Sheet II
 Due: week of October 5

Question 1 [Manifold S^{2}]:
i) Show that the 2 -sphere, i.e. the surface

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\},
$$

is a differentiable manifold. To this end construct charts $\psi_{i}^{ \pm}$on $\left\{ \pm x_{i}>0\right\}$, and show that the transition functions are smooth (Hint: It is sufficient to show this for just one transition function).
ii) For this part use only the chart $\psi_{1}^{+}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto(u, v)$. Find the components a^{μ} and b^{μ} of the two basis vectors

$$
X_{u}=\frac{\partial}{\partial u}=a^{\mu} \frac{\partial}{\partial x^{\mu}}, \quad X_{v}=\frac{\partial}{\partial v}=b^{\mu} \frac{\partial}{\partial x^{\mu}}, \quad \mu=1,2,3
$$

w.r.t. the partial derivatives of \mathbb{R}^{3} by calculating $X_{u}\left(\left.f\right|_{S^{2}}\right)$ and $X_{v}\left(\left.f\right|_{S^{2}}\right)$ at a point $p \in S^{2}$, where f is a differentiable function on \mathbb{R}^{3}, i.e. calculate

$$
X_{u}\left(\left.f\right|_{S^{2}}\right)=\frac{\partial}{\partial u}\left(f \circ\left(\psi_{1}^{+}\right)^{-1}\right), \quad X_{v}\left(\left.f\right|_{S^{2}}\right)=\frac{\partial}{\partial v}\left(f \circ\left(\psi_{1}^{+}\right)^{-1}\right) .
$$

Furthermore, find the integral curves of the two basis vector fields by solving the equations

$$
\dot{\gamma}_{u}(t)=X_{u}\left(\gamma_{u}(t)\right), \quad \dot{\gamma}_{v}(t)=X_{v}\left(\gamma_{v}(t)\right)
$$

for the differentiable curves

$$
\gamma_{u}(t)=\left(\gamma_{u 1}(t), \gamma_{u 2}(t), \gamma_{u 3}(t)\right), \quad \gamma_{v}(t)=\left(\gamma_{v 1}(t), \gamma_{v 2}(t), \gamma_{v 3}(t)\right)
$$

Question 2 [Change of Basis in Tangent and Cotangent space]:

In the chart defined by the coordinate functions x^{μ}, the coordinate basis for the tangent space T_{p} is defined by $X_{\mu}=\partial_{\mu}$, and the corresponding dual basis of the cotangent space T_{p}^{*} is given by $\mathrm{d} x^{\mu}$.
i) For a different chart, described by \tilde{x}^{μ}, express the corresponding basis vectors \widetilde{X}_{μ} and $\mathrm{d} \tilde{x}^{\mu}$ in terms of X_{μ} and $\mathrm{d} x^{\mu}$, respectively. What is the transformation law of the corresponding components, i.e. writing $X=a^{\mu} X_{\mu}$ and $\omega=b_{\nu} \mathrm{d} x^{\nu}$, what is the transformation law for the coefficients a^{μ} and b_{ν} ?
ii) Show that the operation of contraction C of a tensor

$$
(C T)_{\nu_{1}, \ldots, \nu_{l}}^{\mu_{1}, \ldots \mu_{k}}=T_{\nu_{1}, \ldots, \nu_{l}, \sigma}^{\mu_{1}, \ldots, \mu_{k}, \sigma}
$$

is independent of the choice of basis.

Question 3 [Vector Fields]:
A vector field is a linear map on the space of differentiable functions \mathcal{F}

$$
X: \mathcal{F} \rightarrow \mathcal{F}
$$

satisfying the derivation property,

$$
X(f g)=X(f) g+f X(g)
$$

i) Show that $X \circ Y$ and $Y \circ X$ are not vector fields, but that the commutator

$$
[X, Y]=X \circ Y-Y \circ X
$$

is a vector field.
ii) Confirm that the commutator also satisfies the Jacobi identity

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 .
$$

