## Sheet III

Due: week of 12 October

Question 1 [Symmetries of tensors ]:
The Riemann tensor $R_{\mu \nu \rho \lambda}$ has the properties

$$
R_{\mu \nu \rho \lambda}=-R_{\nu \mu \rho \lambda}, \quad R_{[\mu \nu \rho] \lambda}=0, \quad R_{\mu \nu \rho \lambda}=-R_{\mu \nu \lambda \rho} .
$$

(i) Show that it satisfies

$$
R_{\mu \nu \rho \lambda}=R_{\rho \lambda \mu \nu}
$$

(ii) The Ricci tensor is defined by

$$
R_{\mu \nu}=R_{\mu \rho \nu \lambda} g^{\rho \lambda}
$$

Show that the Ricci tensor is symmetric,

$$
R_{\mu \nu}=R_{\nu \mu}
$$

(iii) For $n>2$ we define the Weyl tensor $C_{\mu \nu \rho \lambda}$ by the equation

$$
R_{\mu \nu \rho \lambda}=C_{\mu \nu \rho \lambda}+\frac{2}{n-2}\left(g_{\mu[\rho} R_{\lambda] \nu}-g_{\nu[\rho} R_{\lambda] \mu}\right)-\frac{2}{(n-1)(n-2)} R g_{\mu[\rho} g_{\lambda] \nu}
$$

where $R$ is the scalar curvature defined by

$$
R=R_{\mu \nu} g^{\mu \nu}
$$

Show that the Weyl tensor has the same symmetry properties as the Riemann tensor, i.e.

$$
C_{\mu \nu \rho \lambda}=-C_{\nu \mu \rho \lambda}, \quad C_{[\mu \nu \rho] \lambda}=0, \quad C_{\mu \nu \rho \lambda}=-C_{\mu \nu \lambda \rho} .
$$

Furthermore, show that the Weyl tensor is traceless with respect to the contraction of any pair of indices.

Question 2 [Lie derivative]:
In components, the action of the Lie derivative $L_{X}$ on a vector field $R$ is given as

$$
\left(L_{X} R\right)^{\mu}=\frac{\partial R^{\mu}}{\partial x^{\nu}} X^{\nu}-R^{\nu} \frac{\partial X^{\mu}}{\partial x^{\nu}}
$$

while the action on a 1 -form $\omega$ is

$$
\left(L_{X} \omega\right)_{\mu}=\frac{\partial \omega_{\mu}}{\partial x^{\nu}} X^{\nu}+\omega_{\nu} \frac{\partial X^{\nu}}{\partial x^{\mu}} .
$$

(i) Show that

$$
L_{X}(Y)=[X, Y] .
$$

(ii) Check that acting on vector fields and 1-forms we have

$$
L_{[X, Y]}=L_{X} L_{Y}-L_{Y} L_{X}
$$

Question 3 [Differential forms ]:
Check that the exterior derivative of a 2 -form $\Omega$, defined by

$$
\begin{aligned}
\mathrm{d} \Omega\left(X_{1}, X_{2}, X_{3}\right) & =X_{1}\left(\Omega\left(X_{2}, X_{3}\right)\right)-X_{2}\left(\Omega\left(X_{1}, X_{3}\right)\right)+X_{3}\left(\Omega\left(X_{1}, X_{2}\right)\right) \\
& -\Omega\left(\left[X_{1}, X_{2}\right], X_{3}\right)+\Omega\left(\left[X_{1}, X_{3}\right], X_{2}\right)-\Omega\left(\left[X_{2}, X_{3}\right], X_{1}\right)
\end{aligned}
$$

defines indeed a 3 -form, i.e. that

$$
\mathrm{d} \Omega\left(f X_{1}, X_{2}, X_{3}\right)=\mathrm{d} \Omega\left(X_{1}, f X_{2}, X_{3}\right)=\mathrm{d} \Omega\left(X_{1}, X_{2}, f X_{3}\right)=f \mathrm{~d} \Omega\left(X_{1}, X_{2}, X_{3}\right)
$$

