but not exact.

Question 3 [Interior Product]: Let X be a vector field and Ω a p-form. We define $i_X \Omega$ to be the (p-1)-form given by

$$i_X \Omega(X_1, \dots, X_{p-1}) = \Omega(X, X_1, \dots, X_{p-1}).$$
 (6)

Check the following properties:

i)

$$i_X(\Omega_1 \wedge \Omega_2) = i_X(\Omega_1) \wedge \Omega_2 + (-1)^{p_1} \Omega_1 \wedge i_X(\Omega_2), \qquad (7)$$

where p_1 is the degree of Ω_1 .

- ii) $i_X^2 = 0.$
- iii) $i_X(df) = (df)(X) = X(f)$, where f is a function.
- iv) $L_X = i_X \circ d + d \circ i_X$.