Sheet IV
 Due: week of October 19

Question 1 [Metric Transformations]:

i) The metric of flat, three-dimensional Euclidean space is

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2} \tag{1}
\end{equation*}
$$

Show that the metric components $g_{\mu \nu}$ in spherical polar coordinates (r, θ, ϕ) defined by

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \cos \theta=\frac{z}{r}, \quad \tan \phi=\frac{y}{x},
$$

are given by

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} \tag{2}
\end{equation*}
$$

ii) The spacetime metric of special relativity is

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2} \tag{3}
\end{equation*}
$$

Find the components $g_{\mu \nu}$ and $g^{\mu \nu}$ of the metric and the inverse metric, respectively, in 'rotation coordinates' defined by

$$
\begin{equation*}
t^{\prime}=t, \quad x^{\prime}=\sqrt{x^{2}+y^{2}} \cos (\phi-\omega t), \quad y^{\prime}=\sqrt{x^{2}+y^{2}} \sin (\phi-\omega t), \quad z^{\prime}=z \tag{4}
\end{equation*}
$$

where ω is a constant.

Question 2 [Exterior Derivative in Action]:
i) Let π be some p-form on \mathbb{R}^{3}. Verify by explicit calculation in the standard Euclidean basis that $d^{2} \pi=0$.
ii) Let us define the one-form $\omega=x d z$. Rewrite ω in polar coordinates and find the two-form $\tilde{\omega}=d \omega$ in this basis. Show that $d^{2} \omega=0$. Let $\tilde{\omega}_{*}$ denote the pull-back of $\tilde{\omega}$ onto the two-sphere S^{2} under the natural embedding. Which value does the integral $\oint_{S^{2}} \tilde{\omega}_{*}$ take?
Hint: Stokes!
iii) Show that the one-form

$$
\begin{equation*}
\theta=\frac{y d x-x d y}{x^{2}+y^{2}} \tag{5}
\end{equation*}
$$

defined on $\mathbb{R}^{2} \backslash\{0\}$ is closed but not exact.

Question 3 [Interior Product]: Let X be a vector field and Ω a p-form. We define $i_{X} \Omega$ to be the ($p-1$)-form given by

$$
\begin{equation*}
i_{X} \Omega\left(X_{1}, \ldots, X_{p-1}\right)=\Omega\left(X, X_{1}, \ldots, X_{p-1}\right) . \tag{6}
\end{equation*}
$$

Check the following properties:
i)

$$
\begin{equation*}
i_{X}\left(\Omega_{1} \wedge \Omega_{2}\right)=i_{X}\left(\Omega_{1}\right) \wedge \Omega_{2}+(-1)^{p_{1}} \Omega_{1} \wedge i_{X}\left(\Omega_{2}\right) \tag{7}
\end{equation*}
$$

where p_{1} is the degree of Ω_{1}.
ii) $i_{X}^{2}=0$.
iii) $i_{X}(d f)=(d f)(X)=X(f)$, where f is a function.
iv) $L_{X}=i_{X} \circ d+d \circ i_{X}$.

