Theorie der Wärme

Gianni Blatter

2008

Achtung: Dieses Dokument basiert auf den handschriftlichen Aufzeichnungen die von Prof. Blatter in den Vorlesungen verteilt wurden. Die Übertragung in elektronische Form kann zu einer temporären Anhäufung von Druckfehlern führen. Wer sich an der Fehlersuche beteiligen möchte, einen typographischen, grammatikalischen, stilistischen oder sonstwie gearteten Fehler als solchen identifiziert und Korrekturen an

blatterj@itp.phys.ethz.ch, Subject: Fehler TdW-Skript

meldet, vermeidet Mehraufwand und verdient sich die Achtung aller Leser.

 $\label{limited Hinweis: Mit einem Stern * bekennzeichneten Abschnitte beschreiben fortgeschrittenes Material.$

Dank: Ich danke Herrn Pascal Steger für seine geschätzte Mithilfe.

G. Blatter

Inhaltsverzeichnis

0	Lite	eratur	1
1	Ein	führung	3
	1.1	Zustandsgrössen	3
	1.2	Differentiale	6
		1.2.1 Integrabilität	7
		1.2.2 Beziehungen	7
	1.3	Reversible und Irreversible Prozesse	8
	1.4	Prozesstypen	9
	1.5	Wärme und Arbeit	0
	1.6	Einheiten	0
			0
		*	1
		*	1
			1
	1.7		1
	1.8		12
	1.0	Diei Hauptsatze	- 4
2	Zur	n idealen Gas	.5
3	Ers	ter Hauptsatz der Thermodynamik 1	7
	3.1	Versuch von Gay-Lussac	7
		3.1.1 Anwendungen	8
	3.2	Versuch von Joule-Kelvin	9
	3.3	Adiabatisch-reversible Expansion	20

	3.4	Wärme und Entropie im idealen Gas	21
4	Zwe	eiter Hauptsatz der Thermodynamik	23
	4.1	Kreisprozess von Carnot	24
		4.1.1 Irreversible Prozesse	28
	4.2	Entropie S als Potential	30
		4.2.1 Kalorische und thermische Zustandsgleichung	32
	4.3	Gehemmte Gleichgewichte, Gleichgewicht und Stabilität	34
	4.4	U als thermodynamischen Potential	37
	4.5	Mehrkomponenten- und Mehrphasensysteme	38
5	The	ermodynamische Potentiale	41
	5.1	Legendre Transformation	41
	5.2	Freie Energie F	42
	5.3	Enthalpie H	43
	5.4	Gibbs Potential G	44
	5.5	Grosses Potential Ω	44
	5.6	Maxwell-Relationen	45
	5.7	Homogenität und Gibbs-Duhem-Gleichung	45
	5.8	Zusammenfassung	46
	5.9	Experimentelle Bestimmung der Potentiale	48
6	Dri	tter Hauptsatz der Thermodynamik	51
	6.1	Ausdehnungs- und Spannungskoeffizienten	51
	6.2	Spezifische Wärmen	52
	6.3	Ideales Gas	52
	6.4	Unerreichbarkeit des absoluten Nullpunktes	52
	6.5	Gläser	53
7	Pha	asenübergänge und Phasengleichgewichte	55
	7.1	Gibbssche Phasenregel und Phasendiagramme	56
	7.2	Gibbssche Flächen	57
		7.2.1 Ordnung eines Phasenübergangs	58
		7.2.2 Phasendiagramme	59

INHA	$\Lambda LTSV$	VER	ZEI	CHN	$_{ m NIS}$

		7.2.3 Freie Energien)
		7.2.4 Fest-Flüssig-Gas System	2
		7.2.5 Entropieflächen	3
	7.3	Van der Waals Gas	1
		7.3.1 Universelles Gasgesetz 64	1
		7.3.2 Maxwell-Konstruktion	5
		7.3.3 Eigenschaften realer Gase	3
	7.4	Das Eis-Wasser-Dampf System)
	7.5	Nukleation in Phasenübergängen erster Ordnung	3
8	Mis	chungen 77	7
	8.1	Massenwirkungs Gesetz)
	8.2	Osmotischer Druck)
		8.2.1 Erniedrigung des Dampfdruckes in der Lösung 81	L
	8.3	Gibbssches Paradoxon	2
	8.4	Ausklang	2
9	Trai	nsport 85	5
	9.1	Wärmeleitung	5
	9.2	Entropiebilanz	3
	9.3	Thermoelektrische Effekte	7
	9.4	Onsager Relationen)
10	Stat	zistische Beschreibungen 91	L
11	Kin	etische Gastheorie 97	7
	11.1	Stossterme	3
		11.1.1 Verallgemeinerungen des Stosszahlansatzes* 100)
		11.1.2 Erhaltungssätze	2
	11.2	H-Theorem, MB Verteilung	3
		11.2.1 Verteilungsfunktion für Fermionen und Bosonen* 107	
		11.2.2 Alternative Herleitung von f_{MB}^* 108	3
	11.3	Relaxation und Transport	L
		11.3.1 Linearisierung	2

v

		11.3.2 Relaxationszeitapproximation	16
12	Hyd	lrodynamik 12	21
	12.1	Nullte Ordnung, Euler-Gleichung	23
	12.2	Erste Ordnung, Navier-Stokes-Gleichung	26
	12.3	Anwendungen	29
		12.3.1 Hydrostatik	29
		12.3.2 Bernoullis Gesetz	31
		12.3.3 Nichtrotierende Strömungen*	32
		12.3.4 Inkompressible Fluida und Potentialströmung 1	34
		12.3.5 Schallwellen	37
13	Klas	ssische statistische Mechanik 14	1 1
	13.1	Mikrokanonisches Ensemble	42
	13.2	Kanonisches Ensemble	48
	13.3	Grosskanonisches Ensemble	50
	13.4	Fluktuationen*	52
		13.4.1 Energiefluktuationen im kanonischen Ensemble 1	52
		13.4.2 Dichtefluktuationen im grosskanonischen Ensemble 1	55
14	Qua	nten statistische Mechanik 18	59
	14.1	Erwartungswerte in der Quantenstatistik	59
		14.1.1 Dichtematrix	60
	14.2	Ensembles in der Quantenstatistik	61
	14.3	Zum 3. Hauptsatz	62

Kapitel 0

Literatur

- **K. Huang,** Statistical Mechanics (John Wiley & Sons, New York, 1987), gute Übersicht.
- A. Sommerfeld, Thermodynamik und Statistik (Vorlesungen über theoretische Physik. Band V, Harri Deutsch, 1977), gute Übersicht.
- **L.E. Reichl,** A Modern Course in Statistical Physics (E. Arnold (Publishers), 1980, 1987), gute Übersicht.
- **D. Chandler,** Introduction to Modern Statistical Physics (Oxford University Press, New York, 1987), gute Übersicht.
- **H. Smith, H. Jensen,** *Transport Phenomena*, (Claredon Press, Oxford, 1989), Transportphänomene.
- N. Straumann, *Thermodynamik* (Lecture Notes in Physics, Springer, Berlin, 1986), Thermodynamik.
- S.K. Ma, Statistical Mechanics (World Scientific, Singapore, 1985), Statistische Mechanik.
- **R. P. Feynman,** Statistical Mechanics, a set of lectures (Frontiers in Physics, Benjamin/Cummings, Reading, Massachusetts, 1982), Pfadintegrale.
- N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Frontiers in Physics, Addison-Wesley, Reading, Massachusetts, 1994), Phasenübergänge, Renormierungsgruppe.
- M. Plischke, B. Bergersen, Equilibrium Statistical Mechanics (Prentice-Hall, 1989), Phasenübergänge.

- **S.K. Ma,** Modern Theory of Critical Phenomena (Frontiers in Physics, Benjamin/Cummings, Reading, Massachusetts, 1976), Phasenübergänge, Renormierungsgruppe.
- P. Chaikin, T. Lubensky, *Principles of Condensed Matter Physics* (Cambridge University Press, 1995), Phasenübergänge.
- **P.W. Anderson,** Basic Notions of Condensed Matter Physics (Frontiers in Physics, Benjamin/Cummings, Reading, Massachusetts, 1984), Phasenübergänge, gebrochene Symmetrien.
- N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992), Stochastische Prozesse.
- **U. Weiss,** Quantum Dissipative Systems (World Scientific, Singapore, 1993), Dissipative Systeme.

Kapitel 1

Einführung

Die Thermodynamik (TD) befasst sich mit den makroskopischen Eigenschaften eines Vielteilchensystems (typischerweise $\approx 10^{23}$ Teilchen) im thermodynamischen Gleichgewicht. Letzteres können wir operativ definieren, indem wir das interessierende System sich selbst überlassen und (genügend lange) warten — das thermodynamische Gleichgewicht 'stellt sich ein'. Die Aufgabe der kinetischen Gastheorie, der statistischen Mechanik und der stochastischen Prozesse wird es sein, die Thermodynamik mikroskopisch zu begründen und zu erweitern. Erweiterungen der Thermodynamik betreffen Phänomene nahe am Gleichgewicht, insbesondere der Einbezug von Fluktuationen in der Nähe von Phasenübergängen, und der Transport in kleinen Kraftfeldern, also wiederum nahe am Gleichgewicht. Werden die Kräfte gross, so treten Nichtgleichgewichtseffekte auf (z.B., Nichtlinearitäten im Transport) und wir verlassen das Gebiet der traditionellen Thermodynamik/statistischen Mechanik.

1.1 Zustandsgrössen

Werkzeuge der Thermodynamik sind die thermodynamischen Zustandsgrössen, z.B., einfache, direkt messbare Zustandsgrössen wie

- -der Druck pund das Volumen ${\cal V}$
- die Temperatur T
- das Magnetfeld H und die Magnetisierung M
- das chemische Potential μ und die Teilchenzahl N

- ...

Abgeleitete Zustandsgrössen folgen aus den thermischen und kalorischen Zustandsgrössen, zum Beispiel

- die innere Energie U
- die Entropie S
- die freie Energie F
- die Gibbssche freie Energie G
- die Enthalpie H
- das thermodynamisches Potential Ω .

Die verschiedenen Zustandsgrössen sind nicht unabhängig: Betrachten wir zum Beispiel ein (ideales) Gas, so kann dessen thermodynamischer Gleichgewichts-Zustand durch zwei der drei Grössen $p,\ V,\ T$ vollständig beschrieben werden. Die restlichen Zustandsgrössen werden durch die thermische Zustandsgleichung (thZG)

$$f(p, V, T, \ldots) = 0 \tag{1.1}$$

und durch die kalorische Zustandsgleichung (kZG)

$$U = U(T, V, \dots) \tag{1.2}$$

festgelegt. Natürlich können wir in der kalorischen Zustandsgleichung ein beliebiges Paar von thermodynamischen Variablen wählen, z.B., U(p,T). Bekannte Beispiele für die thZG und die kZG sind die entsprechenden Beziehungen für das ideale Gas,

$$pV = n_{\rm mol} R_{\rm Gas} T \qquad {\rm und} \qquad U = \frac{3}{2} n_{\rm mol} R_{\rm Gas} T, \label{eq:pv}$$

wobei n_{mol} und R_{Gas} die Molzahl und die Gaskonstante bezeichnen.

Wir unterscheiden zwischen intensiven Variablen wie p, T, μ, H, \ldots und den dazu konjugierten extensiven Variablen wie V, S, N, M, \ldots . Die extensiven Variablen skalieren mit der Systemgrösse und -menge. Das Verständnis der intensiven Variablen ist weniger trivial: intensive Variablen sind Gleichgewichtsparameter, z.B. charakterisiert T ein bestimmtes Gleichgewicht (GG) dahingehend, dass zwei isolierte Systeme je im Gleichgewicht bei T_1 und T_2 nach thermischem Kontakt einem neuen GG bei $T, T_1 < T < T_2$, zustreben, siehe Abb. 1.1. Ein Gradient $\nabla T \neq 0$ in der Temperatur T erzeugt Wärmetransport, ein Gradient $\nabla \mu$ im chemischen Potential μ erzeugt Teilchentransport, ein Gradient ∇p im Druck p erzeugt mechanischen Transport. Umgekehrt wird das Gleichgewicht durch den Zustand

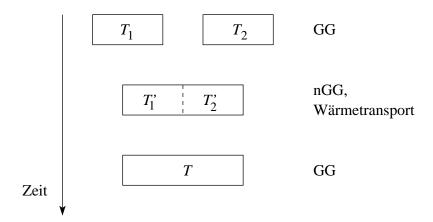


Abb. 1.1: Die Temperatur T als Gleichgewichtsparameter: Bringt man zwei Systeme mit den Temperaturen T_1 und T_2 in thermischen Kontakt, so strebt das Gesamtsystem einem neuen Gleichgewicht zu, welches durch eine zwischen T_1 und T_2 liegende Temperatur T charakterisiert wird, $T_1 < T < T_2$.

mit der minimalen Information (z.B., $T={\rm const},~\mu={\rm const},~p={\rm const})$ beschrieben.

Vom mathematisch/technischen Standpunkt her gesehen gibt sich die Thermodynamik mit mehreren Variablen und damit mit Funktionen mehrerer Variabler ab. Betrachten wir zwei Zustände A und B im Zustandsraum, siehe Abb. 1.2, z.B., charakterisiert durch $p_{A,B}$ und $T_{A,B}$. Eine Zustandsgrösse Z besitzt die sie charakterisierende Eigenschaft, dass sie nur vom Zustand (z.B., A oder B) abhängt, nicht aber von der Art und Weise, wie dieser Zustand erreicht wurde. Es gilt also

$$Z_B = Z_A + \int_{\gamma_1} dZ = Z_A + \int_{\gamma_2} dZ;$$

entsprechend gilt für die Schleife $\gamma = \gamma_1 - \gamma_2$,

$$\int_{Schleife\,\gamma} dZ = 0 \tag{1.3}$$

(offensichtlich ist V eine Zustandsgrösse). Wir können die scheinbar triviale Aussage machen, dass Z eine Zustandsgrösse ist, falls eine Funktion existiert, so dass Z=Z(gewählter Satz unabhängiger Variablen) ist. In der Thermodynamik werden wir vielen Grössen begegnen, welche keine Zustandsgrössen darstellen. Wir begegnen ihnen zumeist in differentieller Form, z.B., die am System geleistete Arbeit $\delta W=-pdV$ oder die dem System zugeführte Wärme δQ ; beide Grössen sind keine (vollständigen) Differentiale

und es gibt demnach keine Zustandsgrösse, welche die dem System insgesamt zugeführte mechanische Arbeit oder Wärme beschreibt.

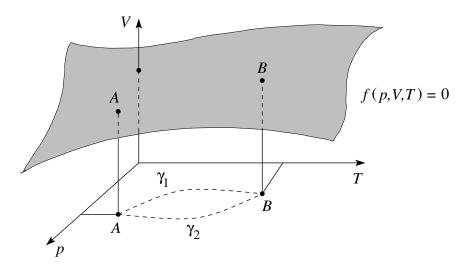


Abb. 1.2: Zustände A und B im Zustandsraum beschrieben durch die Variablen p, V und T. Thermodynamische Gleichgewichtszustände sind durch die Zustandsgleichung f(p,V,T)=0 definiert; die durch die Bedingung f(p,V,T)=0 definierte Fläche legt die erlaubten Gleichgewichtszustände fest. Beachte, dass sich der Zustand B via vielen möglichen Wegen γ aus dem Zustand A erzeugen lässt. Eine Zustandsgrösse Z hat die sie charakterisierende Eigenschaft, dass sich der Wert Z_A in A aus dem Wert Z_B in B unabhängig vom Weg γ ergibt.

1.2 Differentiale

Zentral für die mathematische Entwicklung der Thermodynamik ist das Verständnis von Funktionen mehrerer Variablen und ihre Differentiale, welche wir nun etwas genauer betrachten wollen. Sei Z(x,y) eine Zustandsgrösse, x und y die gewählten unabhängigen Zustandsvariablen. Dann ist

$$dZ = Xdx + Ydy,$$

$$X = \frac{\partial Z}{\partial x}\Big|_{y}, \quad Y = \frac{\partial Z}{\partial y}\Big|_{x},$$

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x}.$$
(1.4)

1.2.1 Integrabilität

Die letztere Relation ist notwendig und hinreichend für die Integrabilität des vollständigen Differentiales Xdx+Ydy. Zu (1.4) äquivalent ist die integrale Bedingung

$$\oint dZ = 0.$$
(1.5)

Bei zwei unabhängigen Variablen x und y kann jedes Differential Xdx+Ydy durch Multiplikation mit einem integrierenden Faktor vollständig gemacht werden.

Der Sachverhalt kompliziert sich mit zunehmender Zahl der Variablen: Die Integrabilität einer n-Form $\sum_{k}^{n} X_{k} dx_{k}$ erfordert, dass die n(n-1)/2 Bedingungen $\partial X_{i}/\partial x_{k} = \partial X_{k}/\partial x_{i}$ erfüllt sind. Kompakt lassen sich diese Bedingungen als das Verschwinden der n-dimensionalen Rotation des Vektorfeldes $\vec{Z}(\vec{x}) = \vec{X}$ formulieren, $\vec{\nabla} \times \vec{Z} = 0$.

Für n=3 Variablen verlangt die Integrabilität von $\sum_{k=1}^3 X_k dx_k$ mit $\vec{\nabla} \times \vec{\mathcal{Z}} \neq 0$ via integrierendem Faktor, dass die Bedingung

$$\vec{\mathcal{Z}} \cdot \vec{\nabla} \times \vec{\mathcal{Z}} = 0 \tag{1.6}$$

erfüllt ist, d.h., $\vec{\mathcal{Z}} \perp \vec{\nabla} \times \vec{\mathcal{Z}}$. Das vollständige Differential $\sum_{k=1}^{n} X_k dx_k$ nennt man auch *Pfaffsches Differential*.

1.2.2 Beziehungen

Folgende Beziehungen zwischen Differentialquotienten werden sich als nützlich erweisen: Betrachte die Grössen x, y, z, welche die Bedingung f(x, y, z) = 0 erfüllen. Dann gilt für x(y, z), $dx = \partial_y x|_z dy + \partial_z x|_y dz$ und für dx = 0, x = const findet man die Kettenregel

$$\frac{\partial x}{\partial y} \bigg|_{z} \frac{\partial y}{\partial z} \bigg|_{x} \frac{\partial z}{\partial x} \bigg|_{y} = -1. \tag{1.7}$$

Dabei haben wir zusätzlich benutzt, dass die Inversion gilt,

$$\left. \frac{\partial z}{\partial x} \right|_{y} = \frac{1}{\left. \frac{\partial x}{\partial z} \right|_{y}},\tag{1.8}$$

was aus z(x, y = const) via $dz = \partial_x z|_y dx$, $1 = \partial_x z|_y \partial_z x|_y$ folgt.

¹Soll heissen, gegeben ein Differential Xdx+Ydy mit $\partial_y X=\partial_x Y$, also ein vollständiges Differential, so existiert eine Stammfunktion Z(x,y), so dass dZ=Xdx+Ydy.

Schliesslich betrachten wir noch zusätzlich die Funktion w(x,y). Wir können dann die Funktionen x(y,w) und y(z,w) konstruieren mit den Differentialen

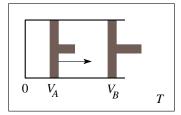
$$dx = \frac{\partial x}{\partial y}\Big|_{w} dy + \frac{\partial x}{\partial w}\Big|_{y} dw, \quad dy = \frac{\partial y}{\partial z}\Big|_{w} dz + \frac{\partial y}{\partial w}\Big|_{z} dw.$$

Bei konstantem w erhalten wir durch Einsetzen $dx = \partial_y x|_w \partial_z y|_w dz$ und damit die Kettenregel bei fixem w,

$$\frac{\partial x}{\partial y}\Big|_{w}\frac{\partial y}{\partial z}\Big|_{w} = \frac{\partial x}{\partial z}\Big|_{w}.$$
(1.9)

1.3 Reversible und Irreversible Prozesse

Zustandsänderungen sind ein wesentliches Element der Thermodynamik. Man unterscheidet zwischen reversiblen und irreversiblen Prozessen (Zustandsänderungen). In einem reversiblen Prozess werden die Kontrollparameter langsam verändert, dergestalt, dass bei Umkehrung der Kontrollparameter der Prozess ebenfalls umgekehrt wird. Während dieses quasistatischen Prozesses bleibt das System zu jeder Zeit im thermodynamischen Gleichgewicht. Der Prozess ist dann durch die Angabe weniger Parameter zu jedem Zeitpunkt vollständig charakterisiert (gesteuerter Prozess). Natürlicher sind die irreversiblen Prozesse: dabei verlässt das System die Mannigfaltigkeit der thermodynamischen Gleichgewichts-Zustände und erreicht den Endzustand via Relaxation aus einem Nichtgleichgewichts-Zustand. Entsprechend kann der Prozess nicht durch wenige Parameter beschrieben und daher auch nicht umgedreht werden. Typische Beispiele für derartige Prozesse sind die reversible und freie isotherme Expansion eines Gases, vgl. Abb. 1.3.



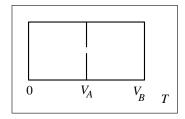


Abb. 1.3: Isotherme Expansion eines Gases: reversibel, durch gesteuerte Verschiebung des Kolbens (links) und frei (rechts) durch Überströmen in ein Volumen.

Im reversiblen Prozess wird die Expansion durch die Position des Kolbens kontrolliert — die Umdrehung der Kolbenbewegung dreht den Prozessablauf um. Im irreversiblen Prozess strömt das Gas durch das Loch —

eine Umdrehung des Prozesses erfordert die Umdrehung von $\approx 10^{23}$ Teilchen. Beide Prozesse führen für $t \to \infty$ zum selben Endzustand. Währenddem sich ein reversibler Prozess innerhalb der Mannigfaltigkeit der thermodynamischen Gleichgewichtszustände abspielt, verlässt ein irreversibler Prozess diese Mannigfaltigkeit, vgl. Abb. 1.4. Wollen wir berechnen, wie sich der Zustand B vom Zustand A unterscheidet, so müssen wir die Evolution des Systems von A nach B durch einen reversiblen Prozess beschreiben (sonst haben wir keine Chance).

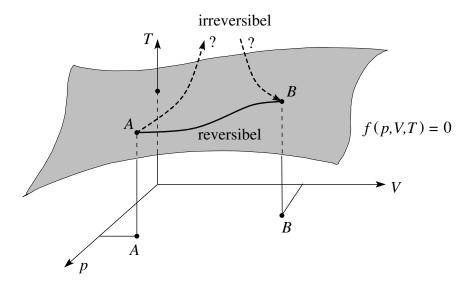


Abb. 1.4: Ein irreversibler Prozess verlässt die Fläche der thermodynamischen Gleichgewichtszustände definiert durch die Zustandsgleichung f(p, V, T) = 0.

1.4 Prozesstypen

Weiter werden Prozesse oft unter Restriktionen wie $T=\mathrm{const},\ p=\mathrm{const},\ V=\mathrm{const}$ durchgeführt — man spricht von isothermen, isobaren und isochoren Zustandsänderungen. Isoliert man das System bezüglich Wärmeaustausch mit der Umgebung, so heisst der Prozess adiabatisch.

Will man einen Prozess isotherm oder isobar ablaufen lassen, so braucht man Reservoire. Dabei vermag ein Wärmereservoir der Temperatur T dem betrachteten System beliebig viel Wärme abzugeben/zu entziehen, ohne dass sich deshalb die Temperatur des Wärmereservoirs ändern würde. Der Kontakt mit einem Wärmereservoir erlaubt daher die Ausführung eines isothermen Prozesses. Oft gebraucht wird das Teilchenreservoir. Der der Temperatur T entsprechende Gleichgewichtsparameter des Teilchensreservoirs ist das

chemische Potential μ . Ebenso wird das Druckreservoir durch den Gleichgewichtsparameter p= Druck charakterisiert.

1.5 Wärme und Arbeit

Von besonderer Wichtigkeit in der Thermodynamik sind die Begriffe 'Wärme' und 'Arbeit' (tatsächlich ist die Thermodynamik die Theorie der Dampfund Wärmekraftmaschinen). Der Begriff der Arbeit ist aus der Mechanik bekannt, $\delta W = F dx$. Mit $p \times$ Fläche=Kraft erhalten wir daraus

$$\delta W = p\mathcal{F}dx = pdV. \tag{1.10}$$

Wir schreiben hier ' δ 'W um anzudeuten, dass pdV kein vollständiges Differential darstellt; da dV vollständig ist, können wir p als 'desintegrierenden' Faktor interpretieren. Der Wärmebegriff ist schwieriger zu definieren. Wiederum ist Wärme keine Zustandsgrösse — es gibt keinen für den jeweiligen Zustand charakteristischen Wärmeinhalt des Systems (Wärme ist kein Stoff — das Phlogiston existiert nicht). Man definiert daher die auf das System übertragene Wärmemenge δQ indirekt via der resultierenden Temperaturerhöhung dT,

$$\delta Q = cdT. \tag{1.11}$$

Der Koeffizient c heisst spezifische Wärme. Dabei soll keine Arbeit am System geleistet werden, d.h. V = const. Als weiteres Charakteristikum bemerken wir, dass Arbeit in Wärme umgewandelt werden kann (der inverse Prozess ist nicht trivial). Das bringt uns auf das Thema Einheiten.

1.6 Einheiten

Wir messen die

1.6.1 Temperatur T

in °C (Grad Celsius) oder K (Kelvin),

$$\Delta T \mid_{\text{Schmelzen}}^{\text{Sieden}}(\text{H}_2\text{O}) = 100 \,^{\circ}\text{C oder} = 100 \,^{\circ}\text{K}$$
 (1.12)
 $T_0 = T \mid_{\text{Schmelzen}}(\text{H}_2\text{O}) = 273.15 \,^{\circ}\text{K oder} = 0 \,^{\circ}\text{C};$

den

1.6.2 Druck *p*

in Torr, atm, bar, Pa,

$$1 \text{ atm(Atmosphäre)} = 760 \text{ Torr } (760 \text{ mm Hg})$$
 (1.13)
 $1 \text{ at(techn. Atmosphäre)} = 9.81 \cdot 10^4 \text{ N/m}^2 (\approx 10 \text{ m H}_2\text{O}) = 0.981 \text{ bar},$
 $1 \text{ at} = 0.968 \text{ atm},$ (1.14)
 $1 \text{ bar} = 10^5 \text{ N/m}^2 = 10^5 \text{ Pa (Pascal)};$

die

1.6.3 Wärmemenge δQ

in cal (Kalorien), kcal, J, erg, Ws,

1 kcal =
$$\delta Q \left(\Delta T \Big|_{14.5}^{15.5} {}_{\circ C}^{C} H_{2} O \text{ bei Normaldruck}\right) = 4187 \text{ J},$$

1 J = $1 \frac{\text{m}^{2} \text{ kg}}{\text{s}^{2}} = 1 \text{ Ws} = 10^{7} \text{ erg};$ (1.15)

die

1.6.4 Stoffmenge n

in Mol, g,

1 Mol Stoff
$$\approx \sum_{\text{Atome im Stoff}} \text{Atomgewichte} \cdot g, \quad [Gramm-Mol].$$
 (1.16)

Zum Beispiel ist ein Mol Wasser

1 Mol H₂O
$$= 2 \cdot 1(H) + 1 \cdot 16(O) = 18 \text{ g}$$
 (1.17)
1 Mol $= 6.022 \cdot 10^{23} \text{ Moleküle}$

wobei die Normierung via des Kohlenstoffs definiert ist,

1 Mol
12
C = $6.022 \cdot 10^{23} \cdot 12 \cdot 1.66044 \cdot 10^{-24} \text{ g} = 12 \text{ g}, (1.18)$

wo $1.66044 \cdot 10^{-24}$ g einem Zwölftel der Masse eines $^{12}C\text{-Atoms}$ entspricht.

1.7 Materialkoeffizienten

Schliesslich führen wir noch einige oft benutzte Verknüpfungen zwischen Druck p, Temperatur T und Volumen V ein, welche der Charakterisierung

von Medien dienen.

der Ausdehnungskoeffizient
$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T}\Big|_{p}$$
,
der Spannungskoeffizient $\beta = \frac{1}{p} \frac{\partial p}{\partial T}\Big|_{V}$,
die (isotherme) Kompressibilität $\kappa_{T} = -\frac{1}{V} \frac{\partial V}{\partial p}\Big|_{T}$,
die (adiabatische) Kompressibilität $\kappa_{S} = -\frac{1}{V} \frac{\partial V}{\partial p}\Big|_{S}$. (1.19)

Diese Quotienten sind experimentell einfach zugänglich und deshalb geeignete Parameter in der Darstellung vieler Resultate.

1.8 Thermodynamik als axiomatische Theorie: Drei Hauptsätze

Die Thermodynamik ist eine axiomatische Theorie. Sie beruht auf drei einfach zu formulierenden Hauptsätzen, welche von weitreichender Bedeutung sind.

- 1.HS: Jedes thermodynamische System besitzt eine für dasselbe charakteristische Zustandsgrösse, die Energie U. Sie wächst nach Massgabe der zugeführten Wärme δQ und nimmt ab um die vom System nach aussen geleistete Arbeit δW . Für ein abgeschlossenes System gilt der Satz von der Erhaltung der Energie.
- 2.HS: Jedes thermodynamische System besitzt eine sie charakterisierende Zustandsgrösse, die Entropie S. Man berechnet sie, indem man das System aus einem willkürlich gewählten Anfangszustand in den jeweiligen Zustand des Systems durch eine Folge von Gleichgewichtszuständen überführt, die hierbei schrittweise zugeführte Wärme δQ bestimmt, letztere durch die erst bei dieser Gelegenheit zu definierende 'absolute Temperatur' T dividiert, und sämtliche Quotienten summiert.

Bei den wirklichen Vorgängen/Prozessen nimmt die Entropie eines nach aussen abgeschlossenen Systems zu.

3.HS: Beim absoluten Nullpunkt nähert sich die Entropie einem vom Druck, Aggregatszustand, usw. unabhängigen Wert S_0 . Ohne Beschränkung der Allgemeinheit ist $S_0 = 0$.

Im folgenden werden wir die drei Hauptsätze diskutieren, begründen, und ihre Konsequenzen aufzeigen. Im Verlauf dieser Betrachtungen entwickeln

13

wir die Thermodynamik als ein Beziehungsgewebe zwischen den Zustandsgrössen. Zur historischen Entwicklung der Thermodynamik und der statistischen Mechanik sei auf die folgenden Tabellen verwiesen.

Galileo Galilei (1564-1642)	um 1600	Thermometer
Robert Boyle (1627-1691) Richard Townley (17. Jahrh.) Edmé Mariotte (1620-1684)	1661-76	Gesetz von Boyle-Mariotte
Gabriel Daniel Fahrenheit (1686-1736)	1714/1715	Temperaturskala
René Antoine Réaumur (1683-1787)	1730	Temperaturskala
Anders Celsius (1701-1744)	1742	Temperaturskala
Daniel Bernoulli (1700-1782)	1738	'Hydrodynamica': Kinetische Gastheorie
Joseph Black (1728-1799)	1760 1762	Kalorimetrie, Entdeckung der latenten Wärme
Benjamin Thomson (Graf von Rumford) (1753-1814)	1798	Kanonenrohrversuche
John Dalton (1766-1844)	1801 1808-1827	Partialdruckgesetz chemische Atomtheorie
Joseph Louis Gay-Lussac (1778-1850)	1802	Gesetz von Gay-Lussac
Pierre Louis Dulong (1785-1838) Alexis Thérèse Petit (1791-1820)	um 1819	Dulong-Petitsches Gesetz

	I	I
Nicolas Léonard Sadi Carnot (1796-1832)	1824	Wärmekraftmaschine
Benoît Pierre Émile Clapeyron (1799-1864)	1834	Wärmekraftmaschine Verdampfungswärme
Robert Brown (1773-1858)	1828	Brownsche Bewegung
Julius Robert Mayer (1814-1878) James Prescott Joule (1818-1889) Hermann von Helmholtz (1821-1894)	um 1850	Energiesatz
Rudolf Clausius (1822-1888)	um 1850 1865	2.HS, kinet. Wärmelehre Entropiebegriff
William Thomson (Lord Kelvin of Largs) (1824-1907)	1850 1852	absolute Temperatur Zweiter Hauptsatz
Walter Nernst (1864-1941)	1906	Dritter Hauptsatz
James Clerk Maxwell (1831-1879)	1860	Maxwellsche Geschwindigkeitsverteilung
Ludwig Boltzmann (1844-1906)	1877	$S = k \ln W$
Joseph Stefan (1835-1893)	1879	Stefan-Boltzmann-Gesetz
Wilhelm Karl Werner Wien (1864-1928)	1893/94 1896	Wiensches Versch.gesetz Wiensches Strahlungsgesetz
Max Karl Ernst Ludwig Planck (1858-1947)	1900	Plancksches Strahlungsgesetz
Josiah Willard Gibbs (1839-1903)	1870 1902	Gibbssche Phasenregel 'Principles in Stat. Mechanics'
Albert Einstein (1879-1955)	1905	Brown'sche Bewegung
Peter Josephus Wilhelmus Debye (1884-1966)	1912	spez. Wärme fester Körper

Kapitel 2

Zum idealen Gas

Ein reales Gas approximiert das ideale Gas umso besser, je tiefer sein Siedepunkt ist. Bei 760 Torr findet man (wir messen die Siedetemperatur t_S in Grad Celsius)

Gas	Не	H_2	N_2	O_2	CO_2	H_2O
$t_S [^{\circ}\mathrm{C}]$	-269	-259	-210	-218	-78.5	100

Nach Boyle-Mariotte gilt

$$pV|_T = \text{const}$$
 (2.1)

und Gay-Lussac findet

$$pV = const T. (2.2)$$

Damit ergeben sich die Ausdehnungs-, Spannungs-, und Kompressibilitäts Koeffizienten zu (vgl. (1.19))

$$\alpha = \beta = \frac{1}{T}, \quad \kappa = \frac{1}{p}.$$
 (2.3)

Die via (2.2) eingeführte Temperatur T ist die Gastemperatur. Passt man die Skaleneinteilung von T der Centigradeinteilung an (siehe (1.12)), so ist

$$T = T_0 + t, (2.4)$$

mit $T_0=273.15$ Grad und t der Celsiustemperatur. Schliesslich findet Avogadro, dass alle Gase unter gleichen Bedingungen von Druck p und Temperatur T im gleichen Volumen V die gleiche Anzahl Moleküle enthalten. Daraus findet man das Molvolumen

$$V_{\text{Mol}}|_{p=760 \text{ Torr}, t=0 \text{ }^{\circ}\text{C}} = 22.4 \cdot 10^{-3} \text{ m}^3 = 22.4 \text{ dm}^3.$$
 (2.5)

Mit dieser Information ergibt sich die Gaskonstante R zu

$$p V_{\text{Mol}} = R T,$$

$$R = 8.314 \frac{J}{\text{Grad Mol}}.$$
(2.6)

Mit der Anzahl Mole n erhalten wir die Zustandsgleichung des idalen Gases

$$pV = nRT. (2.7)$$

Wir erwähnen noch die Gaskonstante pro Teilchen,

$$k_B = \frac{R}{L} = 1.381 \cdot 10^{-23} \text{ J/Grad}, \text{ mit } L = 6.022 \cdot 10^{23}/\text{Mol},$$
 (2.8)

 $L={\rm Zahl}$ von Avogadro, Avogadro-Zahl. Die Loschmidtsche Zahl bezeichnet die Zahl der Moleküle in einem Kubikzentimeter Luft.

Kapitel 3

Erster Hauptsatz der Thermodynamik

Sei δQ die dem System in einer beliebigen Zustandsänderung zugefügte Wärme und δW die vom System geleistete Arbeit. Dann ändert sich die im System enthaltene innere Energie U um das vollständige Differential

$$dU = \delta Q - \delta W, (3.1)$$

d.h., dU ist unabhängig vom Weg der Zustandsänderung und es gilt damit

$$\oint dU = 0$$
(3.2)

für jeden Kreisprozess. Auf die Masseneinheit eines homogenen Fluids bezogen, können wir mit den spezifischen Grössen u, q und v schreiben,

$$du = \delta q - pdv. (3.3)$$

3.1 Versuch von Gay-Lussac

Wir betrachten die experimentelle Versuchsanordnung in Abb. 3.1 (Gay-Lussac, Joule). Sei T_1 die Anfangstemperatur (Gas in V_1) und T_2 die Endtemperatur (Gas in $V_1 + V_2$). Man findet experimentell, dass sich die Temperatur nicht verändert, $T_1 \approx T_2$; für ein ideales Gas erwartet man $T_1 = T_2$. Also entzieht das Gas der Umgebung während der Expansion keine Wärme, $\delta Q = 0$. Da weiter auch $\delta W = 0$ ist (es wurde keine Arbeit geleistet) schliessen wir, dass U unabhängig von V sein muss, somit

$$U_{\text{ideales Gas}} = U(T), \quad \partial_V U|_T = 0.$$
 (3.4)

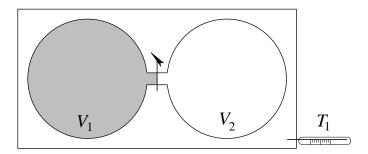


Abb. 3.1: Versuch von Gay-Lussac bei dem ein Gas nach Öffnen des Ventils in einen zweiten Kolben überströmt (irreversibler Prozess).

3.1.1Anwendungen

Betrachte zwei Zustandsänderungen bei konstantem Volumen und bei konstantem Druck,

$$v = \text{const}: du_v = \delta q = c_v dT \left[c_v = \partial_T u|_v\right], (3.5)$$

$$v = \text{const}:$$
 $du_v = \delta q = c_v dT$ $\left[c_v = \partial_T u|_v\right],$ (3.5)
 $p = \text{const}:$ $du_p = \delta q - \delta w = c_p dT - p dv$ $\left[c_p = \partial_T (u + p v)|_p\right].$ (3.6)

Aus (3.4) und (3.5) erhalten wir sofort die kalorische Zustandsgleichung des idealen Gases,

$$u(T) = \int_0^T dT' \, c_v(T'). \tag{3.7}$$

Einsetzen von $pdv = (R/\mu) dT$ in (3.6) ergibt (beachte, dass $p = \text{const}, \mu =$ Molgewicht)

$$du_p = (c_p - R/\mu) dT = du_v = c_v dT, \tag{3.8}$$

wobei die Temperaturveränderung dT in den Prozessen gleich ist. Wir finden damit die Beziehung

$$c_p - c_v = R/\mu > 0 (3.9)$$

zwischen den spezifischen Wärmen bei konstantem Druck und Volumen. Die Relation $c_p > c_v$ ist eine Konsequenz der Tatsache, dass bei p = constzusätzliche Arbeit geleistet wird. Innerhalb der kinetischen Gastheorie / statistischen Mechanik (mikrokanonisches Ensemble) zeigt man, dass

$$c_v = \frac{R}{2\mu} f$$

mit f der Anzahl Freiheitsgrade, f = 3 für Edelgase (drei kinetische Freiheitsgrade in Richtungen x, y, z, f = 5 für diatomige Moleküle H_2, N_2 O_2 (drei kinetische Freiheitsgrade in Richtungen x, y, z; ein rotatorischer Freiheitsgrad, ein potentieller Freiheitsgrad in der Bindung). Damit erhält man

$$u = f \frac{R}{2\mu} T, \quad U = \frac{f}{2} nRT.$$
 (3.10)

3.2 Versuch von Joule-Kelvin

Der Gay-Lussac-Versuch lässt sich im Joule-Kelvin (Joule-Thomson) Prozess verfeinern. Der Versuch wird adiabatisch bei $\delta Q=0$ durchgeführt; das Gas ändert sein Volumen $V_{AA'}$ zum Volumen $V_{BB'}$, wobei ein Wattebausch (eine Drossel) ein Druckgefälle ($\rightarrow \vec{\nabla} p \neq 0 \rightarrow$ irreversibler Prozess) aufrecht erhält, siehe Abb. 3.2.

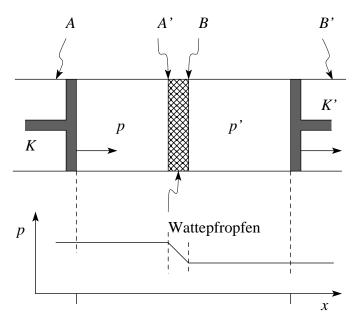


Abb. 3.2: Joule-Kelvin-Prozess. Die Kolben K und K' werden derart verschoben, dass das Gas durch den Wattepfropfen gedrückt wird und dabei sein Volumen von $V_{AA'}$ in $V_{BB'}$ übergeht. Der Wattepfropfen generiert ein Druckgefälle $\vec{\nabla} p \neq 0$, mit p (p') dem Druck in der linken (rechten) Kammer; der Prozess ist irreversibel.

Der Kolben K drückt das Gas mit konstanter Kraft ($\rightarrow p = \text{const}$) durch den Wattepfropfen, der Kolben K' weicht mit konstanter Kraft zurück ($\rightarrow p' = \text{const}$). Im stationären Prozess (stationär aber weg vom Gleichgewicht) sind p(x) und T(x) stationär, aber nichttrivial. Als Energiebilanz ergibt sich für einen adiabatischen Prozess mit $\delta Q = 0$,

$$U - U' = -pV + p'V', (3.11)$$

wobei $V = V_{AA'}$ und $V' = V_{BB'}$ die von den Kolben K und K' überstrichenen Volumina sind. Rearrangieren von Termen ergibt die Beziehung

$$H = U + pV = U' + p'V' = H', (3.12)$$

d.h., die Grösse H (Enthalpie) bleibt während des Prozesses erhalten; der Joule-Kelvin-Prozess erhält die Enthalpie beim Überströmen des Gases. Die

Enthalpie beschreibt den durch den Zylinder strömenden Energiefluss und ist eine wichtige Grösse in der Planung/Berechnung von Dampfmaschinen.

Für den Spezialfall des idealen Gases können wir die Zustandsgleichung (2.7) in (3.11) einsetzen und erhalten die Beziehung

$$U - U' = \frac{M}{\mu} R(T - T'), \tag{3.13}$$

wobei M die Masse des Gases im Volumen V bezeichnet. Im Experiment findet man, dass $T-T'\approx 0$ (T-T'=0 für das ideale Gas) und damit $U_{\text{id.Gas}}(T)$ unabhängig von V ist.

3.3 Adiabatisch-reversible Expansion

Nebst obigen adiabatisch-irreversiblen Prozessen (Gay-Lussac, Joule-Kelvin) können wir auch den *adiabatisch-reversiblen* Prozess der Gasexpansion/kompression betrachten. Wir betrachten wieder ein von der Umgebung thermisch isoliertes Zylinder-Kolben-System, vgl. Abb. 3.3.

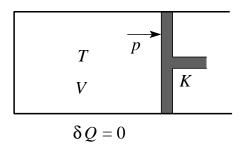


Abb. 3.3: Geometrie der Zylinder-Kolben Anordnung zur adiabatisch-reversiblen Expansion.

Der erste Hauptsatz ergibt, mit $\delta q = 0$, $\delta w = p dv$, und der kalorischen Gleichung 1.1 für das ideale Gas, $du = c_v dT$ (alles pro Masseneinheit gerechnet),

$$c_v dT = du = \delta q - \delta w = -pdv. (3.14)$$

Einsetzen der Zustandsgleichung (2.7), $dT = (\mu/R)(pdv + vdp)$ (beachte, dass $p \neq \text{const} \ und \ v \neq \text{const}$) ergibt

$$(c_v + R/\mu)p \, dv + c_v v \, dp = 0 \tag{3.15}$$

oder (benutze (3.9), $c_v + R/\mu = c_p$)

$$\frac{dp}{p} + \frac{c_p}{c_v} \frac{dv}{v} = 0,$$

$$\ln p + \ln v^{c_p/c_v} = \text{const},$$

$$p v^{c_p/c_v} = \text{const}.$$
(3.16)

Umgeschrieben auf die Variablenpaare p, v; p, T; v, T erhalten wir die Adiabatengleichungen (mit $c_p/c_v = \gamma$, für ein monoatomares Gas $\gamma = 5/3$)

$$p v^{\gamma} = \text{const},$$
 $p v^{5/3} = \text{const},$ (3.17)
 $p^{\frac{1-\gamma}{\gamma}} T = \text{const},$ $p^{-2/3} T = \text{const},$ $v^{\gamma-1} T = \text{const}.$ $v^{2/3} T = \text{const}.$

Verglichen zur Isorthermen pv = const fällt somit die Adiabate steiler ab, siehe Abb. 3.4. Dieser Sachverhalt wird im Carnotprozess genutzt, siehe später.

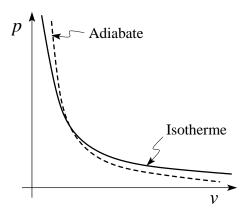


Abb. 3.4: Lage und Form von Adiabate und Isotherme.

Beachte, dass die adiabatische, reversible Expansion des Gases Arbeit liefert, wobei dem Gas via Abkühlung die innere Energie $c_v dT$ entzogen wird. Diese innere Energie ist dem Gas als Wärme oder als Arbeit irgendwann zugeführt worden; in welcher Form dies geschehen ist, können wir nicht mehr sagen, da u eine Zustandsfunktion ist, deren Wert unabhängig vom Weg ist.

3.4 Wärme und Entropie im idealen Gas

Schliesslich wollen wir noch unser Wissen über das ideale Gas nutzen, um etwas über das Konzept 'Wärme' zu erfahren. Betrachte die Definition

$$\delta q = du + pdv. \tag{3.18}$$

Mit $du = c_v dT$, $p = (R/\mu)(T/v)$ erhalten wir

$$\delta q = c_v \, dT + \frac{R}{\mu} \frac{T}{v} \, dv. \tag{3.19}$$

Offensichtlich ist δq kein vollständiges Differential — aber $\delta q/T$ ist eines,

$$ds = \frac{\delta q}{T} = c_v(T) \frac{dT}{T} + \frac{R}{\mu} \frac{dv}{v}, \qquad (3.20)$$

und für $c_v = \text{const}$ ergibt sich

$$s(T,v) = \int_{T_0,v_0}^{T,v} ds = c_v \ln \frac{T}{T_0} + \frac{R}{\mu} \ln \frac{v}{v_0}.$$
 (3.21)

Der Faktor 1/T ist der integrierende Faktor des Differentials δq . Die Zustandsgrösse S(T,V) heisst Entropie, die Wärme lässt sich damit schreiben als $\delta q = Tds$ (vgl. $\delta w = pdv$) und wir finden den Energiesatz in der Form

$$du = T ds - p dv. (3.22)$$

Weiter ist u = u(s, v), $\partial_s u|_v = T$, $\partial u/\partial v|_s = -p$, und

$$\frac{\partial^2 u}{\partial v \,\partial s} = \frac{\partial^2 u}{\partial s \,\partial v}.\tag{3.23}$$

Überprüfe das.

Kapitel 4

Zweiter Hauptsatz der Thermodynamik

Der zweite Hauptsatz bildet den Kern der Thermodynamik. Er spezifiziert, welche (energetisch erlaubten) Prozesse in der Natur vorkommen dürfen (z.B., der Kaffee in der Tasse wird nie spontan heiss, indem er der Umgebung Wärme entzieht, auch wenn dies gemäss dem 1. Hauptsatz erlaubt wäre). Der zweite Hauptsatz beruht wiederum auf Erfahrung und wird nicht bewiesen (ein Axiom der Thermodynamik) — die Zurückführung auf einfache, scheinbar selbstverständliche Prinzipien muss genügen. Dies wird durch die Postulate von Clausius und Kelvin erreicht. Deren Kombination mit der Maschine von Carnot ergibt dann die Formulierung des 2. Hauptsatzes nach Seite 12.

Clausius: Wärme kann nicht von selbst aus einem niederen zu einem höheren Temperaturniveau übergehen.

Kelvin: Es ist unmöglich, fortlaufend Arbeit zu erzeugen durch blosse Abkühlung eines einzelnen Körpers

(sonst könnten wir diese Arbeit bei einer höheren Temperatur zurück in Wärme verwandeln, was im Widerspruch zur Aussage von Clausius wäre).

Gemäss Kelvin lässt sich keine Wärmemaschine mit nur einem Wärmereservoir bauen — eine Wärmemaschine (Wärme zu Arbeit Konverter) erzeugt immer Abwärme. Diese Aussage wird mit der Maschine von Carnot präzisiert und quantifiziert.

4.1 Kreisprozess von Carnot

Wir untersuchen eine zyklisch arbeitende Maschine mit einem beliebigen homogenen Arbeitsmedium dessen Zustand sich durch die mechanischen Variablen p und V beschreiben lässt. Die thermische Variable ϑ folgt aus der Zustandsgleichung des Mediums. Der Kreisprozess besteht aus den Isothermen I_{12} , I_{34} und den Adiabaten A_{23} , A_{41} , vgl. Abb. 4.1. Entlang der Isothermen I_{12} (I_{34}) wird den Wärmereservoiren bei den Temperaturen ϑ_1 (ϑ_2) die Wärmemenge Q_1 (Q_2) entzogen, woraus sich die Wärmezufuhr pro Zyklus

$$\oint \delta Q = Q_1 - Q_2 \tag{4.1}$$

ergibt. Ebenfalls pro Zyklus wird die Arbeit

$$\oint \delta W = \oint dV \, p = W \tag{4.2}$$

geleistet (die schraffierte Fläche in Abb. 4.1).

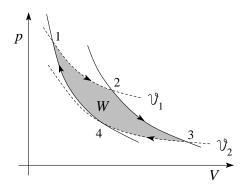


Abb. 4.1: Kreisprozess $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ im p, V-Diagramm des Arbeitsmediums.

Gemäss 1. HS ist
$$W = Q_1 - Q_2. \tag{4.3}$$

Da die Wärmemaschine (nach Kelvin) eine Abwärme erzeugen muss, ist der thermische Wirkungsgrad (die Fähigkeit Wärme in Arbeit zu verwandeln)

$$\eta = \frac{W}{Q_1} = 1 - \frac{Q_2}{Q_1} \tag{4.4}$$

immer kleiner als 1 (zeige, dass für W>0 die Abwärme $Q_2>0$ sein muss). Die Maschine kann auch als Kältemaschine/Wärmepumpe benutzt werden (umgekehrter Zyklus $1\to 4\to 3\to 2\to 1$). Der Wirkungsgrad der Wärmepumpe wird dann als

$$\eta = \frac{Q_1}{W} = \frac{1}{1 - Q_2/Q_1} \tag{4.5}$$

definiert. Man beachte das Vorzeichen der Energien Q_1 , Q_2 , W. Die Diagramme in Abb. 4.2 beschreiben/charakterisieren die Kreisprozesse für die Kraftmaschine und die Wärmepumpe.

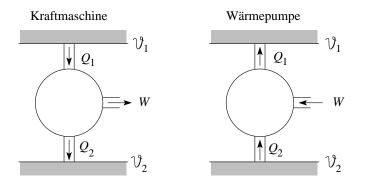


Abb. 4.2: Carnot Kreisprozesse: Die Kraftmaschine entzieht dem Medium höherer Temperatur die Wärme Q_1 und verwandelt diese in Arbeit W und Abwärme Q_2 , wobei $Q_1 - Q_2 - W = 0$ ist. Die Wärmepumpe entzieht dem Reservoir bei der tiefen Temperatur die Wärme Q_2 und führt die Wärme Q_1 dem Reservoir höherer Temperatur zu, wobei die Arbeit W zu leisten ist, $Q_2 + W - Q_1 = 0$.

In der Folge betrachten wir reversible Carnotmaschinen die, abgesehen von der thermodynamischen Abwärme, keine inneren (Reibungs-)Verluste aufweisen. Dann gilt:

Alle zwischen ϑ_1 und ϑ_2 operierenden (reversiblen) Carnotmaschinen besitzen unabhängig vom Medium denselben Wirkungsgrad.

Denn: Betrachte zwei Carnot-Maschinen C und C' zwischen $\vartheta_1 = \vartheta_1'$ und $\vartheta_2 = \vartheta_2'$ mit W = W'. Nimm an, dass $\eta' > \eta$. Operiere dann C als Wärmepumpe und finde, dass $\Delta Q = Q_1 - Q_1' > 0$ von ϑ_2 nach ϑ_1 fliesst, was Clausius widerspricht. Ebenso führt die Annahme $\eta > \eta'$ auf einen Widerspruch. Also ist $\eta = \eta'$. Ähnlich wird bewiesen, dass die Aussage von 'Kelvin' die Aussage von 'Clausius' impliziert: Nimm an, wir können Q_1 von ϑ_2 nach $\vartheta_1 > \vartheta_2$ bringen. Die Carnot-Maschine verwandelt dann Wärme in Arbeit, was Kelvin widerspricht.

Damit kann der Wirkungsgrad der reversiblen Carnot-Maschine nur von den Temperaturen ϑ_1 und ϑ_2 abhängen,

$$\eta = 1 - \frac{Q_2}{Q_1}, \quad \frac{Q_1}{Q_2} = f(\vartheta_1, \vartheta_2).$$
(4.6)

Indem wir zwischen ϑ_1 und ϑ_2 ein weiteres Reservoir der Temperatur ϑ_0 einfügen, vgl. Abb. 4.3, das die Abwärme aus dem ϑ_1, ϑ_0 -Prozess als zu-

26

geführte Wärme für den ϑ_0, ϑ_2 -Prozess nutzt, erhalten wir die Beziehungen

$$\frac{Q_1}{Q_0} = f(\vartheta_1, \vartheta_0), \qquad \frac{Q_0}{Q_2} = f(\vartheta_0, \vartheta_2), \qquad (4.7)$$

$$\frac{Q_1}{Q_2} = f(\vartheta_1, \vartheta_0) f(\vartheta_0, \vartheta_2) = f(\vartheta_1, \vartheta_2);$$

die zusammengesetzte Carnot Maschine hat dann einen von ϑ_0 unabhängigen Wirkungsgrad.

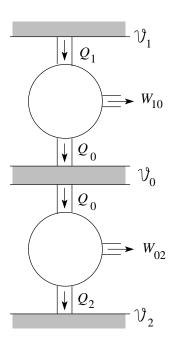


Abb. 4.3: Schema einer zusammengesetzten Carnot Maschine mit hintereinandergehängten Kraftmaschinen, verbunden über das Reservoir bei der Temperatur ϑ_0 .

Wählen wir $\vartheta_1=\vartheta_2$, so erhalten wir mit $f(\vartheta_1,\vartheta_2)=1$ die Beziehung $f(\vartheta_0,\vartheta_2)=1/f(\vartheta_2,\vartheta_0)$ und können damit schreiben

$$f(\vartheta_1, \vartheta_2) = \frac{f(\vartheta_1, \vartheta_0)}{f(\vartheta_2, \vartheta_0)} = \frac{\varphi(\vartheta_1)}{\varphi(\vartheta_2)}, \tag{4.8}$$

unabhängig von ϑ_0 . Unsere willkürliche Temperaturskala ϑ lässt sich nun durch die absolute Temperaturskala

$$T = \varphi(\vartheta) \tag{4.9}$$

ersetzen, und wir finden den Wirkungsgrad η der Carnot Maschine nur abhängig von den Temperaturen T_1 und T_2 der Reservoire,

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2},$$

$$\eta = 1 - \frac{T_2}{T_1}.$$
(4.10)

Berechnen wir den Wirkungsgrad einer Carnot-Maschine mit einem idealen Gas als Medium, so finden wir

$$\eta_{\text{ideales Gas}} = 1 - \frac{T_2^{\text{Gas}}}{T_1^{\text{Gas}}},$$
(4.11)

woraus wir schliessen, dass $T^{\text{Gas}} \propto T = \varphi(\vartheta)$. Die entsprechende Eichung (siehe (1.12)) ergibt die bekannte Kelvin Skala.

Das Resultat (4.10) reicht weit über die Definition einer absoluten Temperaturskala hinaus. Durch Zerlegen eines beliebigen *reversiblen* Prozesses in eine Sequenz von (unendlich schmalen) Carnot-Prozessen, vgl. Abb. 4.4, erhalten wir

$$\frac{\delta Q_1}{T_1} = \frac{\delta Q_2}{T_2} \tag{4.12}$$

und die Summation über alle Segmente ergibt das Resultat

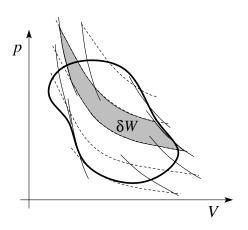


Abb. 4.4: Zerlegung eines beliebigen reversiblen Prozesses in eine Sequenz von infinitesimalen Carnot-Prozessen.

$$\oint \frac{\delta Q_{\text{rev}}}{T} = 0.$$
(4.13)

Beachte, dass im Schritt $(4.12) \to (4.13)$ das Vorzeichen der Abwärme Q_2 angepasst wurde, d.h., in (4.13) werden Abwärmen negativ gerechnet. Die Grösse

$$dS = \frac{\delta Q_{\text{rev}}}{T} \tag{4.14}$$

definiert damit ein vollständiges Differential und wir können eine neue Zustandsgrösse, die Entropie S, definieren als (vgl. Abb. 4.5)

$$S_B = S_A + \int_{\gamma} \frac{\delta Q_{\text{rev}}}{T},\tag{4.15}$$

wobei A einen beliebigen Referenzzustand definiert und γ die Zustände A und B reversibel verbindet (d.h. jeder Punkt $P \in \gamma$ entspricht einem Gleichgewichtszustand).

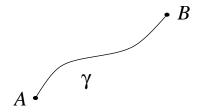


Abb. 4.5: Reversible Verbindung zwischen den Zuständen A und B.

Diese für ein einkomponentiges System abgeleiteten Betrachtungen lassen sich auch auf ein mehrkomponentiges, mehrphasiges System ausdehnen. Dabei benutzt man in der Addition der Teilentropien

$$dS = \sum_{i} dS_{i} = \sum_{i} \frac{\delta Q_{\text{rev,i}}}{T_{i}},$$
(4.16)

dass das Gesamtsystem im Gleichgewicht ist und daher alle Komponenten/Phasen dieselbe Temperatur $T_i = T$ aufweisen, woraus folgt, dass

$$dS = \frac{1}{T} \sum_{i} \delta Q_{\text{rev,i}} = \frac{\delta Q_{\text{rev}}}{T}$$
 (4.17)

(natürlich sind wiederum alle inneren Reibungsverluste zu eliminieren \rightarrow reversible Prozesse).

Benutzen wir schliesslich noch den 1. HS in der Form $\delta Q = dU + pdV = \delta Q_{\text{rev}}$ (\leftarrow garantierte Reversibilität), so erhalten wir

$$dS = \frac{dU + p \, dV}{T}.\tag{4.18}$$

Wie wir daraus mit Hilfe der thermischen und kalorischen Zustandsgleichung via Integration die Entropie erhalten, haben wir im Fall des idealen Gases (auf Seite 21) gezeigt,

$$S_{\text{ideales Gas}} = nC_V \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0} + S_0.$$
 (4.19)

Schliesslich bemerken wir noch, dass im mechanisch/thermischen abgeschlossenen System mit der Energie auch die Entropie konstant ist, das System ist im Gleichgewicht.

4.1.1 Irreversible Prozesse

In einem nächsten Schritt wollen wir die Folgen irreversibler Prozesse betrachten. Dazu hängen wir wiederum zwei Maschinen C und C' zusammen, wobei C reversibel arbeite, nicht aber C'. Wir können dann zeigen, dass

 $\eta' > \eta$ auf einen Widerspruch führt, nicht aber $\eta > \eta'$. Da auch $\eta \neq \eta'$ sein muss (sonst ist C' reversibel), gilt

$$1 - \frac{T_2}{T_1} = 1 - \frac{Q_2}{Q_1} = \eta > \eta' = 1 - \frac{Q_2'}{Q_1'}$$
(4.20)

$$\to \frac{Q_1'}{Q_2'} < \frac{T_1}{T_2}.\tag{4.21}$$

Für den Zyklus finden wir dann

$$\oint \frac{\delta Q'}{T} < 0.$$
(4.22)

Zerlegen wir den Zyklus gemäss Abb. 4.6 in einen reversiblen Anteil $B \to A$ und einen irreversiblen Teil $A \to B$, so finden wir

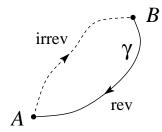


Abb. 4.6: Zerlegung des Zyklus in einen reversiblen und einen irreversiblen Anteil.

$$\int_{A}^{B} \frac{\delta Q'}{T} + \int_{\gamma} \frac{\delta Q'_{\text{rev}}}{T} = \int_{A}^{B} \frac{\delta Q'}{T} + S_A - S_B < 0$$
 (4.23)

$$\to S_B > S_A + \int_A^B \frac{\delta Q'}{T}. \tag{4.24}$$

Mit $S_B = S_A + \int_A^B \delta Q_{\rm rev}/T$ ergibt sich, dass der reversible Prozess am meisten Wärme aufnimmt. Isolieren wir das System thermisch, so ist $\delta Q = 0$ und

$$S_B > S_A; (4.25)$$

im thermisch isolierten System kann die Entropie nur zunehmen. Die Ungleichung (4.25) zeichnet eine Zeitrichtung aus. Beachte, dass $\delta Q=0$ (Adiabatizität) nicht gleichbedeutend mit Isentropie dS=0 ist. Es gilt, dass ein reversibler adiabatischer Prozess isentrop ist.

Aus den Beziehungen (4.15) und (4.24) lässt sich schliessen, dass wir zur Berechnung von S immer auf reversible Wege zurückgreifen müssen; irreversible Wege liefern nur Schranken. So erhalten wir beispielsweise für die Gay-Lussac- und Joule-Kelvin-Versuche (adiabatische Prozesse)

$$\int \frac{\delta Q}{T} = 0. \tag{4.26}$$

Um die Entropiedifferenz im Gay-Lussac-Versuch mit zwei gleich grossen Kolben zu berechnen $(V \to 2V)$ müssen wir einen analogen reversiblen Prozess finden, der die beiden Zustände $(T_1 = T, V_1 = V)$ und $(T_2 = T, V_2 = 2V)$ verbindet. Dies ist gerade der Prozess der reversiblen, isothermen Expansion. Mit TdS = dU + pdV = pdV (wegen $dU = c_v dT|_{T=\text{const}}$) erhalten wir

$$\Delta S = \frac{\delta Q_{rev}}{T} = nR \ln \frac{V_2}{V_1} = nR \ln 2. \tag{4.27}$$

Während der reversiblen Expansion wird dem Reservoir die Wärme $\delta Q = nRT \ln 2$ entzogen und in Arbeit $\delta W = \delta Q$ umgewandelt. Nicht so bei der freien Expansion. Dort strömt das Gas über, ohne Arbeit zu leisten und das System nimmt keine Wärme auf (Versuche diesen Sachverhalt mikroskopisch zu verstehen, studiere dabei die Experimente von Gay-Lussac, Joule-Kelvin, isotherme reversible Expansion, adiabatisch reversible Expansion).

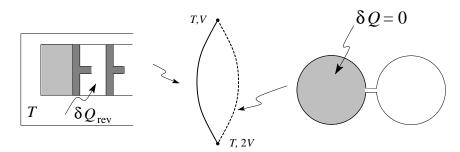


Abb. 4.7: Expansion eines Gases: links isotherme reversible Expansion mit $\delta W = \delta Q_{rev} = nRT\log 2$, rechts adiabatische irreversible Expansion ohne Arbeitsleistung, $\delta W = 0$. Für die Entropieänderung gilt $S_B - S_A = nR\ln 2 > \int \delta Q/T = 0$. Im reversiblen Prozess wird Wärme in Arbeit verwandelt, im irreversiblen Prozess wird die Möglichkeit der Umwandlung nicht genutzt.

4.2 Bedeutung der Entropie als thermodynamisches Potential

Wir gehen aus von (4.18) und verallgemeinern die am System geleistete Arbeit durch den Ausdruck $\delta W = \sum_k a_k dA_k$,

$$dS = \frac{1}{T}dU - \frac{1}{T}\sum_{k=1}^{n} a_k dA_k \tag{4.28}$$

 $(a_i, A_i = p, V; \sigma = \text{Oberflächenspannung}, A = \text{Fläche}; H = \text{Magnetfeld}, M = \text{Magnetisierung}; \phi = \text{elektrisches Potential}, Q = \text{Ladung}, \sigma_{\alpha\beta} = \text{Spannungstensor}, \varepsilon_{\alpha\beta} = \text{Deformationstensor}, \text{etc.}).$ Dabei fassen wir $S(U, A_1, \ldots, A_n)$

 A_n) als Funktion der extensiven Zustandsvariablen U, A_1, \ldots, A_n auf, die zudem einen vollständigen Satz von Variablen bilden sollen. (4.28) heisst Gibbssche Fundamentalgleichung; aus ihr folgen durch Ausnützung der Integrabilität die kalorische und die thermischen Zustandsgleichungen. Man bezeichnet deshalb S als thermodynamisches Potential in den Variablen U und A_1, \ldots, A_n (aber nicht in anderen Variablen).

Die Integrabilität von (4.28) garantiert die Existenz einer Zustandsfunktion

$$S(U, A_1, \dots, A_n) \tag{4.29}$$

in den extensiven Variablen U, A_1, \ldots, A_n . Der Vergleich von

$$dS = \frac{\partial S}{\partial U} \bigg|_{A_1, \dots, A_n} dU + \sum_{k=1}^{n} \frac{\partial S}{\partial A_k} \bigg|_{U, A_1, \dots, A_n \text{ ohne } A_k} dA_k$$
 (4.30)

mit (4.28) liefert die Beziehungen

$$\frac{1}{T} = \frac{\partial S}{\partial U}\Big|_{A_1,\dots,A_n} \to T = T(U, A_1, \dots, A_n) \to U = U(T, A_1, \dots, A_n),$$

$$a_k = -T \frac{\partial S}{\partial A_k}\Big|_{U,A_1,\dots,A_n \text{ ohne } A_k} \to a_k = a_k(T, A_1, \dots, A_n);$$

diese sind gerade die kalorische und die thermischen Zustandsgleichungen. Ist die Entropie eines Systems als Funktion der thermodynamischen Variablen U, A_1, \ldots, A_n einmal bekannt, können wir seine Thermodynamik vollständig beschreiben.

Durch die Umkehrung der Gleichung (4.28) können wir sofort ein weiteres Potential gewinnen: mit

$$dU = T dS + \sum_{k=0}^{n} a_k dA_k \tag{4.31}$$

folgt, dass $U(S,A_1,\ldots,A_n)$ ein thermodynamisches Potential in den Variablen S und A_1,\ldots,A_n ist. Die kalorische und die thermischen Zustandsgleichungen haben die Form

$$T = \frac{\partial U}{\partial S} \Big|_{A_1, \dots, A_n}, \quad a_k = \frac{\partial U}{\partial A_k} \Big|_{S, A_1, \dots, A_n \text{ ohne } A_k}.$$
 (4.32)

Allerdings ist U als Funktion von S für praktische Anwendungen wenig geeignet. Wir werden später noch weitere, nützlichere thermodynamische Potentiale herleiten.

32

4.2.1 Zusammenhang zwischen kalorischer und thermischer Zustandsgleichung

Wir nutzen die Integrabilitätsbedingungen für die Entropie S um eine Beziehung zwischen der kalorischen und thermischen Zustandsgleichung herleiten. Wir beschränken uns auf homogene Flüssigkeiten mit $\sum a_k dA_k \rightarrow -p dV$. Ausgehend von

$$dS = \frac{1}{T}dU + \frac{p}{T}dV$$

$$dU = \frac{\partial U}{\partial T}\Big|_{V}dT + \frac{\partial U}{\partial V}\Big|_{T}dV$$

erhalten wir

$$TdS = \frac{\partial U}{\partial T}\Big|_{V} dT + \Big(\frac{\partial U}{\partial V}\Big|_{T} + p\Big) dV.$$

Der Vergleich mit

$$TdS = T \left. \frac{\partial S}{\partial T} \right|_{V} dT + T \left. \frac{\partial S}{\partial V} \right|_{T} dV$$

liefert

$$\frac{\partial S}{\partial T}\Big|_{V} = \frac{1}{T}\frac{\partial U}{\partial T}\Big|_{V}, \quad \frac{\partial S}{\partial V}\Big|_{T} = \frac{1}{T}\Big(\frac{\partial U}{\partial V}\Big|_{T} + p\Big).$$

Gleichsetzen der zweiten Ableitungen

$$\frac{\partial^2 S}{\partial T \partial V} = \frac{\partial^2 S}{\partial V \partial T}$$

ergibt

$$\begin{split} \frac{\partial}{\partial V} \left[\frac{1}{T} \frac{\partial U}{\partial T} \Big|_{V} \right] &= \frac{\partial}{\partial T} \left[\frac{1}{T} \left(\frac{\partial U}{\partial V} \Big|_{T} + p \right) \right], \\ \frac{1}{T} \frac{\partial^{2} U}{\partial V \partial T} &= -\frac{1}{T^{2}} \left(\frac{\partial U}{\partial V} \Big|_{T} + p \right) + \frac{1}{T} \frac{\partial^{2} U}{\partial T \partial V} + \frac{1}{T} \frac{\partial p}{\partial T} \Big|_{V}, \end{split}$$

und schliesslich

$$\frac{\partial U}{\partial V}\Big|_{T} = T \frac{\partial p}{\partial T}\Big|_{V} - p \tag{4.33}$$

Diese Gleichung verbindet die kalorische (links) und thermische (rechts) Zustandsgleichung.

Anwendungen

Eine hübsche Anwendung von (4.33) ergibt sich für das ideale Gas: Mit pV = nRT ist $T\partial_T p|_V = p$ und wir finden

$$\frac{\partial U}{\partial V}\Big|_{T, \text{ id.Gas}} = 0,$$

$$U_{\text{id.Gas}} = U(T).$$
(4.34)
$$(4.35)$$

$$U_{\text{id.Gas}} = U(T). \tag{4.35}$$

Die Zustandsgleichung des idealen Gases impliziert via dem 2. Hauptsatz die Unabhängigkeit von U vom Gasvolumen V.

In einer zweiten Anwendung drücken wir das Entropiedifferential durch experimentell messbare Grössen c_p , c_v , α , und κ aus. Wir setzen (4.33) in den Ausdruck für TdS ein und finden

$$TdS = \frac{\partial U}{\partial T}\Big|_{V} dT + T \frac{\partial p}{\partial T}\Big|_{V} dV. \tag{4.36}$$

Indem wir das Variablenpaar T, p benutzen, können wir eine korrespondierende Gleichung herleiten,

$$TdS = \left(\frac{\partial U}{\partial T}\Big|_{p} + p\frac{\partial V}{\partial T}\Big|_{p}\right)dT - T\frac{\partial V}{\partial T}\Big|_{p}dp. \tag{4.37}$$

Wir benutzen (3.5), (3.6) (die Definitionen von c_v und c_p) und formen $\partial_T p|_V$ um gemäss (1.7) (Kettenregel)

$$\frac{\partial p}{\partial T}\Big|_{V} = -\frac{1}{\frac{\partial T}{\partial V}\Big|_{p}} \frac{\partial V}{\partial p}\Big|_{T} = \frac{\frac{1}{V} \frac{\partial V}{\partial T}\Big|_{p}}{-\frac{1}{V} \frac{\partial V}{\partial p}\Big|_{T}} = \frac{\alpha}{\kappa_{T}},$$

$$\Rightarrow TdS = \begin{cases} c_{v} dT + (\alpha T/\kappa_{T}) dV, \\ c_{p} dT - \alpha TV dp. \end{cases} \tag{4.38}$$

Schliesslich lassen sich c_p und c_v auch auf die Grössen α , κ_T und κ_S zurückführen: Aus (4.38) folgt

$$c_v dT + T \frac{\partial p}{\partial T} \Big|_V dV = c_p dT - T \frac{\partial V}{\partial T} \Big|_p dp$$

und via Umschreibung auf p und V,

$$dT = \frac{\partial T}{\partial V} \Big|_{p} dV + \frac{\partial T}{\partial p} \Big|_{V} dp,$$

finden wir

$$\left[(c_p - c_v) \frac{\partial T}{\partial V} \Big|_p - T \frac{\partial p}{\partial T} \Big|_V \right] dV + \left[(c_p - c_v) \frac{\partial T}{\partial p} \Big|_V - T \frac{\partial V}{\partial T} \Big|_p \right] dp = 0$$

Diese Beziehung gilt für alle Differentiale dp und dV, weshalb beide Koeffizienten verschwinden. Der dV-Koeffizient liefert dann mit (1.19) die Beziehung

$$c_{p} - c_{v} = \frac{T \frac{\partial p}{\partial T} \Big|_{V}}{\frac{\partial T}{\partial V} \Big|_{p}} = -T \left(\frac{\partial V}{\partial T} \Big|_{p} \right)^{2} \frac{\partial p}{\partial V} \Big|_{T} = \frac{TV \alpha^{2}}{\kappa_{T}}.$$
 (4.39)

Aus (4.36), (4.37) folgt mit dS = 0

$$c_v = -T \frac{\partial p}{\partial T} \Big|_V \frac{\partial V}{\partial T} \Big|_S, \quad c_p = T \frac{\partial V}{\partial T} \Big|_p \frac{\partial p}{\partial T} \Big|_S$$

und Division ergibt (unter Ausnutzung von (1.9) und (1.7))

$$\frac{c_p}{c_v} = -\frac{\frac{\partial V}{\partial T} \Big|_p \frac{\partial p}{\partial T} \Big|_S}{\frac{\partial p}{\partial T} \Big|_V \frac{\partial V}{\partial T} \Big|_S} = -\frac{\frac{\partial V}{\partial T} \Big|_p}{\frac{\partial p}{\partial T} \Big|_V} \frac{\partial p}{\partial V} \Big|_S = \frac{\frac{\partial V}{\partial p} \Big|_T}{\frac{\partial V}{\partial p} \Big|_S} = \frac{\kappa_T}{\kappa_S}$$

$$c_v = TV \frac{\alpha^2 \kappa_S}{(\kappa_T - \kappa_S)\kappa_T},$$

$$c_p = TV \frac{\alpha^2}{\kappa_T - \kappa_S}.$$
(4.40)

Das Resultat (4.39) zeigt, dass für stabile Systeme mit $\kappa_T > 0$, $c_p > c_v$ gilt: Bei konstantem Druck wird bei Erwärmung auch Arbeit geleistet, da $\Delta V \neq 0$ ist.

Gehemmte Gleichgewichte, Gleichgewicht und 4.3 Stabilität

Interne Hemmungen sind Vorrichtungen, die an extensive Variablen koppeln, ohne deren totalen Wert zu verändern.

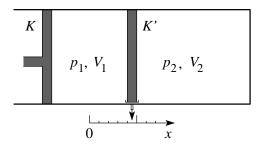


Abb. 4.8: Geometrie des Kolbensystems, als Beispiel für eine interne Hemmung im Volumen $V = V_1 + V_2$. Der innere Kolben K' erlaubt, die Volumina V_1 und V_2 zu verändern, wobei $\Delta V_1 = -\Delta V_2$ sein soll.

Ein beliebtes Beispiel ist das Kolbensystem K, K' im gasgefüllten Zylinder, vgl. Abb. 4.8. Dabei definiert K das Gasvolumen $V = V_1 + V_2$ des Systems, das festgehalten werden soll. Der innere Kolben K' erlaubt, die Volumina V_1 und V_2 zu verändern, wobei $\Delta V_1 = -\Delta V_2$ sein muss. Natürlich

4.3. GEHEMMTE GLEICHGEWICHTE, GLEICHGEWICHT UND STABILITÄT35

erfordert die Bewegung von K' im allgemeinen eine Arbeitsleistung, im Beispiel $(p_1 - p_2)\Delta V_1$. Allgemeiner berücksichtigen wir verschiedene Hemmungen im System via den Hemmparametern $\{Y_i\}_1^{\ell}$. Die Gesamtentropie des Systems hängt dann zusätzlich von diesen Hemmparametern ab,

$$S = S(U, V, Y_1, \dots, Y_{\ell})$$

$$TdS = dU + pdV + \sum_{i} y_i dY_i,$$

$$y_i = T \frac{\partial S}{\partial Y_i} \Big|_{U, V, Y_1, \dots, Y_{\ell} \text{ ohne } Y_i}.$$

$$(4.41)$$

Für unser Beispiel ist

$$TdS = dU + p_2 dV + (p_1 - p_2)dV_1 (4.42)$$

(im Gesamtausdruck lassen wir auch Variationen von V zu; dann ist $\delta W = -p_1 dV_1 - p_2 dV_2$ und $dV_2 = d(V - V_1) \rightarrow (4.42)$). Das Prinzip maximaler Entropie besagt, dass bei festgehaltenen Parametern U und V das System genau dann im Gleichgewicht ist, wenn S maximal ist. Dieses Prinzip folgt direkt aus (4.25): Im (thermisch und mechanisch) abgeschlossenen System (U, V) beide konstant) kann S nur zunehmen. Für ein gehemmtes System gilt demnach

$$S(U,V) > S(U,V, \text{Hemmungen}).$$
 (4.43)

Dieser Sachverhalt wird in folgender Überlegung ausgenützt: Betrachte ein System im Gleichgewicht. Führe Hemmparameter ein, ohne das System zu stören. Erzeuge eine virtuelle Zustandsänderung δ bei fixen Parametern U, V. Dann gilt (vgl. auch Abb. 4.9)

$$\delta S|_{U,V} = 0$$
, (Gleichgewicht),
 $\delta^2 S|_{U,V} < 0$. (Stabilität). (4.44)

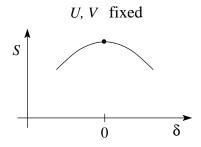


Abb. 4.9: Entropie unter dem Einfluss einer virtuellen Zustandsänderung δ weg vom Gleichgewicht.

Als Anwendung betrachten wir unser Kolbensystem: Eine Auslenkung δV_1 ergibt mit (4.42)

$$\delta S|_{U,V} = \frac{1}{T}(p_1 - p_2)\delta V_1.$$

Im Gleichgewicht muss $\delta S = 0$ gelten und damit

$$p_1 = p_2$$
 im Gleichgewicht. (4.45)

Ebenso können wir eine Hemmung in U einführen. Mit $\delta U_1 = -\delta U_2$ erhalten wir

$$\delta S|_{U,V} = \frac{\partial S_1}{\partial U_1}\Big|_{U,V} \delta U_1 + \frac{\partial S_2}{\partial U_2}\Big|_{U,V} \delta U_2 = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \delta U_1 = 0 \text{ im GG}$$

$$\Rightarrow T_1 = T_2$$
 im Gleichgewicht. (4.46)

Wir können auch weiter gehen und ein gehemmtes System untersuchen. Dabei verfolgen wir die Evolution eines gehemmten Systems mit $Y_i \neq 0$ nach Freigabe einer Hemmung. Gemäss (4.43) muss die Entropie bei Lockerung der Hemmung zunehmen, also (vgl. Abb. 4.10)

$$\delta S|_{U,V} > 0 \tag{4.47}$$

(das System nähert sich unter Ablauf irreversibler Prozesse dem ungehemmten Gleichgewichtszustand). Für das obige Beispiel (Hemmung in U) finden

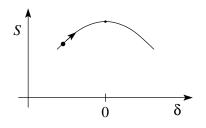


Abb. 4.10: Die Entropie nimmt bei einer Freigabe der Hemmung zu.

wir

$$\delta S = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \delta U_1 > 0.$$

Mit $T_1 > T_2$ muss $\delta U_1 < 0$ und Wärme fliesst vom heisseren zum kälteren Teil des Systems, um das Gleichgewicht zu erreichen.

Die Gleichung (4.44), $\delta^2 S|_{U,V} < 0$, garantiert die *Stabilität* des Gleichgewichtszustandes. Als Konsequenz findet man, dass die Koeffizienten c_v und κ_T positive Werte annehmen müssen,

$$c_v > 0, \quad \kappa_T > 0 \quad \text{(Stabilität)}. \tag{4.48}$$

Die Herleitung involviert die Entwicklung von S bis in zweiter Ordnung in den Deviationen δT und δV ,

$$\delta^{2}S = \frac{1}{2}[S(U + \delta U, V + \delta V) + S(U - \delta U, V - \delta V)] - S(U, V)$$
$$= \frac{\partial^{2}S}{\partial U^{2}}(\delta U)^{2} + 2\frac{\partial^{2}S}{\partial U \partial V}\delta U \delta V + \frac{\partial^{2}S}{\partial V^{2}}(\delta V)^{2}.$$

Mit $\partial S/\partial U = 1/T$, $\partial S/\partial V = p/T$ erhalten wir

$$\begin{split} \delta\left(\frac{1}{T}\right) &= \frac{\partial^2 S}{\partial U^2} \delta U + \frac{\partial^2 S}{\partial U \partial V} \delta V, \\ \delta\left(\frac{p}{T}\right) &= \frac{\partial^2 S}{\partial U \partial V} \delta U + \frac{\partial^2 S}{\partial V^2} \delta V. \\ \Rightarrow \delta^2 S &= \delta\left(\frac{1}{T}\right) \delta U + \delta\left(\frac{p}{T}\right) \delta V \\ &= -\frac{1}{T^2} \left(\frac{\partial U}{\partial T}\Big|_V \delta T + \frac{\partial U}{\partial V}\Big|_T \delta V\right) \delta T - \frac{1}{T^2} p \, \delta V \delta T \\ &+ \frac{1}{T} \left(\frac{\partial p}{\partial T}\Big|_V \delta T + \frac{\partial p}{\partial V}\Big|_T \delta V\right) \delta V \\ &= -\frac{c_v}{T^2} (\delta T)^2 - \frac{1}{T^2} \left[\frac{\partial U}{\partial V}\Big|_T + p - T\frac{\partial p}{\partial T}\Big|_V\right] \delta V \delta T \\ &- \frac{1}{TV\kappa_T} (\delta V)^2 < 0 \to c_v, \kappa_T > 0. \end{split}$$

Dabei verschwindet der zweite Term in der letzten Gleichung wegen (4.33).

4.4 Innere Energie U als thermodynamischen Potential

Die obige Diskussion 4.2 und 4.3 hat die Bedeutung von S als thermodynamisches Potential illustriert. Ebenso wie S ist auch U ein thermodynamisches Potential, nun in den Variablen S und V (siehe (4.31)). Nebst der Herleitung von kalorischen und thermischen Zustandsgleichungen aus U(S,V) liefert das Studium von U auch ein Extremalprinzip. Wir schreiben (4.24) in differentieller Form für ein an ein Reservoir (mit index '0' bezeichnet) gekoppeltes System

$$dS + dS_0 \ge \frac{\delta Q}{T} = 0 \tag{4.49}$$

Für die erste Beziehung gilt Gleichheit falls der betrachtete Prozess im Gesamtsystem reversibel abläuft; da System und Reservoir als Gesamtsystem abgeschlossen sind ändert sich der Wärmeinhalt im Gesamtsystem nicht, $\delta Q = 0$. Das Reservoir mit der Temperatur T erlaube den reversiblen Austausch von Wärme mit dem System, $dS_0 = \delta Q_{0\text{rev}}/T$. Gemäss 1. HS ist $\delta Q_{0\text{rev}} = -\delta Q_{rev} = -dU - p dV$, und wir finden (wieder mit Gleichheit für reversible Prozesse im Gesamtsystem)

$$dS \ge \frac{1}{T}(dU + p\,dV)\tag{4.50}$$

Die Beziehung (4.50) ersetzt die im abgeschlossenen System (U, V = const.) geltende Beziehung $dS \ge 0$ wenn wir das System an ein Reservoir koppeln,

das den Austausch von Wärme und Arbeit erlaubt $(U, V \neq \text{const}$, bei konstanter Temperatur T, konstantem Druck p). Die Relation (4.50) ergibt für S, V = const. ein Minimalprinzip für U, vgl. Abb. 4.11

$$\begin{array}{ll} dU & \leq 0, & U \text{ kann bei fixem } S, V \text{ nur abnehmen,} \\ \delta U|_{S,V} & = 0, & \text{Gleichgewicht,} \\ \delta^2 U|_{S,V} & > 0, & \text{Stabilität.} \end{array} \tag{4.51}$$

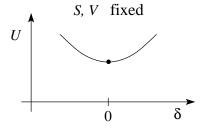


Abb. 4.11: Innere Energie U unter dem Einfluss einer virtuellen Zustandsänderung δ .

4.5 Mehrkomponenten- und Mehrphasensysteme

Bis anhin haben wir nur einkomponentige und einphasige Systeme betrachtet. Oft sollen jedoch Systeme mit r Komponenten analysiert werden, die in ν Phasen vorkommen können. Mögliche Phasen sind fest, flüssig und gasförmig; die Komponenten können sich dabei auf diese Phasen aufteilen. Es bezeichne $n_i^{(\alpha)}$ die Anzahle Mole der Komponente i, die in der Phase α vorliegt,

$$n_i = \sum_{\alpha=1}^{\nu} n_i^{\alpha} \tag{4.52}$$

gibt die Stoffmenge der i-ten Komponente im System an. Ebenso verteilt sich die Gesamtenergie, die Gesamtentropie und das Gesamtvolumen auf die einzelnen Phasen,

$$U = \sum_{\alpha} U^{(\alpha)}, \quad S = \sum_{\alpha} S^{(\alpha)}, \quad V = \sum_{\alpha} V^{(\alpha)}. \tag{4.53}$$

Wir definieren das chemische Potential der Komponente i in Phase α , $\mu_i^{(\alpha)}$, als die Energieänderung bei einer reversiblen Änderung der Molzahl $n_i^{(\alpha)}$,

$$\mu_i^{(\alpha)} = \frac{\partial U}{\partial n_i^{(\alpha)}} \bigg|_{S,V,n_i^{(\beta)} \text{ ohne } n_i^{(\alpha)}}.$$
(4.54)

Für das Differential der inneren Energie erhalten wir dann

$$dU = TdS - pdV + \sum_{i=1}^{r} \mu_i \, dn_i. \tag{4.55}$$

Dass im Gleichgewicht tatsächlich $T^{(\mu)} = T^{(\nu)} = T$, $p^{(\mu)} = p^{(\nu)} = p$, $\mu_i^{(\mu)} = \mu_i^{(\nu)} = \mu_i$ gilt, ersehen wir leicht aus dem Minimumprinzip für U: Für eine virtuelle Verschiebung aus dem Gleichgewicht gilt

$$0 = \delta U|_{S,V,n_i} = \sum_{\alpha=1}^{\nu} \left[T^{(\alpha)} \delta S^{(\alpha)} - p^{(\alpha)} \delta V^{(\alpha)} + \sum_{i=1}^{r} \mu_i^{(\alpha)} \delta n_i^{(\alpha)} \right]$$
(4.56)

mit

$$\sum_{\alpha} \delta S^{(\alpha)} = 0, \quad \sum_{\alpha} \delta V^{(\alpha)} = 0, \quad \sum_{\alpha} \delta n_i^{(\alpha)} = 0.$$

Für ein Zwei-Phasensystem ist demnach $\delta S^{(1)}=-\delta S^{(2)},\ \delta V^{(1)}=-\delta V^{(2)},\ \delta n_i^{(1)}=-\delta n_i^{(2)},$

$$0 = \delta U|_{S,V,n_i} = [T^{(1)} - T^{(2)}] \delta S^{(1)} - [p^{(1)} - p^{(2)}] \delta V^{(1)}$$
$$+ \sum_{i=1}^{r} [\mu_i^{(1)} - \mu_i^{(2)}] \delta n_i^{(1)}, \quad \forall \ \delta S^{(1)}, \delta V^{(1)}, \delta n_i^{(1)},$$

$$\Rightarrow T^{(1)} = T^{(2)} = T, \quad p^{(1)} = p^{(2)} = p, \quad \mu_i^{(1)} = \mu_i^{(2)} = \mu_i. \tag{4.57}$$

Die Verallgemeinerung auf α Phasen ist trivial.

Zum besseren Verständnis des chemischen Potentials betrachte man das einkomponentige Zwei-Phasensystem mit $\mu^{(1)} > \mu^{(2)}$. Entfernen der Hemmung vermindert die innere Energie,

$$0 > \delta U = \frac{\mu^{(1)}}{T} \delta n^{(1)} + \frac{\mu^{(2)}}{T} \delta n^{(2)} = \frac{1}{T} (\mu^{(1)} - \mu^{(2)}) \delta n^{(1)}, \tag{4.58}$$

und mit $\delta n^{(1)} < 0$ fliesst Masse vom höheren zum niedrigeren chemischen Potential durch Umwandlung von der (1)-Phase in die (2)-Phase. Schliesslich verlangt die Stabilität des Gleichgewichtes, dass die Eigenwerte der Matrix

$$\left. \frac{\partial \mu_i}{\partial n_k} \right|_{T,p} \tag{4.59}$$

positiv sind.

Kapitel 5

Thermodynamische Potentiale

Im vorigen Kapitel haben wir zwei thermodynamische Potentiale gefunden: die Entropie S(U,V) als Funktion der extensiven Variablen 'innere Energie U' und 'Volumen V' und U(S,V). Dabei ist die Wahl der Variablen fixiert, zu S gehören U und V, zu U gehören S und V. Insbesondere gelten die Extremalprinzipien für S bei festem U, V und für U bei festem S, V. Experimentell sind aber oft T und V, noch öfter p und T vorgegeben; entsprechend wünschen wir uns zugehörige Potentiale für diese Fälle.

5.1 Legendre Transformation

Um diese Potentiale zu finden, müssen wir die in S und U enthaltene Information behalten, ein einfaches Ersetzen der Variablen in S oder U kann nicht funktionieren. Wir können aber ausnützen, dass S in U und V konkav ist, d.h.,

$$S(tX_1 + (1-t)X_2) \ge tS(X_1) + (1-t)S(X_2)$$

$$X = U, V,$$
(5.1)

respektive, U ist in S und V konvex. Wir können dann benützen, dass die Legendre-Transformierte einer konvexen Funktion f(x),

$$\mathcal{L}f(y) = \sup_{x} [xy - f(x)] \tag{5.2}$$

wiederum konvex ist und im strikte konvexen und differenzierbaren Fall involutiv ist,

$$\mathcal{L}(\mathcal{L}f) = f; \tag{5.3}$$

es geht also keine Information verloren.

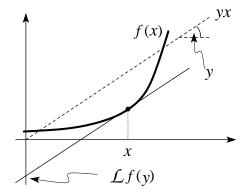


Abb. 5.1: Legendre-Transformation $\mathcal{L}f(y)$ der Funktion f(x).

Die graphische Darstellung der Legendre Transformation ist in Abb. 5.1 gezeigt. Ist die Funktion f nicht strikte konvex mit geraden Stücken, so gehen 'Geraden in f' in 'Knicke in \mathcal{L} ' über, vgl. Abb. 5.2. Dies ist bei Phasenübergängen relevant.

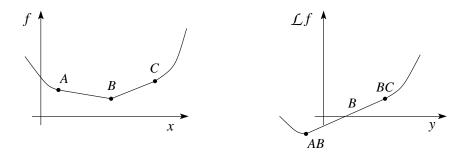


Abb. 5.2: Legendre-Transformation einer nicht streng konvexen Funktion f. Dabei werden 'Geradenstücke' in 'Knicke' überführt und umgekehrt.

Aus der Mechanik ist bekannt, dass die Legendre-Transformation mit der konjugierten Variablen gerade die Rolle der beiden Variablen vertauscht. Entsprechend erzeugen wir uns im folgenden neue thermodynamische Potentiale via Legendre-Transformation. Ausgangspunkt ist die innere Energie U(S,V).

5.2 Freie Energie F

Die Freie Energie wird mit F(T,V,n) bezeichnet, n die Molzahl. Wir wollen die Variable S in U durch ihre konjugierte Variable $\partial_S U|_{V,n}=T$ ersetzen und definieren F als die Legendre-Transformation von U in S,

$$F(T, V, n) = \left[U - \frac{\partial U}{\partial S}\Big|_{V, n}S\right](T, V, n) = [U - TS](T, V, n). \tag{5.4}$$

Tatsächlich tauchen im Differential von F die Variablen T, V und n als die natürlichen Variablen auf,

$$dF = dU - TdS - SdT = TdS - pdV + \mu dn - TdS - SdT$$

$$\Rightarrow dF = -pdV - SdT + \mu dn. \tag{5.5}$$

Die Differentiale ergeben

$$\frac{\partial F}{\partial V}\Big|_{T,n} = -p, \quad \frac{\partial F}{\partial T}\Big|_{V,n} = -S, \quad \frac{\partial F}{\partial n}\Big|_{T,V} = \mu,$$
 (5.6)

und die Bedingung der Integrabilität führt (unter anderem) auf

$$\frac{\partial p}{\partial T}\Big|_{V} = \frac{\partial S}{\partial V}\Big|_{T}.$$
(5.7)

(5.7) ist eine der berühmten Maxwell-Relationen. Ersetzen wir in (5.7) $dS = \delta Q_{\text{rev}}/T$, so ergibt sich mit (1.19) die Beziehung

$$p\beta = \left. \frac{\partial p}{\partial T} \right|_{V} = \frac{1}{T} \left. \frac{\delta Q}{dV} \right|_{T},\tag{5.8}$$

die sich im Fall von Phasenübergängen als Clapeyron'sche Gleichung wiederfindet ($\delta Q/dV|_T$ ist die isotherme Ausdehnungswärme).

Nach Konstruktion ist F konvex in den extensiven Variablen V und n und konkav in der intensiven Variable T. Es gilt ein Minimumsprinip in V und n,

$$dF \leq 0, \qquad (F \text{ kann bei fixen } T, V \text{ nur abnehmen})$$

$$\delta F|_{T,V,n} = 0, \qquad (\text{Gleichgewicht})$$

$$\delta^2 F|_{T,V,n} > 0. \qquad (\text{Stabilität}) \qquad (5.9)$$

Die erste Gleichung folgt aus (4.50),

$$TdS \ge dU + pdV \quad \rightarrow \quad -pdV \ge dU - TdS|_{T,V}$$

$$dF = d(U - TS)|_{T,V} = dU - TdS \quad \rightarrow \quad 0 > dF.$$

5.3 Enthalpie H

Die Enthalpie wird mit H(S, p, n) bezeichnet. Ausgehend von U(S, V, n) ersetzen wir V durch $\partial_V U|_{S,n} = -p$,

$$H(S, p, n) = [U + pV](S, p, n).$$
 (5.10)

H ist konkav in p und konvex in S und n; H ist im Gleichgewichtszustand minimal bezüglich Hemmungen in S und n. Das Differential hat die Form

$$dH = TdS + Vdp + \mu dn,$$

$$\frac{\partial H}{\partial S}\Big|_{p,V} = T, \quad \frac{\partial H}{\partial p}\Big|_{S,n} = V, \quad \frac{\partial H}{\partial n}\Big|_{S,p} = \mu.$$
 (5.11)

5.4 Gibbs Potential G

Das Gibbs Potential wird mit G(T, p, n) (freie Enthalpie) bezeichnet. Ausgehend von U(S, V, n) ersetzen wir S durch $\partial_S U|_{V,n} = T$ und V durch $\partial_V U|_{S,n} = -p$,

$$G(T, p, n) = [U - TS + pV](T, p, n) = [H - TS](T, p, n)$$
(5.12)
= $[F + pV](T, p, n)$.

G ist konkav in T und p und proportional zu n; das Maximumsprinzip für G ist für das Einkomponentensystem trivial, vgl. (5.19) und (7.6). Das Differential hat die Form

$$dG = -SdT + Vdp + \mu dn,$$

$$\frac{\partial G}{\partial T}\Big|_{p,n} = -S, \quad \frac{\partial G}{\partial p}\Big|_{T,n} = V, \quad \frac{\partial G}{\partial n}\Big|_{T,p} = \mu.$$
 (5.13)

5.5 Grosses Potential Ω

Die Bezeichnung für das grosse Potential ist $\Omega(T, V, \mu)$. Ausgehend von U(S, V, n) ersetzen wir S durch $\partial_S U|_{V,n} = T$ und n durch $\partial_n U|_{S,V} = \mu$,

$$\Omega(T, V, \mu) = [U - TS - \mu n](T, V, n). \tag{5.14}$$

 Ω ist konkav in T und μ und proportional zu V (siehe später). Das Differential hat die Form

$$d\Omega = -SdT - pdV - nd\mu,$$

$$\frac{\partial \Omega}{\partial T}\Big|_{V,\mu} = -S, \quad \frac{\partial \Omega}{\partial V}\Big|_{T,\mu} = -p, \quad \frac{\partial \Omega}{\partial \mu}\Big|_{T,V} = -n.$$
 (5.15)

5.6 Maxwell-Relationen

Sei X ein Potential in den Variablen y_1, \ldots, y_n . Die Integrabilitätsbedingungen

$$\frac{\partial^2 X}{\partial y_i \partial y_k} = \frac{\partial^2 X}{\partial y_k \partial y_i} \tag{5.16}$$

liefern die Maxwell-Relationen. Die Beziehungen (4.33) bis (4.40) sind Konsequenzen der Maxwell-Relation

$$\frac{\partial^2 S}{\partial U \partial V} = \frac{\partial^2 S}{\partial V \partial U}.$$

5.7 Homogenität und Gibbs-Duhem-Gleichung

Eine Funktion $f(x_1, \ldots, x_n)$ heisst homogen der Ordnung k, falls

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^k f(x_1, \dots, x_n). \tag{5.17}$$

Sei k = 1, dann ist f homogen erster Ordnung. Dann gilt das *Eulersche Theorem* (Beweis durch Ableitung von (5.17) nach λ),

$$f(x_1, \dots, x_n) = \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i} \Big|_{x_j \neq x_i}$$
 (5.18)

Die Funktion U(S,V,n) ist homogen erster Ordnung. Es folgt, dass

$$U = TS - pV + \mu n,$$

$$F = -pV + \mu n,$$

$$H = TS + \mu n,$$

$$G = \mu n,$$

$$\Omega = -pV.$$

$$(5.19)$$

Das totale Differential der ersten Gleichung aus (5.19) liefert

$$dU = TdS + SdT - pdV + Vdp + \mu dn + nd\mu.$$

Nutzt man die Abhängigkeit der Variablen und wählt die extensiven Grössen S, V, und n, so ist gemäss (4.55)

$$dU = TdS - pdV + \mu dn. (5.20)$$

Die Subtraktion der beiden Gleichungen ergibt die Beziehung von Gibbs-Duhem,

$$0 = SdT - Vdp + nd\mu; (5.21)$$

dies bedeutet, dass die intensiven Variablen nicht unabhängig sind. Tatsächlich ist die Funktion $p(S, V, n_k)$ homogen nullter Ordnung. Es gilt demnach, dass

$$p(S, V, n_1, \dots, n_r) = p(\lambda S, \lambda V, \lambda n_1, \dots, \lambda n_r).$$
 (5.22)

Mit $\lambda = 1/(n_1 + n_2 + \ldots + n_r) = 1/n$, n = totale Stoffmenge in Mol, finden wir mit

$$x_i = \frac{n_i}{n}, \quad \sum_{1}^{r} x_i = 1$$

das Ergebnis

$$p = p(S/n, V/n, x_1, \dots, x_r)$$

= $p(S/n, V/n, x_1, \dots, x_{r-1}, 1 - x_1 - x_2 - \dots - x_{r-1}).$ (5.23)

Es folgt, dass die extensiven Variablen eines r-komponentigen Systems im Gleichgewicht durch 2+r extensive Variablen festgelegt sind, während bereits 1+r intensive Variablen die anderen intensiven Variablen bestimmen (intensive Variablen sind von der Systemgrösse unabhängig). Entsprechend zeigt (5.21), dass die intensiven Variablen eines Systems nicht unabhängig sind.

Eine alternative Herleitung von (5.21) erhält man durch wiederholte Legendre Transformation,

$$\begin{array}{rcl} U-TS & = & F \\ F+pV & = & G \\ G-\mu n & = & 0 \\ \Rightarrow 0 & = & SdT-Vdp+nd\mu \end{array}$$

mit T, p, μ als Variablen.

5.8 Zusammenfassung

Es gibt eine Vielzahl von graphischen Hilfsmitteln, um die Resultate dieses Kapitels zu memorisieren. Die Abb. 5.3 zeigt ein hübsches Beispiel. Die zum Potential benachbarten Variablen sind die natürlichen, zum Potential gehörenden Variablen. Konjugierte Variablen liegen einander gegenüber.

Differentiale:

Die Differentiale ergeben sich aus der Summe der Produkte der konjugierten Variablen, wobei ein zusätzliches Vorzeichen auftritt, wenn der Pfeil in der Diagonal zum Differential hin zeigt.

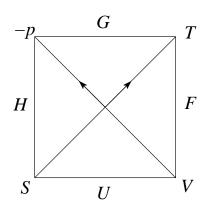


Abb. 5.3: Schema zur Memorisierung der Zusammenhänge zwischen Potentialen und Variablen.

Beispiele: Für H(S,p) zeigt der Pfeil zum Differential (-dp) hin und weg von dS, also ist in V(-dp) ein zusätzliches Vorzeichen zu berücksichtigen,

$$dH = TdS - V(-dp).$$

In U(S,V) zeigen beide Pfeile weg von den Differentialen dS und dV, also ist

$$dU = TdS + (-p)dV.$$

In F(V,T) zeigt der Pfeil zum Differential dT,

$$dF = -SdT + (-p)dV,$$

und in G(p,T) zeigen beide Pfeile auf die Differentale,

$$dG = -SdT - (-dp)V.$$

Legendre Transformation:

Ausgehend von einem Potential findet man das Nachbarpotential durch Addition des Produktes der konjugierten Variablen, wobei ein zusätzliches Vorzeichen auftritt wenn der Pfeil zur neuen Variablen hinzeigt.

Beispiel F(V,T) aus U(S,V). Die neue Variable ist T. Der Pfeil zeigt auf T also tritt ein Vorzeichen zusätzlich auf,

$$F = U - ST$$
.

Beispiel F(V,T) aus G(p,T). Die neue Variable ist V. Der Pfeil zeigt weg von V also tritt kein Vorzeichen zusätzlich auf,

$$F = G + (-p)V.$$

Maxwell Relationen:

Betrachte zwei aufeinanderfolgende Trippel von Ecken, vgl. Abb. 5.4. Die linke Seite der MR wird durch das eine, die rechte Seite durch das andere Trippel definiert. Vorzeichen treten auf bei Linksschrauben und Bewegungen entgegen der Pfeilrichtung, vgl. Beispiele.

Abb. 5.4: Trippel zur Maxwellrelation $-\partial_V S|_T = \partial_T (-p)|_V$.

$$-\frac{\partial S}{\partial V}\Big|_{T} = +\frac{\partial (-p)}{\partial T}\Big|_{V}$$

Abb. 5.5: Trippel zur Maxwell
relation $-\partial_{(-p)}S|_T=-\partial_T(V)|_p.$

$$-\frac{\partial S}{\partial (-p)}\Big|_T = -\frac{\partial V}{\partial T}\Big|_p.$$

5.9 Experimentelle Bestimmung der Potentiale

Es sei die thermische, p=p(V,T), und die kalorische, U=U(V,T), Zustandsgleichung eines Systems bekannt. Mit V und T als Variablen ist F ein

gutes Potential. Wir finden die Entropie S(T, V) aus

$$TdS = dU + pdV$$

$$TdS = T\frac{\partial S}{\partial T}\Big|_{V}dT + T\frac{\partial S}{\partial V}\Big|_{T}dV = \frac{\partial U}{\partial T}\Big|_{V}dT + \left(p + \frac{\partial U}{\partial V}\Big|_{T}\right)dV$$

$$\Rightarrow \frac{\partial S}{\partial T}\Big|_{V} = \frac{1}{T}\frac{\partial U}{\partial T}\Big|_{V} = \frac{c_{v}(V,T)}{T}, \qquad (5.24)$$

$$\Rightarrow \frac{\partial S}{\partial V}\Big|_{T} = \frac{1}{T}\left(\frac{\partial U}{\partial V}\Big|_{T} + p\right), \qquad (5.25)$$

oder via Maxwell-Beziehung

$$= \left. \frac{\partial p}{\partial T} \right|_{V}.$$

Damit wird S(V,T) via Integration aus c_v und $\partial_T p|_V$ oder $\partial_V U|_T$ berechnet. Damit ist F(V,T) durch U(V,T) und p(V,T) bis auf einen Term TS_0 (S_0 eine Integrationskonstante) bestimmt. Die Integrationskonstante S_0 wird durch den 3. Hauptsatz festgelegt.

Kapitel 6

Dritter Hauptsatz der Thermodynamik

Der dritte Hauptsatz führt keine neue Zustandsgrössen ein, macht aber die Zustandsgrössen S, F, G, \ldots nummerisch bestimmt und damit praktisch brauchbar. Die Plancksche Formulierung des Nernstschen Wärmetheorems (= 3. Hauptsatz) besagt, dass sich die Entropie beim absoluten Nullpunkt einem vom Druck, Aggregatszustand, usw. unabhängigen Wert S_0 nähert; ohne Beschränkung der Allgemeinheit kann $S_0 = 0$ gewählt werden. Damit wird es möglich, Entropien verschiedener Phasen (verschiedener Zustandsflächen) und Systeme zu vergleichen. Der 3. HS wird im Rahmen der Quantenstatistik einfach verständlich (bei T=0 ist (fast) jedes System im quantenmechanische Grundzustand). Der 3. Hauptsatz hat einige interessante Konsequenzen.

6.1 Ausdehnungs- und Spannungskoeffizienten

Die Maxwell-Relation für G besagt, dass

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \Big|_{p} = -\frac{1}{V} \frac{\partial S}{\partial p} \Big|_{T} \to 0 \quad \text{für } T \to 0$$
 (6.1)

 $(S \text{ wird druckunabhängig für } T \to 0)$, diejenige für F führt auf

$$\beta = \frac{1}{p} \frac{\partial p}{\partial T} \Big|_{V} = \frac{1}{p} \frac{\partial S}{\partial V} \Big|_{T} \to 0 \quad \text{für } T \to 0. \tag{6.2}$$

6.2 Spezifische Wärmen

Die spezifischen Wärmen

$$c_v = T \frac{\partial s}{\partial T} \Big|_V, \quad c_p = T \frac{\partial s}{\partial T} \Big|_p$$
 (6.3)

verschwinden für $T \to 0$, denn

$$s(v,T) = \int_0^T dT' \, \frac{c_v(v,T')}{T'} + s_v(v), \tag{6.4}$$

$$s(p,T) = \int_0^T dT' \, \frac{c_p(p,T')}{T'} + s_p(p), \tag{6.5}$$

und $s_v(v) = s_{v0}$, $s_p(p) = s_{p0}$, da $s(T \to 0)$ unabhängig von v und p wird (oBdA $s_{v0} = 0$, $s_{p0} = 0$). Damit die Integrale für $T \to 0$ nicht divergieren, müssen $c_p, c_v(T \to 0) \to 0$. Für elastische Körper ist $c_v \propto T^3$, für ein Elektronengas $c_v \propto T$.

6.3 Ideales Gas

Mit $s = s_0 + c_v \ln(T/T_0) + (R/\mu) \ln(V/V_0)$ widerspricht das ideale Gas dem 3. Hauptsatz. Die Auflösung des Problems ergibt sich aus der Quantenstatistik: Bei tiefen Temperaturen versagt die Approximation des idealen Gases. Quanteneffekte sind relevant und die Statistik der Teilchen, Fermionen oder Bosonen, muss einbezogen werden. Das Verhalten der Quantengase weicht dramatisch vom idealen Gas ab: Fermionen gehen in einen entarteten Zustand über (gefüllter Fermisee), beim Bose Gas tritt Bose-Einstein-Kondensation in einen makroskopisch besetzten Zustand auf. In beiden Fällen wird der 3. Hauptsatz befolgt.

6.4 Unerreichbarkeit des absoluten Nullpunktes

Mit (6.1), (6.5) erhalten wir

$$V\alpha = -\frac{\partial S}{\partial p}\Big|_{T} = -\frac{\partial}{\partial p} \int_{0}^{T} dT' \frac{c_{p}(p, T')}{T'} = -\int_{0}^{T} \frac{\partial c_{p}}{\partial p}\Big|_{T'} \frac{dT'}{T'}.$$

Für c_p schreiben wir $c_p = a(p)T^x + \dots$,

$$V\alpha = -\int_0^T dT \, \frac{\partial a}{\partial p} T^{x-1} = -T^x \frac{\partial_p a}{x} \propto c_p$$

6.5. GLÄSER 53

$$\Rightarrow \frac{V\alpha}{c_p} \to \text{const} \neq 0 \quad \text{für } T \to 0.$$
 (6.6)

Mit (4.37) in der Form

$$TdS = c_p dT - TV\alpha dp$$

finden wir, dass die adiabatische Expansion mit Druckabfall dp für $T\to 0$ immer kleinere Temperaturschritte dT<0 erzeugt,

$$dT = \left(\frac{V\alpha}{c_p}\right)Tdp. \tag{6.7}$$

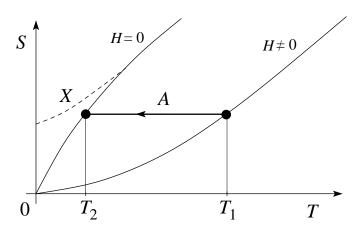


Abb. 6.1: Adiabatische Entmagnetisierung: Die obere Kurve beschreibt die Abnahme der Entropie mit fallender Temparatur wenn der Spin durch das Magnetfeld H nicht ausgerichtet wird. Ein endliches H Feld richtet die Spins aus (also wird die Entropie reduziert), weshalb die Entropiekurve für H>0 unterhalb derer bei H=0 zu liegen kommt. Die gestrichelte Kurve S(H=0)=X widerspricht dem 3. HS.

Auch andere Abkühlmethoden erlauben es nicht den absoluten Nullpunkt zu erreichen. Im Prozess der adiabatische Entmagnetisierung bringt uns die Adiabate A (mit S= const) beim Abschalten des Feldes von T_1 nach $T_2 < T_1$, aber nicht nach 0, vgl. Abb. 6.1. Wäre S(H=0)=X, so würden wir T=0 erreichen, aber die Abhängigkeit X widerspricht dem 3. Hauptsatz.

6.5 Gläser

Ein typischer Glasformer ist SiO_x (Siliziumoxyd). Das Material kann für $T \to 0$ in kristalliner Form auftreten (Quarz), es kann aber bei raschem

Abkühlen in einer nichtkristallinen ungeordneten Form gefangen werden; man spricht von einem Glaszustand, mit Atomen eingefroren in fixen Positionen die aber keine Ordnung zeigen. Die Unordnung im System schlägt sich in der Verletzung des 3. Hauptsatz nieder — die Entropie geht nicht auf Null (die Entropie verschwindet für eine spezifische Kategorie von Freiheitsgraden, die sich im Gleichgewicht befinden (Schwingungsfreiheitsgrade)). Die Theorie der Gläser ist (relativ) neu, schwierig, und nicht vollständig entwickelt. Eine der grundlegenden Ideen ist, dass für $T \to 0$ unendlich viele gleichwertige ungeordnete Zustände existieren, welche durch unendlich hohe Barrieren voneinander getrennt sind — das System wird in einem dieser Zustände gefangen. Verschiedene Typen von Gläsern werden diskutiert, z.B., Spin-Gläser, Orientierungsgläser, Eichgläser, Vortex-Gläser, und Fenstergläser (wahrscheinlich metastabil). Am weitesten entwickelt ist die Theorie der Spin-Gläser, wo eine exakte Lösung des Problems mit langreichweitiger Wechselwirkung zwischen den Spins existiert (Sherrington-Kirkpatrick Modell, Molekularfeld Theorie, Lösung von Parisi/Talagrand, gebrochene Replica Symmetrie). Echte Spin-Gläser mit kurzreichweitiger Wechselwirkung (Edwards-Anderson Modell) scheinen sich wesentlich von dieser Lösung zu unterscheiden.

Kapitel 7

Phasenübergänge und Phasengleichgewichte

Betrachte als einfachstes System ein einkomponentiges Gas. Im Idealfall nicht-wechselwirkender Atome (ideales Gas) müssen wir erwarten, dass einzig die Gasphase auftritt. Existiert aber eine Wechselwirkung zwischen den Atomen, so können wir ein interessantes *Phasendiagramm* erwarten. Betrachte zum Beispiel das *Potential* wie in der Figur mit kurzreichweitiger

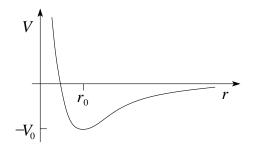


Abb. 7.1: Skizze des Van der Waals-Potentials zwischen neutralen Atomen, attraktiv bezw. repulsiv bei grossen bezw. kleinen Distanzen.

Repulsion und langreichweitiger Attraktion (z.B., das Van der Waals Potential zwischen neutralen Atomen, $V \propto -r^{-6}, -r^{-7}$ bei mittleren und grossen Distanzen, Coulomb/Pauli-Repulsion bei kurzen Distanzen). Das Potentialminimum bei r_0 führt neue Energie- und Längenskalen ins System ein. Für $T < V_0$ können die Atome dieses Energieminimum nutzen und eine neue Phase mit hoher Dichte $\rho_0 \sim r_0^{-3}$ bilden, die in Konkurrenz mit der Gasphase $\rho_g \ll r_0^{-3}$ steht. Die neue Hochdichtephase kann eine Flüssigkeit (keine Orientierung, keine Fernordnung, kein Schermodul, diffusive Dynamik der Teilchen) oder einen Festkörper bilden (langreichweitige Orientierungs- und Positionsordnung, endlicher Schermodul, harmonische Dynamik der Teilchen (Debye-Waller Faktor)). Tatsächlich sind zumeist alle diese Phasen bei passenden Umständen realisiert. In der Theorie der Phasenübergänge wird studiert, welche thermodynamischen Phasen in einem System auftreten können,

wie und wann sie ineinander transformieren, und welche Eigenschaften sie charakterisieren. Das Thema ist auch heute aktuell und wird üblicherweise in zwei grossen Blöcken behandelt, einmal hier in der Thermodynamik und später noch einmal in der statistischen Mechanik Vorlesung.

7.1 Gibbssche Phasenregel und Phasendiagramme

Wir wollen zuerst untersuchen, welche Strukturen ein Phasendiagramm auszeichnen. Experimentell werden zumeist die intensiven Parameter T, p und die Stoffmengen n_i vorgegeben; deren Verteilung $n_i^{(\alpha)}$ auf die ν Phasen (vgl. Abschnitt 4.5) wollen wir hier untersuchen. Die relevanten Gleichgewichtsparameter sind die chemischen Potentiale

$$\mu_i^{(\alpha)}(p, T, x_1^{(\alpha)}, \dots, x_{r-1}^{(\alpha)})$$
 (7.1)

der r Komponenten; $x_i^{(\alpha)}=n_i^{(\alpha)}/n^{(\alpha)}, \ \sum_{i=1}^r x_i^{(\alpha)}=1$, sind die relativen Molzahlen der i-ten Komponente in der α -Phase. Im Gleichgewicht gilt, dass die chemischen Potentiale gleich sind und wir erhalten $r(\nu-1)$ Gleichungen

$$\mu_i^{(\alpha)}(p, T, x_1^{(\alpha)}, \dots, x_{r-1}^{(\alpha)}) = \mu_i^{(\beta)}(p, T, x_1^{(\beta)}, \dots, x_{r-1}^{(\beta)})$$
(7.2)

für die $2 + \nu r - \nu = 2 + \nu (r-1)$ intensiven Variablen (2 aus $p,T,\,\nu r$ aus r Komponenten in ν Phasen, ν Gleichungen $\sum_i x_i^{(\alpha)} = 1$). Damit verbleiben $f = 2 + \nu (r-1) - r(\nu-1)$ Freiheitsgrade im System,

Gibbssche Phasenregel
$$f = 2 + r - \nu$$
. (7.3)

Zum Beispiel gilt für ein r=1-Komponentensystem, dass eine reine Phase $(\nu=1)$ bei 'allen' Werten von p und T realisiert werden kann. Bei zwei koexistierenden Phasen $(\nu=2)$ bleibt nur ein Freiheitsgrad übrig, d.h., der Phasenübergang mit zwei simultan existierenden Phasen definiert eine Linie im p, T-Diagramm,

$$\mu^{(\alpha)}(p,T) = \mu^{(\beta)}(p,T) \to p_{\alpha\beta}(T). \tag{7.4}$$

Schliesslich können drei Phasen α, β, γ in einem Punkt des p, T-Phasendiagramms koexistieren,

$$\mu^{(\alpha)}(p,T) = \mu^{(\beta)}(p,T) \to p_{\alpha\beta}(T),$$

$$\mu^{(\beta)}(p,T) = \mu^{(\gamma)}(p,T) \to p_{\beta\gamma}(T),$$

$$\mu^{(\gamma)}(p,T) = \mu^{(\alpha)}(p,T) \to p_{\gamma\alpha}(T);$$
(7.5)

diese drei Linien schneiden sich in einem Punkt, dem Tripelpunkt $p_{\alpha\beta\gamma}, T_{\alpha\beta\gamma}$.

Die Koexistenz von vier Phasen kann in einem Einkomponentensystem nicht auftreten. Ein typisches Phasendiagramm hat dann die Form wie in Abb. 7.2 skizziert. Den kritischen Endpunkt der α - β -Phasenlinie können wir verstehen, wenn wir die Phasenbedingung (7.4) genauer betrachten.

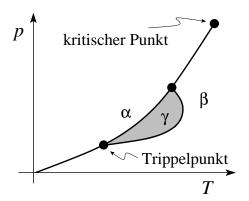


Abb. 7.2: Typisches Phasendiagramm mit mehreren Phasen und Phasenlinien/Übergängen.

7.2 Gibbssche Flächen

Jede Phase α definiert eine Fläche $\mu^{(\alpha)}(p,T)$ (Gibbssche Fläche), vgl. Abb. 7.3.

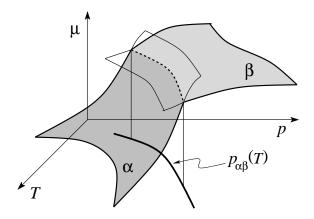


Abb. 7.3: Gibbssche Flächen für zwei Phasen α und β . Die Phase minimaler Energie wird realisiert. Auf der Schnittlinie wandelt sich eine Phase in die andere um. Die plötzliche Änderung der Steigung der Fläche impliziert Sprünge in den konjugierten Variabeln Volumen V und Entropie S. Die Sprünge werden durch die Clapeyronsche Gleichung verknüpft.

Im Gleichgewicht ist

$$G(p,T) = n^{(\alpha)}\mu^{(\alpha)}(p,T) + n^{(\beta)}\mu^{(\beta)}(p,T)$$
 (7.6)

minimal, d.h. für $p > p_{\alpha\beta}$ ist $n^{(\alpha)} = 0$ und für $p < p_{\alpha\beta}$ ist $n^{(\beta)} = 0$. Im allgemeinen schneiden sich die Gibbsschen Flächen unter einem endlichen Winkel und beide extensiven Variablen V (konjugiert zu p) und S (konjugiert

zu T) springen am Phasenübergang,

$$\Delta v(T) = v^{(\alpha)} \left(p_{\alpha\beta}(T), T \right) - v^{(\beta)} \left(p_{\alpha\beta}(T), T \right)$$

$$= \frac{\partial \mu^{(\alpha)}}{\partial p} \Big|_{T} - \frac{\partial \mu^{(\beta)}}{\partial p} \Big|_{T} \neq 0, \tag{7.7}$$

$$\Delta s(T) = s^{(\alpha)} \left(p_{\alpha\beta}(T), T \right) - s^{(\beta)} \left(p_{\alpha\beta}(T), T \right)$$

$$= -\frac{\partial \mu^{(\alpha)}}{\partial T} \Big|_{p_{\alpha\beta}} + \frac{\partial \mu^{(\beta)}}{\partial T} \Big|_{p_{\alpha\beta}} \neq 0.$$

Diese Sprünge sind wiederum thermodynamisch (geometrisch, vgl. Abb. 7.3) verknüpft: Mit (7.4) und (7.7) sowie $d\mu = -sdT + vdp$ gilt die Gleichung von Clausius-Clapeyron (vgl. (5.8))

$$-s^{(\alpha)}dT + v^{(\alpha)}dp = -s^{(\beta)}dT + v^{(\beta)}dp$$

$$\Rightarrow \frac{dp_{\alpha\beta}}{dT} = \frac{\Delta s(T)}{\Delta v(T)}.$$
(7.8)

Am Phasenübergang transformiert sich bei konstantem p und T eine niedrig-entropische¹, kleinvolumige² Phase in eine hoch-entropische, grossvolumige Phase. Während des Umwandlungsprozesses muss die latente Wärme

$$\Delta h = \Delta \mu + T \Delta s + s \Delta T = T \Delta s = \ell \tag{7.9}$$

zugeführt werden. Diese latente Wärme ändert gemäss TdS = dU + pdV sowohl die innere Energie als auch das Volumen des Systems (TdS geht nicht allein in dU ein, da sich das System ausdehnt und damit Arbeit leistet). Die CC (Clausius-Clapeyron)-Gleichung lautet dann

$$T\frac{dp_{\alpha\beta}}{dT} = \frac{\ell}{\Delta v};\tag{7.10}$$

eine Messung von ℓ und Δv bei festem p und T für verschiedene p erlaubt uns, die Übergangslinie $p_{\alpha\beta}$ durch eine triviale Integration zu finden.

7.2.1 Ordnung eines Phasenübergangs

Ein Phasenübergang mit Sprüngen in den ersten Ableitungen des Gibbs-Potentials (Sprüngen in den intensiven Variablen) heisst *Phasenübergang* erster Ordnung. Man spricht von einem Phasenübergang n-ter Ordnung, wenn Sprünge erstmalig in den n-ten Ableitungen des Potentials auftreten³. Einen Phasenübergang zweiter Ordnung erhalten wir, wenn die Schnittlinie der Gibbsschen Flächen terminiert, vgl. Abb. 7.4.

 $^{^{1}}$ Wir betrachten T zunehmend.

²bei Wasser-Eis grossvolumige, siehe später

³Heute unterscheidet man allerdings zumeist nur zwischen Phasenübergängen erster und zweiter Ordnung.

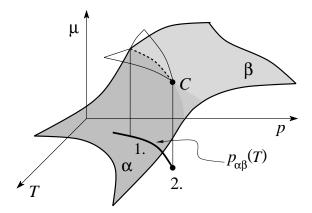


Abb. 7.4: Gibbssche Flächen für das Auftreten eines Phasenübergang zweiter Ordnung. Die Linie des erste-Ordnung Phasenüberganges terminiert in einem kritischen Punkt C, einem Phasenübergang zweiter Ordnung.

Der Punkt C heisst kritischer Punkt; die Phasenlinie erster Ordnung $p_{\alpha\beta}$ endet in einem Phasenübergang zweiter Ordnung. Beachte, dass sich die Charakteristika des 2-te Ordnung Überganges (kritische Exponenten) nur in der stetigen Verlängerung der Phasenlinie $p_{\alpha\beta}(T)$ manifestieren.

7.2.2 Phasendiagramme

Statt des p, T-Diagramms können wir auch die T, v- und p, v Diagramme studieren; entsprechend unserer Diskussion erwarten wir einen Sprung in v am Phasenübergang, vgl. Abb. 7.5.

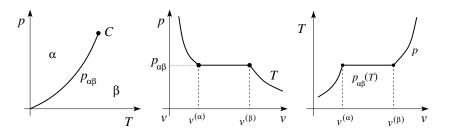


Abb. 7.5: Phasendiagramme für einen erste-Ordnung Phasenübergang; der Sprung in v manifestiert sich in den p-v- (mitte) und T-v-Diagrammen (rechts).

Die drei Diagramme sind nichts weiter als die Projektionen der p, v, T-Zustandsfläche des Einkomponenten-Systems mit zwei erlaubten Phasen; ein typisches Beispiel zeigt die Abb. 7.6. Die Regelfläche K beschreibt die Koexistenz der beiden Phasen α und β ; ihre Projektion in die p, T-Ebene

definiert die Phasenlinie $p_{\alpha\beta}(T)$. Oberhalb des kritischen Punktes C sind die Phasen α und β nicht mehr voneinander unterscheidbar.

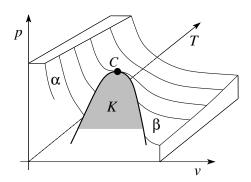


Abb. 7.6: Typische p-v-T– Zustandsfläche für ein zwei-Phasen System. Die Phasen α und β koexistieren auf der Regelfläche K. Die Regelfläche terminiert im kritischen Punkt C.

Zur Projektion v, T gehört das Potential f(v, T) und das Potential in den 'extensiven' Variablen u und v ist die Entropiefläche s(u, v). Wie sehen diese Potentiale beim Phasenübergang aus?

7.2.3 Freie Energien

Wir betrachten zuerst f(v,T). Die Phasen α und β definieren die freien Energien $f^{(\alpha)}$ und $f^{(\beta)}$. Die Isotherme f(v,T=const) muss die Form in Abb. 7.7 haben.

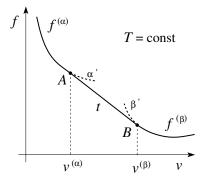


Abb. 7.7: Form der Isothermen f(v,T) = const.

Dass die Tangenten $t^{(\alpha)}=t^{(\beta)}=t$ in $v^{(\alpha)}$ und in $v^{(\beta)}$ gerade eindeutig die Punkte A und B verbinden, folgt aus der Beziehung

$$p = -\frac{\partial f}{\partial v}\Big|_{T} \tag{7.11}$$

und der Gleichgewichtsbedingung

$$p_{\alpha\beta}(T) = p^{(\alpha)}(T, v^{(\alpha)}) = p^{(\beta)}(T, v^{(\beta)}). \tag{7.12}$$

Die Maxwell-Konstruktion für die gemeinsame Tangente gibt dann

$$\frac{f^{(\alpha)}(T, v^{(\alpha)}) - f^{(\beta)}(T, v^{(\beta)})}{v^{(\alpha)} - v^{(\beta)}} = -p_{\alpha\beta}$$

$$\Rightarrow \mu^{(\alpha)} = (f + pv)^{(\alpha)} = (f + pv)^{(\beta)} = \mu^{(\beta)}.$$
(7.13)

Auf der Tangente t erhalten wir für die freie Energie den Ausdruck

$$f^{(t)}(T,v) = f^{(\alpha)}(T,v^{(\alpha)}(t)) \frac{v^{(\beta)}(T) - v}{v^{(\beta)}(T) - v^{(\alpha)}(T)} + f^{(\beta)}(T,v^{(\beta)}(T)) \frac{v - v^{(\alpha)}(T)}{v^{(\beta)}(T) - v^{(\alpha)}(T)},$$
(7.14)

der das zwei-Phasengemisch α , β beschreibt. Die Äste α' und β' beschreiben metastabile Zustände der Phasen α und β , vgl. 7.8 (sie gehören zu den höheren Gibbsschen Flächen in Abb. 7.3). Im gas-flüssig System sind dies unterkühlte Gase und überhitzte Flüssigkeiten.

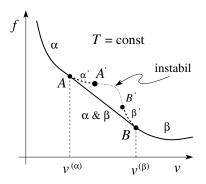


Abb. 7.8: Lage der metastabilen Zustände α' und β' und des instabilen Bereiches mit negativer Kompressibilität.

In A' und B', vgl. Fig. 7.8, ändert die Krümmung

$$\frac{\partial^2 f}{\partial v^2}\Big|_T = -\frac{\partial p}{\partial v}\Big|_T = \frac{1}{\kappa_T v} \tag{7.15}$$

ihr Vorzeichen; die Kompressibilität wird negativ und die metastabilen Phasen werden *instabil.* Die Punkte A' und B' definieren die sogenannten Spinodalen im p, v-Diagramm, vgl. Abb. 7.9.

Auf der Tangente t ist

$$\left. \frac{\partial^2 f}{\partial v^2} \right|_T = 0 \quad \Rightarrow \quad \kappa_T = \infty;$$

das Gemisch ist unendlich kompressibel, indem wir die dünne Phase unter virtuellen Druck (d.h., bei $p\approx {\rm const}$) in die dichte Phase überführen (hineindrücken) können.

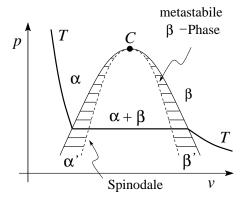


Abb. 7.9: Lage der Spinodalen im p-v-Diagramm; sie begrenzen den Bereich der (meta)stabilen Phasen.

7.2.4 Fest-Flüssig-Gas System

Schliesslich nehmen wir noch zusätzlich die feste Phase in Betracht und skizzieren die entprechenden drei-Phasen Diagramme, vgl. Abb. 7.10.

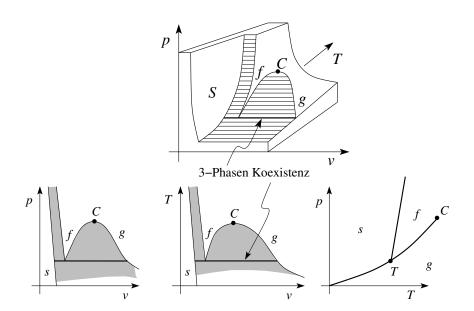


Abb. 7.10: Diagramme des drei-Phasen-, ein-Komponenten-Systems. s: solid (fest), f: flüssig, g: gasförmig, C: kritischer Punkt, T: Tripelpunkt. Auf den schraffierten (Regel-) Flächen im oberen Diagramm (und auf den entsprechenden Linien/den entsprechenden Bereichen in den Projektionen) liegen gemischte Phasen vor.

7.2.5 Entropieflächen

Das Entropiepotential s(u,v) ist schliesslich eine Funktion rein extensiver Variablen, die am Phasenübergang erster Ordnung alle springen. Die konkave Funktion s(u,v) setzt sich demnach aus Extremalpunkten (für reine Phasen) und Simplizes (für Phasengemische) zusammen. Die Zweiphasengemische α,β definieren eine Regelfläche, die sich aus Geradenstücken α - β ergibt. Ein Dreiphasengemisch α,β,γ definiert einen Dreiecks-Simplex α - β - γ in der Entropiefläche, vgl. Abb. 7.11.

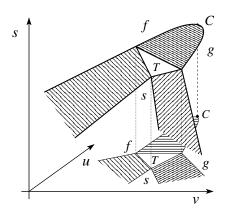


Abb. 7.11: Entropiefläche s(u,v) mit Regelflächen α - β und Dreiecks-Simplex α - β - γ bei koexistierenden Phasen. Die intensiven Variablen ergeben sich aus $\partial_v s|_u = p/T, \ \partial_u s|_v = 1/T.$

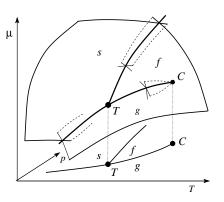


Abb. 7.12: Gibbs Energie Fläche $\mu(p,T)$, zweifach Legendretransformiert bezgl. s(u, v). Die Simplizes transformieren dabei in Linien entlang derer die Fläche $\mu(p,T)$ abrupt die Steigung ändert (Knicke). Die extensiven Variablen ergeben sich aus den Ableitungen $\partial_T \mu|_p = -s, \ \partial_p \mu|_T = v; \ \text{diese}$ Ableitungen springen entlang der Phasengrenzen.

Diese Simplices transformieren unter der Legendretransformation

$$s \to u \to f \to \mu$$

(beim Übergang $u \to f$ via $S \to T$ und bei $f \to \mu$ via $V \to p$) in die Phasenlinien $p_{\alpha\beta}$, $p_{\beta\gamma}$, $p_{\gamma\alpha}$ und den Tripelpunkt $p_{\alpha\beta\gamma}$, $T_{\alpha\beta\gamma}$, vgl. Abb. 7.12. Beachte, dass wir im Übergang $s \to \mu$ zwar Information über den Zustand im Gebiet der Phasenumwandlung verlieren⁴, aber wir verlieren keine ther-

⁴Das Mischverhältnis $\alpha:\beta$ folgt aus der Position des betrachteten Punktes im Simplex; alle Punkte eines Simplex gehen auf einen Punkt $p_{\alpha\beta}(T), T$ oder $p_{\alpha\beta\gamma}, T_{\alpha\beta\gamma}$; die Information über die Mischverhältnisse geht beim Übergang $s \to \mu$ verloren.

modynamische Information.

7.3 Van der Waals Gas

In seiner Dissertation über 'Die Kontinuität des Gasförmigen und Flüssigen Zustandes' (Leiden, 1873) ist es van der Waals gelungen, eine Zustandsgleichung für reale Gase aufzustellen, die einen Gas-Flüssig-Übergang zu beschreiben vermag⁵. Der Ansatz ist denn auch genial: Van der Waals berücksichtigt die starke kurzreichweitige Abstossung zwischen den Atomen, indem er dem Gas nur das reduzierte Volumen $v_b = v - b$ zur Verfügung stellt⁶. Die langreichweitige Attraktion berücksichtigt er durch eine Verringerung des äusseren Druckes um einen Term $-a/v^2$. Die Idee ist, dass sich Teilchen im Innern gegenseitig anziehen. Dabei machen die Teilchen $\propto n$ = Dichte am Rande mit, die mit einer Kraft $\propto n$ nach innen gezogen werden. Es ergibt sich damit ein zusätzlicher Druck a/v^2 und wir müssen den Druck p ersetzen durch $p \rightarrow p + a/v^2$. Beachte, dass der Korrekturterm $\propto 1/v^2 \propto 1/r^6 \propto$ attraktives Potential ist. Die van der Waals Zustandsgleichung lautet dann

$$(v-b)\left(p + \frac{a}{v^2}\right) = RT\tag{7.16}$$

mit den Parametern a, b. Das p, v-Diagramm zeigt Isothermen wie in Abb. 7.13 skizziert.

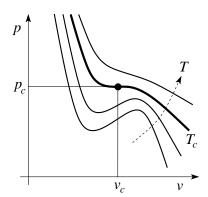


Abb. 7.13: Isothermen des Van der Waals-Gases. Bei der kritischen Temperatur T_c verschwinden die Minima/Maxima der Kurve.

7.3.1 Universelles Gasgesetz

Für $T > T_c$ ist p(v) monoton, unterhalb von T_c ergibt die kubische Gleichung bei fixem $p < p_c$ und $T < T_c$ drei Lösungen für v. Die kritischen Werte

⁵Boltzmann nannte Van der Waals den Newton der realen Gase.

 $^{^6}b$ ist das ausgeschlossene Volumen.

 T_c, p_c, v_c folgen aus den Gleichungen

$$p = p_{\text{VdW}}(v, T) \rightarrow \frac{RT}{v - b} = p + \frac{a}{v^2},$$

$$\frac{\partial p}{\partial v} = 0 \rightarrow \frac{RT}{(v - b)^2} = \frac{2a}{v^3},$$

$$\frac{\partial^2 p}{\partial v^2} = 0 \rightarrow \frac{RT}{(v - b)^3} = \frac{3a}{v^4},$$
(7.17)

und wir finden

$$p_c = \frac{1}{27} \frac{a}{b^2}, \qquad v_c = 3b, \qquad T_c = \frac{8}{27} \frac{a}{bR}.$$
 (7.18)

Indem wir zu normierten Variablen $\pi = p/p_c$, $\nu = v/v_c$ und $t = T/T_c$ übergehen, erhalten wir das Van der Waals Gesetz der korrespondierenden Zustände⁷,

$$\left(\pi + \frac{3}{\nu^2}\right)(3\nu - 1) = 8t. \tag{7.19}$$

Aus (7.18) erhält man

$$\frac{RT_c}{p_c v_c} = \frac{8}{3}. (7.20)$$

7.3.2 Maxwell-Konstruktion

Für $T < T_c$ weisen die Isothermen steigende Stücke mit $\partial_V p|_T > 0$ auf, was die Stabilitätsbedingung $\kappa_T > 0$ verletzt. Entsprechend ist die freie Energie mit $\partial_V f|_T = -p$ nicht konvex in v, vgl. Abb. 7.8. Wir erwarten demnach einen Phasenübergang im Gebiet $T < T_c$ und entsprechend müssen wir die VdW-Isothermen korrigieren. Dazu betrachten wir eine Isotherme $T < T_c$ und schneiden sie mit einer Isobaren $p < p_c$, vgl. Abb. 7.14.

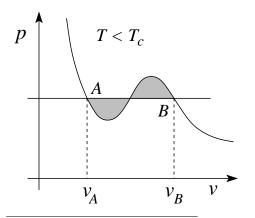


Abb. 7.14: Zur Korrektur der Van der Waals-Isothermen: gesucht ist die thermodynamisch korrekt definierte Isobare $p < p_c$, so dass $\mu_A(p,T) = \mu_B(p,T)$.

⁷Würde heute wohl das *universelle* Gasgesetz heissen.

66KAPITEL 7. PHASENÜBERGÄNGE UND PHASENGLEICHGEWICHTE

Wir suchen p so, dass $\mu_A(p,T) = \mu_B(p,T)$ ist, mit einen Phasenübergang erster Ordnung $A \leftrightarrow B$. Mit $\mu = u - Ts + pv$ müssen wir die Gleichung

$$u_B - u_A - T(s_B - s_A) + p(v_B - v_A) = 0 (7.21)$$

erfüllen. Wir brauchen die Ausdrücke für u und s: Betrachte

$$ds = \frac{1}{T}(du + pdv) = \frac{1}{T}\left(\frac{\partial u}{\partial T}\Big|_{V}dT + \frac{\partial u}{\partial v}\Big|_{T}dv\right) + \frac{p}{T}dv$$
 (7.22)

und benutze (4.33),

$$\partial_v u|_T = T \partial_T p|_v - p \Rightarrow \left. \frac{\partial u}{\partial v} \right|_T = \frac{a}{v^2};$$
 (7.23)

die innere Energie u eines realen Gases ist abhängig vom Volumen v, eine Folge der Attraktion zwischen den Atomen (potentielle Energie). Für die Differenz $u_B - u_A$ erhalten wir dann

$$u_B - u_A = \int_A^B du = \int_A^B \left[\frac{a}{v^2} dv + c_v(T) dT \right]$$

$$\stackrel{T_A = T_B}{=} -\frac{a}{v_B} + \frac{a}{v_A}. \tag{7.24}$$

Für die Entropie finden wir mit (7.22), (7.23) und (7.16)

$$ds = \frac{c_v}{T}dT + \frac{R}{v - b}dv$$

$$\Rightarrow s = s_0 + \int_{T_0}^{T} dT' \frac{c_v(T')}{T'} + R \ln \frac{v - b}{v_0 - b}.$$
(7.25)

Entsprechend finden wir

$$s_B - s_A \stackrel{T_A = T_B}{=} R \ln \frac{v_B - b}{v_A - b}$$
 (7.26)

und die Bedingung (7.21) reduziert sich auf

$$0 = -\frac{a}{v_B} - RT \ln(v_B - b) + \frac{a}{v_A} + RT \ln(v_A - b) + p(v_A - v_B)$$
 (7.27)

oder

$$p(v_A - v_B) = \frac{a}{v_B} + RT \ln(v_B - b) - \frac{a}{v_A} - RT \ln(v_A - b).$$
 (7.28)

Berechnen wir andererseits die Fläche

$$\int_{A}^{B} dv \, p = RT \int_{A}^{B} \frac{dv}{v - b} - \int_{A}^{B} \frac{dv}{v^{2}}$$

$$= RT \ln(v - b) \Big|_{A}^{B} + \frac{a}{v} \Big|_{A}^{B}$$

$$(7.29)$$

so finden wir Übereinstimmung mit der rechten Seite von (7.28), so dass

$$\int_{A}^{B} dv \, p = p(v_B - v_A); \tag{7.30}$$

d.h. die Gleichgewichtsbedingung $\mu_A = \mu_B$ reduziert sich auf die Gleichheit der schraffierten Flächen in Abb. 7.14; dies ist die *Maxwell-Konstruktion* zur Korrektur der VdW-Isothermen zu thermodynamisch konsistenten (stabilen) Isothermen. Man zeigt leicht, dass die obige Konstruktion der Maxwell-Konstruktion für die freie Energie (7.13) entspricht und ein konvexes Potential erzeugt.

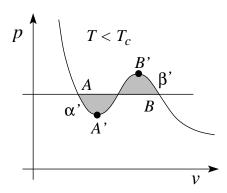


Abb. 7.15: Korrigierte Van der Waals-Isotherme zum 1-te Ordnung Phasenübergang flüssig (A) – gasförmig (B). Die Punkte A' und B' definieren die Spinodalen, die Endpunkte der (meta)stabilen Phasen. Die Segmente α' und β' beschreiben eine überhitzte Flüssigkeit (Siedeverzug) und ein unterkühltes Gas (Übersättigung).

Zusammenfassend zeigt Abb. 7.15 die korrigierte Isotherme beim 1.te Ordnung Phasenübergang flüssig (A) – gasförmig (B). Die Punkte A' und B' definieren die Spinodalen, die Endpunkte der (meta)stabilen Phasen. Die Segmente α' und β' beschreiben eine überhitzte Flüssigkeit (Siedeverzug) und ein unterkühltes Gas (Übersättigung). Führen wir die Maxwellkonstruktion für jeden Druck $p < p_c$ durch, so erhalten wir das Koexistenzgebiet für die gas- und flüssige Phase, vgl. dazu die Abb. 7.6, 7.9 und 7.16. An der Nebelgrenze (vgl. Abb. 7.16) treten zum ersten Mal Flüssigkeitströpfchen im Gas auf. An der Siedegrenze beobachtet man die ersten Dampfblasen in der Flüssigkeit. Gehen wir entlang γ um den kritischen Punkt herum, können wir stetig von der Gasphase in die flüssige Phase übergehen. Dies ist auch der Hintergrund zum Titel der Van der Waalsschen Dissertation. Beachte, dass eine Verflüssigung des Gases durch Druckerhöhung für $T > T_c$ unmöglich ist; Gas und Flüssigkeit sind oberhalb von T_c ununterscheidbare Phasen.

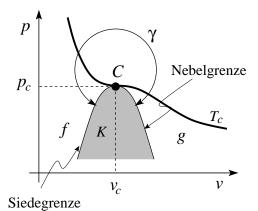


Abb. 7.16: Nebel- und Siedegrenzen im p-v-Diagramm.

7.3.3 Eigenschaften realer Gase

Abschliessend betrachten wir noch einige physikalische Eigenschaften realer Gase. So finden wir zum Beispiel, dass der Ausdehnungskoeffizient

$$\alpha = \frac{1}{v} \frac{\partial v}{\partial T} \Big|_{p} = \frac{v - b}{vT - \frac{2a}{R} \left(\frac{v - b}{v}\right)^{2}}$$
(7.31)

(zumeist) grösser ist als der Wert $\alpha_{\rm ig}=1/T$ für das ideale Gas,

$$\alpha - \frac{1}{T} = \frac{\frac{2a}{RT} \left(\frac{v-b}{v}\right)^2 - b}{vT - \frac{2a}{R} \left(\frac{v-b}{v}\right)^2} \quad \text{zumeist} > 0; \tag{7.32}$$

nur Wasserstoff und die Edelgase machen eine Ausnahme (im Bereich üblicher Temperaturen).

Gasverflüssigung

Weiter findet man, dass die gedrosselte Expansion realer Gase üblicherweise zu deren Abkühlung führt. Im Joule-Kelvin-Prozess ist die Enthalpie erhalten und wir finden mit 8

$$\Delta h = T\Delta s + v\Delta p = T\frac{\partial s}{\partial T}\Big|_{p}\Delta T + T\frac{\partial s}{\partial p}\Big|_{T}\Delta p + v\Delta p$$

$$= c_{p}\Delta T - T\alpha v\Delta p + v\Delta p$$

$$= c_{p}\Delta T + v(1 - T\alpha)\Delta p$$
(7.33)

für den isoenthalpischen Prozess $\Delta h=0$ die Charakteristik

$$\frac{\Delta T}{\Delta p} = \frac{vT}{c_p} \left(\alpha - \frac{1}{T} \right). \tag{7.34}$$

⁸Wir benutzen die Maxwell relation $\partial_p s|_T = -\partial_T v|_p = -v\alpha$.

Für $\alpha > 1/T$ tritt demnach mit der Entspannung auch eine Abkühlung ein. Darauf beruht die Gasverflüssigung durch Expansion. Man beachte dabei die Relevanz der Inversionskurve $p_I(T)$ definiert durch

$$\alpha(p_I, T) = \frac{1}{T} \quad \to \quad p_I(T).$$
 (7.35)

Für das Van der Waals Gas findet man (vgl. Abb. 7.17)

$$p_I(T) = p_c(24\sqrt{3T/T_c} - 12T/T_c - 27);$$
 (7.36)

Abkühlung tritt bei Expansion nur dann auf, wenn $p < p_I(T)$ ist. Die maximale Inversionstemperatur ist für Luft ~ 600 K, für H₂ aber nur ~ 202 K. Tritt H₂ aus einer Druckleitung aus, so besteht bei Zimmertemperatur höchste Explosionsgefahr, da sich der Wasserstoff via Erhitzung von selbst entzünden kann.

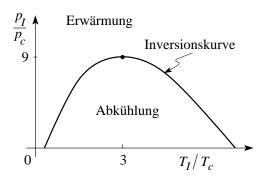


Abb. 7.17: Inversionskurve für das Van der Waals Gas.

Gastemperatur

Auch interessant ist, wie man aus der real gemessenen Gastemperatur ϑ (reales Gas) die absolute Temperatur T finden kann. Mit den gemessenen Grössen

$$\tilde{c}_p = \frac{\partial q}{\partial \vartheta}\Big|_p, \quad \tilde{\alpha} = \frac{1}{v} \frac{\partial v}{\partial \vartheta}\Big|_T$$

findet man aus $(7.34)^9$

$$T = T_0 \exp\left(\int_{\vartheta_0}^{\vartheta} d\vartheta \, \frac{v\tilde{\alpha}}{v + \tilde{c}_p \Delta\vartheta/\Delta p}\right),\tag{7.37}$$

$$c_p \frac{\Delta T}{\Delta p} = vT\alpha - v$$

um zu

$$\tilde{c}_p \frac{\Delta \vartheta}{\Delta p} = v T \tilde{\alpha} \frac{\partial \vartheta}{\partial T} - v$$

und integrieren.

⁹Wir schreiben die Gleichung

70KAPITEL 7. PHASENÜBERGÄNGE UND PHASENGLEICHGEWICHTE

wobei sich T_0 , ϑ_0 aus der Eichung

$$\vartheta = 0, T = T_0,$$

$$\vartheta = 100, T = T_0 + 100,$$

bestimmen lassen, mit $\vartheta_0 = 0$,

$$\ln\left(1 + \frac{100}{T_0}\right) = \int_0^{100} d\vartheta \, \frac{v\tilde{\alpha}}{v + \tilde{c}_p \Delta\vartheta/\Delta p}.\tag{7.38}$$

Die Charakteristika $\tilde{\alpha}$, \tilde{c}_p , $\Delta \vartheta/\Delta p$, v des Gases müssen dabei empirisch bestimmt werden.

7.4 Das Eis-Wasser-Dampf System

Ein bekanntes Beispiel eines fest-flüssig-gas Systems sind die Aggregatszustände des Wassers. Allerdings ist das Eis-Wasser(-Dampf) System etwas atypisch. Wir betrachten zuerst die *Phasenlinie Wasser-Wasserdampf* und benutzen die Clapeyronsche Gleichung

$$T\partial_T p = \ell/\Delta v;$$

wir approximieren

$$\Delta v = v_{\rm gas} - v_{\rm flüssig} \approx v_{\rm gas} = \frac{RT}{p}, \quad \ell \approx {\rm const}$$

und erhalten für die Dampfdruckkurve das Resultat

$$p_{gf}(T) \approx p_0 e^{-\ell_{gf}/RT}. (7.39)$$

Das Resultat stimmt recht gut mit experimentellen Daten überein¹⁰. Es ist $\ell_{gf} \approx 603 {\rm cal/g}$ und man findet die in der Abb. 7.18 gezeigte Dampfdruckkurve für Wasser.

Als Nächstes betrachten wir die Eis-Wasser Grenze. Hier äussert sich die Besonderheit des Wassers: Üblicherweise ist der fest-flüssig Übergang mit einer Expansion (s für solid, fest)

$$\Delta v_{\rm fs} = v_{\rm fl\ddot{u}ssig} - v_{\rm fest} > 0$$

verbunden, und damit ist

$$\frac{\partial p_{\rm fs}}{\partial T} = \frac{\ell_{\rm fs}}{T \Delta v_{\rm fs}} > 0.$$

 $^{^{10}\}mathrm{Dies}$ ist nicht immer der Fall, insbesondere nicht für He.

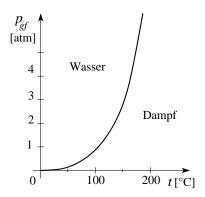


Abb. 7.18: Dampfdruckkurve von Wasser.

Im Eis-Wasser System sind die Verhältnisse umgekehrt: Beim Übergang in die feste Phase nimmt das (Eis)Volumen zu und $\Delta v_{\rm fs} \approx -0.091~{\rm cm}^3/{\rm g}$. Mit $\ell_{\rm fs} \approx 80~{\rm cal/g}$ findet man

$$\frac{\partial p_{\rm fs}}{\partial T} \approx -138$$
at/grad; (7.40)

wir finden eine steil ansteigende, rückwärts geneigte (retrogradierte) Phasenlinie $p_{\rm fs}(T)$, vgl. Abb. 7.19

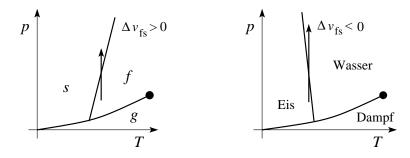


Abb. 7.19: Phasenlinien $p_{\rm fs}$ für normale Medien (links) und für das Eis-Wasser System (rechts). Wasser ist dichter als Eis, Eis schwimmt an der Wasseroberfläche.

Interessant ist die Umgebung des Tripelpunktes, vgl. Abb. 7.20: Es gilt

$$\ell_{sf} + \ell_{fg} + \ell_{gs} = [80 + 603 + (-683)] \text{ cal/g} = 0$$

und

$$\Delta v_{sf} + \Delta v_{fg} + \Delta v_{gs} = 0. (7.41)$$

Etwas überraschend verhält sich die spezifische Wärme c_{φ} des Wasserdampfes entlang der Dampfdruckkurve $\varphi(p,T)=\mu_f(p,T)-\mu_g(p,T)=0$:

72KAPITEL 7. PHASENÜBERGÄNGE UND PHASENGLEICHGEWICHTE

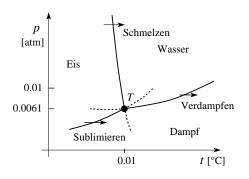


Abb. 7.20: Tripelpunkt im Eis-Wasser-Dampf System.

Sie ist negativ, $c_{\varphi}(t=100 \text{ }^{o}\text{C})=-1.08 \text{ cal/grad g.}^{11}$ Gesättigter Wasserdampf gibt demnach Wärme ab, wenn wir entlang der Dampfdruckkurve die Temperatur erhöhen. Wird der Dampf adiabatisch entspannt, tritt er in die flüssige Phasenregion ein und bildet Kondensationströpfchen (vgl. Abb. 7.21, beachte den Nebel beim Öffnen einer Mineralwasserflasche).

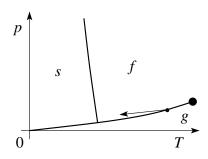


Abb. 7.21: Unter adiabatischer Expansion von Wasserdampf bilden sich Tröpfchen: der fallende Druck führt auf eine Temperaturerniedrigung und es müsste Wärme zugeführt werden um auf der Dampfkurve zu bleiben. Die fehlende Wärme führt zur Kondensation von Nebel.

$$\frac{\delta q}{dT} = \frac{du}{dT} + p\frac{dv}{dT}$$

erhalten wir

$$c_{\varphi} = \frac{\delta q_{\varphi}}{dT} = \frac{du_g}{dT} + p \frac{dv_g}{dT} \quad \text{(Wasserdampf)},$$

$$c_f = \frac{\delta q_f}{dT} = \frac{du_f}{dT} + p \frac{dv_f}{dT} \quad \text{(Wasser mit } c_f = c_p \approx c_v).$$

$$c_{\varphi} - c_f = \frac{d\Delta u}{dT} + p \frac{d\Delta v}{dT}. \quad (7.42)$$

Entlang der Dampfdruckkurve gilt mit $\ell = \Delta h = \Delta u + p\Delta v$:

$$\frac{d\ell}{dT} = \frac{d\Delta u}{dT} + p \frac{d\Delta v}{dT} + \frac{dp}{dT} \Big|_{\varphi} \Delta v$$

$$\operatorname{mit} \frac{dp}{dT} \Big|_{\varphi} = \frac{\ell}{T\Delta v}$$

$$c_{\varphi} = c_f + \frac{d\ell}{dT} - \frac{\ell}{T}.$$
(7.43)

Mit $c_f \approx 1$ cal/grad g, $\ell = 539$ cal/g bei T = 373 K und $d\ell/dT = -0.64$ cal/grad g findet man sofort $c_\varphi = -1.08$ cal/grad g < 0.

 $^{^{11}}$ Zum besseren Verständnis berechnen wir $c_{\varphi} \colon \mathrm{Mit}$ dem ersten Hauptsatz

7.5 Nukleation in Phasenübergängen erster Ordnung

Wir betrachten ein System am Phasenübergang, typischerweise ein flüssiggas System. Die beiden Phasen unterscheiden sich in ihrer Dichte $1/v=\rho$, v=V/N= Volumen pro Teilchen. Aus (7.11) folgt für die freie Energie die Form in Abb. 7.22.

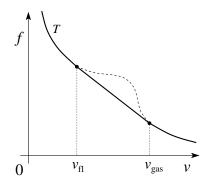


Abb. 7.22: Freie Energie bei fixer Temperatur T: Am Übergang gilt $\partial_v f = -p_{\rm fg}(T)$.

Für die Gibbs freie Energie $\mu=f+pv$ erhalten wir dann die Form in Abb. 7.23, mit den Variablen p und T und ρ als Hemmparameter, $\mu=\mu(p,T;$ Hemmparameter $\rho)$. Aus

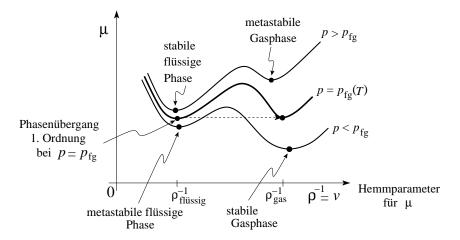


Abb. 7.23: Chemisches Potential in Abhängigkeit des Hemmparameters ρ^{-1} . Bei fixer Temperatur T verändern wir den Druck p über den Phasenübergang hinweg.

$$\frac{\partial f}{\partial v} = -p_{\rm fg}(T)$$

am Übergang ergibt sich tatsächlich

$$\frac{\partial \mu}{\partial \rho}\Big|_p = \frac{\partial \mu}{\partial v} \frac{\partial v}{\partial \rho} = \frac{\partial v}{\partial \rho} \Big(\frac{\partial f}{\partial v} + p\Big) = 0$$

bei $p = p_{\rm fg}$, d.h. die beiden Minima $\mu_{\rm gas}$ und $\mu_{\rm fl}$ sind gerade gleich wenn $p = p_{\rm fg}(T)$ ist, also am Phasenübergang.

Wie sieht der Zeitablauf des Übergangs aus? Wir starten in der Gasphase bei unterkritischem Druck $p < p_{\rm fg}(T)$ und erhöhen p. Wenn $p \gtrsim p_{\rm fg}$ wird zwar das Minimum bei $\rho_{\rm fl}$ günstiger, aber das System ist durch eine Barriere bei $\rho_{\rm gas}$ gefangen (übersättigter Dampf). Das System geht dann von $\rho_{\rm gas}$ via eines Nukleationsprozesses in die neue stabile Phase über. Unsere Aufgabe ist es, den energetisch günstigsten Weg (die kleinste Barriere) für den Prozess zu finden. In einem isotropen homogenen System ist der beste Prozess durch die Nukleation eines 'Tröpfchens der neuen Phase' gegeben (droplet model). Kondensiert bei $p > p_{\rm fg}(T)$ die Gasmenge $\delta n_{\rm gas}$ in einen Flüssigkeitstropfen mit Radius r, so gewinnen wir die Energie $\delta n_{\rm gas}(\mu_{\rm fl} - \mu_{\rm gas})$ mit (L ist die Avogadrozahl)

$$\delta n_{\rm gas} = -\delta n_{\rm fl} = (4\pi/3L)r^3 \rho_{\rm fl}.$$

Andererseits müssen wir eine Gas-Flüssigkeits Grenzfläche bilden, welche pro Flächenelement da eine Energie $\sigma_{\rm fg}$ (= Oberflächenspannung) kostet (in der Grenzfläche ist $\rho_{\rm gas} < \rho_{\rm Grenzfl} < \rho_{\rm fl}$ und $\mu_{\rm Grenzfl}$ ist im Bereich des Übergangs grösser als $\mu_{\rm gas} \approx \mu_{\rm fl}$). Die Ausdehnung des Tropfens involviert also nebst dem üblichen Volumenterm $p\,dv$ zusätzlich einen Oberflächenterm $\sigma\,da$; dann hat die vom Tropfen geleistete Arbeit die Form

$$\delta W = pdv - \sigma da. \tag{7.44}$$

Für einen Tropfen mit Radius r bezahlen wir insgesamt die Gibbs-Energie

$$G(r) = \frac{4\pi}{3L}r^3\rho_{\rm fl}(\mu_{\rm fl} - \mu_{\rm gas}) + 4\pi r^2\sigma_{\rm fg}$$
 (7.45)

mit der Avogadro-Zahl L, $\rho = N/V$, $\mu = \text{Energie/Mol}$, $\sigma = \text{Energie/Fläche}$.

Für verschiedene Kombinationen p, T hat G(r) die in Abb. 7.24 skizzierte Form mit einem Maximum in G(r) für $p > p_{\rm fg}$.

Der Radius des kritischen Nukleus ergibt sich aus der Bedingung $\delta G = 0,^{12}$

$$\delta G = \delta (n_{\rm fl} \,\mu_{\rm fl} + n_{\rm gas} \,\mu_{\rm gas} + 4\pi r^2 \sigma_{\rm fg})$$

$$= \delta n_{\rm fl} \left(\mu_{\rm fl} - \mu_{\rm gas} + \frac{2\sigma_{\rm fg}}{r} \frac{L}{\rho_{\rm fl}}\right) = 0$$
(7.46)

$$\delta n_{\rm gas} = -\delta n_{\rm fl}, \quad n_{\rm fl} = \frac{4\pi}{3} r^3 \frac{\rho_{\rm fl}}{L} \rightarrow \frac{\partial n_{\rm fl}}{\partial r} = 4\pi r^2 \frac{\rho_{\rm fl}}{L}.$$

 $^{^{12}\}mathrm{Wir}$ benutzen die Zusammenhänge

7.5. NUKLEATION IN PHASENÜBERGÄNGEN ERSTER ORDNUNG75

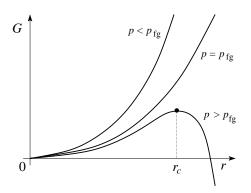


Abb. 7.24: Gibbs-Energie in Abhängigkeit der Tröpfchengrösse r. Der kubische Term $\propto r^3$ ändert sein Vorzeichen bei $p=p_{\rm fg}$; entsprechend ergibt sich für $p>p_{\rm fg}$ ein Maximum in G(r).

und wir erhalten den kritischen Radius (für $\mu_{\rm fl} < \mu_{\rm gas}$)

$$r_c = \frac{2\sigma_{\rm fg}L}{\rho_{\rm fl}} \frac{1}{\mu_{\rm gas} - \mu_{\rm fl}}.$$
 (7.47)

Um den kritischen Radius als Funktion des Druckes $p > p_{fg}(T)$ zu finden, leiten wir die Beziehung

$$\mu_{\mathrm{gas}} - \mu_{\mathrm{fl}} = \frac{2\sigma_{\mathrm{fg}}L}{\rho_{\mathrm{fl}} r_{c}}$$

nach p ab und benutzen $\partial_p \mu = v_{\text{mol}} = L/\rho$; damit folgt

$$\frac{1}{\rho_{\rm gas}} - \frac{1}{\rho_{\rm fl}} = 2\sigma_{\rm fg} \Big(-\frac{1}{\rho_{\rm fl}\, r_c^2} \frac{\partial r_c}{\partial p} - \frac{1}{r_c\, \rho_{\rm fl}^2} \frac{\partial \rho_{\rm fl}}{\partial p} \Big). \label{eq:rhogas}$$

Mit

$$v_{\rm fl} \ll v_{\rm gas} = \frac{k_{\rm B}T}{p}, \quad \frac{\partial \rho_{\rm fl}}{\partial p} \approx 0$$

erhalten wir die Differentialgleichung

$$\frac{\partial r_c}{\partial p} = -\frac{k_{\rm B} T \rho_{\rm fl}}{2\sigma} \frac{r_c^2}{p}, \qquad \qquad \partial \frac{1}{r_c} = \frac{k_{\rm B} T \rho_{\rm fl}}{2\sigma} \partial \ln p, \qquad (7.48)$$

$$p = p_0 \exp\left(\frac{2\sigma v_{\rm fl}}{k_{\rm B}T r_c}\right). \tag{7.49}$$

Aus der Randbedingung $p(r=\infty)=p_{\rm fg}$ folgt das Schlussresultat (vgl. Abb. 7.25)

$$p = p_{\text{fg}} \exp\left(\frac{2\sigma v_{\text{fl}}}{k_{\text{B}}T} \frac{1}{r_c}\right), \qquad r_c(p, T) = \frac{2\sigma v_{\text{fl}}}{k_{\text{B}}T \ln(p/p_{\text{fg}})}.$$
 (7.50)

Um beim Druck $p>p_{\rm fg}$ den Phasenübergang zu triggern, muss eine thermische Fluktuation einen Nukleus (ein Tröpfchen) mit Radius $r>r_c$ erzeugen — gemäss Abb. 7.24 ist $\partial_r G|_{r>r_c}<0$ und der Tropfen wächst ($r\to$

76KAPITEL 7. PHASENÜBERGÄNGE UND PHASENGLEICHGEWICHTE

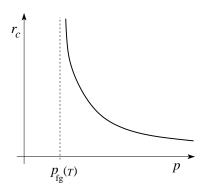


Abb. 7.25: Kritische Tröpfchengrösse als Funktion des Umgebungsdruckes p.

 ∞), bis alles Gas kondensiert ist. Bei gegebenem p,T wird diese Fluktuation mit einer Rate

$$\Gamma \approx \omega_{\text{mikro}} e^{-G(r_c)/k_{\text{B}}T}$$
 (7.51)

auftreten. Die mikroskopische Versuchsrate $\omega_{\rm mikro}$ ist schwierig abzuschätzen; eine grobe Abschätzung ist $\omega \sim 1/{\rm Kollisionszeit}$.

Die obige Diskussion kann auf viele Systeme verallgemeinert werden, z.B. der Bewegung einer elastischen Membran im periodischen oder im ungeordneten Potential (siehe Übungen). Ebenso kann bei einem T=0 Quantenphasenübergang obiges Nukleationsszenario relevant sein, wobei an die Stelle der Gibbs-Energie G die (euklidsche) Wirkung S tritt und die Fluktuation eine quantenmechanische ist, $G \to S_{\text{Euklid}}$, $T \to \hbar$. Ein Beispiel ist die Nukleation der Helium B-Phase in der A-Phase (Lifshitz, Kagan).

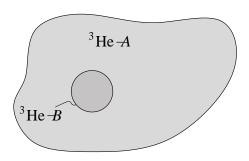


Abb. 7.26: Nukleation eines ³He-B Tropfens in ³He-A.

Kapitel 8

Mischungen

Wir betrachten ein Gemisch (mit Molzahlen n_i) von (idealen) Gasen im Volumen V. Dann addieren sich die Partialdrucke p_i der Gase zum Gesamtdruck (Dalton)

$$p = \sum_{i} p_i. \tag{8.1}$$

Mit den Zustandsgleichungen $p_iV = n_iRT$ des *i*-ten Gases folgt durch Summation

$$pV = nRT, \quad n = \sum_{i} n_{i}. \tag{8.2}$$

Für die Energie findet man (vgl. Abb. 8.1)

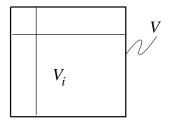


Abb. 8.1: Komprimiere das i-te Gas isotherm auf das Volumen $V_i = V p_i/p$ und ziehe die Trennwände hinaus; da die innere Energie u_i des i-ten Gases unabhängig vom Volumen V_i ist wird durch die Expansion keine Arbeit geleistet, also ist $U = \sum_i n_i u_i$.

$$U = \sum_{i} n_i u_i, \quad u_i = c_{v_i} T. \tag{8.3}$$

Die Berechnung der Entropie einer Mischung ist nicht trivial. Wir entmischen ein Zweikomponentensystem reversibel, um dann daraus die Entropie zu berechnen. Dazu benutzen wir zwei Zylinder mit je einer halbdurchlässigen Wand und entmischen die beiden Gase, indem wir die Zylinder trennen (halte 1 fest, bewege 2, vgl. Abb. 8.2).

Auf die selektiv durchlässigen Wände wirkt nur der Partialdruck p_1 (Zylinder 1) resp. p_2 (Zylinder 2). Bei der Entmischung wird keine Arbeit

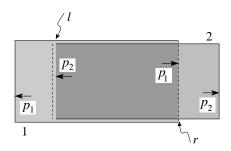


Abb. 8.2: Entmischung zweier Gase: Der Zylinder 1 ist fixiert und hält Gas 1, der Zylinder 2 wird bewegt und hält das Gas 2. Die inneren Zylinder Wände sind entsprechend selektiv durchlässig.

geleistet (A = Querschnittsfläche),

$$\delta W = \delta W_{\ell} + \delta W_r = -A p_2 dx_2 + A p_2 dx_2,$$

und es wird keine Wärme zugeführt, $\delta Q=0$. Die reversible Entmischung erfordert demnach keine Wärme oder Arbeit und die Entropie S bleibt konstant ($\delta Q=\delta Q_{\rm rev}=0$),

$$S(T, V) = S_1(T, V) + S_2(T, V).$$
(8.4)

Umgeschrieben auf die Variablen T und Druck p erhalten wir die Beziehung

$$S(T,p) = S_1(T,p_1) + S_2(T,p_2), \tag{8.5}$$

oder auf mehrere Komponenten verallgemeinert

$$S(T, p, n_1, \dots, n_r) = \sum_{i} n_i s_i(T, p_i).$$
 (8.6)

Beachte, dass wir in unserem Prozess das Gesamtvolumen verdoppelt haben; die Gesamtentropie beim Gesamtdruck p ergibt sich aus der Summe der Entropien bei den Partialdrucken p_i .

Umgekehrt betrachten wir jetzt den Prozess der Mischung. Wir kompartimentieren die Gase auf die partiellen Volumina $V_i = V p_i/p$. Die Gesamtentropie dieses Ausgangszustandes ist

$$S_0 = \sum_i n_i s_i(T, p)$$

Im zweiten Schritt entfernen wir die Trennwände und erhalten die Gesamtentropie der Mischung

$$S = \sum_{i} n_i s_i(T, p_i).$$

Die Entropieänderung aufgrund der Interdiffusion der Gase ist

$$S - S_0 = \sum_{i} n_i [s_i(T, p_i) - s_i(T, p)],$$
mit (3.21)) ist
$$[...] = R \ln p/p_i = R \ln v/v_i = R \ln n/n_i$$

$$= R \sum_{i} n_i \ln(n/n_i) = R[n \ln n - \sum_{i} n_i \ln n_i] (8.7)$$

und wir finden einen Mischterm > 0, die Diffusion ist irreversibel. Die Entropie des Gasgemisches ist somit nicht einfach additiv,

$$S(T,p) = \sum_{i} n_{i} s_{i}(T,p) + R \sum_{i} n_{i} \ln(n/n_{i}).$$
 (8.8)

8.1 Massenwirkungs Gesetz

Aus den Resultaten (8.1), (8.3) und (8.8) folgt sofort das Massenwirkungsgesetz für chemische Reaktionen. Sei der Druck p und die Temperatur T fixiert, dann reagieren verschiedene Komponenten eines chemisch aktiven Systems bis ein chemisches Gleichgewicht bei minimaler Gibbs Energie G(p,T) erreicht ist. Betrachte zum Beispiel die Knallgas-Reaktion

$$2H_2O \leftrightarrow 2H_2 + O_2,$$
 (8.9)

mit den Umwandlungsverhältnissen

$$\delta n_1 : \delta n_2 : \delta n_3 = \nu_1 : \nu_2 : \nu_3 \tag{8.10}$$

für

 H_2 : n_1 mit $\nu_1 = 2$, O_2 : n_2 mit $\nu_2 = 1$, H_2O : n_3 mit $\nu_3 = -2$.

Mit (zur Erinnerung G = U + pV - TS = H - TS)

$$U = \sum_{i} n_i u_i,$$

$$H = \sum_{i} (n_i u_i + p_i V) = \sum_{i} n_i (u_i + RT) = \sum_{i} n_i h_i,$$

$$S = \sum_{i} n_i s_i + R \sum_{i} n_i \ln(n/n_i),$$

finden wir die Gibbs freie Energie

$$G = \sum_{i} n_{i} [h_{i}(T) - Ts_{i}(T, p) - RT \ln(n/n_{i})]$$

$$= \sum_{i} n_{i} [g_{i}(T, p) - RT \ln(n/n_{i})].$$
(8.11)

Die Variation von G bezüglich der Molzahlen unter Berücksichtigung der Umwandlungsverhältnisse (8.10) und $n = \sum_i n_i$ (und $\delta n = (\delta n_1/\nu_1) \sum_i \nu_i \neq$

0) ergibt¹

$$0 = \delta G = \sum_{i} \delta n_{i} [g_{i}(T, p) - RT \ln(n/n_{i})]$$

$$= \frac{\delta n_{1}}{\nu_{1}} \sum_{i} \nu_{i} [g_{i}(T, p) - RT \ln(n/n_{i})]$$

$$\Rightarrow \prod_{i} \left(\frac{n_{i}}{n}\right)^{\nu_{i}} = \exp\left[-\sum_{i} \nu_{i} g_{i}(T, p) / RT\right] \equiv K(T, p; \nu_{i}), \quad (8.12)$$

das Massenwirkungsgesetz. Gehen wir zu den Konzentrationen $c_i = n_i/n$ über und berücksichtigen wir die Zusatzbedingung $\sum_i n_i = n$, $\sum_i c_i = 1$, #H-Atome/#O-Atome = $(2c_1 + 2c_3)/(2c_2 + c_3) = R_{\rm H/O}$ (dieses Verhältnis wird durch die Präparation vorgegeben, entsprechend stehen immer genügend viele Gleichungen zur Verfügung um alle Konzentrationen zu berechnen), so können wir die Gleichgewichtskonzentrationen eindeutig bestimmen,

$$\frac{c_1^2 c_2}{c_3^2} = K(T, p; \nu_i),$$

$$c_1 + c_2 + c_3 = 1,$$

$$\frac{2c_1 + 2c_3}{2c_2 + c_3} = R_{H/O}.$$
(8.13)

8.2 Osmotischer Druck

Als weitere Anwendung von (8.8) betrachten wir den osmotischen Druck. In der Zelle (vgl. die Skizze in Abb. 8.3) verschieben wir die Membran nach rechts und gewinnen dabei die Arbeit

$$\delta W = p' dV = p' v_0 dn_0$$
:

hier bezeichnet v_0 das Molvolumen des Wassers und dn_0 ist die Änderung der Menge des Lösungsmittels bei der Verschiebung der Membran.

Mit T = const entspricht diese Arbeitsleistung gerade der Änderung der freien Energie des Systems, $dF = -p'dV = -\delta W$. Für die freie Energie schreiben wir gemäss (8.1), (8.2), (8.3), (8.8)

$$F = (n_0 + n'_0)f_0 + n_1f_1 + RT[n_0 \ln(n_0/n) + n_1 \ln(n_1/n)],$$

wobei der letzte Term der *Mischentropie* entspricht, die für $n = n_0 + n_1 \sim n_0$ als $RTn_1 \ln(n_1/n_0)$ geschrieben werden kann. Eine Änderung $dn_0 = -dn'_0$

¹Mit
$$\delta = \sum_{i} \delta n_{k} (\partial/\partial n_{k})$$
 ist $\sum_{i} n_{i} \delta \ln[(n = \sum_{j} n_{j})/n_{i}] = \sum_{i} n_{i} [(1/n) \sum_{k} \delta n_{k} - \sum_{k} \delta n_{k} \delta_{ki}/n_{i}] = 0.$

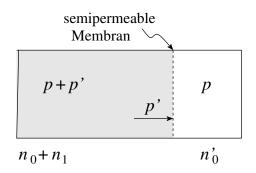


Abb. 8.3: Wasser/Zuckerwasser getrennt durch eine semipermeable Membran. n_0 und n'_0 bezeichnen die Molzahlen für das Wasser in den beiden Kompartimenten, n_1 ist die Molzahl für den Zucker.

erzeugt via Mischentropie die Energieänderung (mit $dn_0 = v_0 dV$)

$$dF = -RT\frac{n_1}{n_0}dn_0 = -\frac{RTn_1}{n_0v_0}dV = -p'dV$$

und wir erhalten den osmotischen Druck

$$p' = n_1 \frac{RT}{V}; \tag{8.14}$$

dies ist gerade der Gasdruck des im Lösungsmittel (Volumen $V=n_0v_0$, Temperatur T) gelösten Salzes. Bekannt ist das Bild der Zuckerlösungssäule, wo $p'=\rho gh$, $\rho=$ Massendichte der Lösung, direkt gemessen wird.

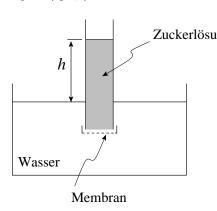


Abb. 8.4: Typisches Experiment zum osmotischen Druck, mit der Zuckerlösungssäule aufragend über das Niveau des Wassers.

8.2.1 Erniedrigung des Dampfdruckes in der Lösung

Auch bekannt ist die *Erniedrigung des Dampfdruckes* einer Lösung gegenüber des Dampfdruckes des reinen Lösungsmittels (Raoultsches Gesetz), vgl. Abb. 8.5

$$\Delta p_{\mathrm{Dampf}} = \frac{\rho_{\mathrm{Dampf}}}{\rho_{\mathrm{L\ddot{o}sung}}} \frac{n_1}{n_0} \frac{RT}{v_0}$$

oder, via Clausius-Clapeyron (ℓ die molare Verdampfungswärme),

$$\Delta T = \Delta p_{\text{Dampf}} \left(\frac{dp}{dT} = \frac{\ell}{T\Delta v} \right)^{-1} \approx \frac{n_1}{n_0} \frac{RT}{\ell} T,$$

die Erhöhung der Siedetemperatur. Wieviel Salz wird gebraucht, um auf dem Everest ein Ei kochen zu können?

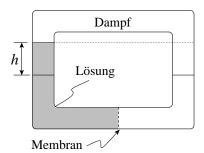


Abb. 8.5: Der Unterschied $\Delta p_{\mathrm{Dampf}}$ im Dampfdruck ergibt sich aus der Überhöhung der Lösungssäule, $\Delta p_{\mathrm{Dampf}} = \rho_{\mathrm{Dampf}} gh$, wobei sich die Höhe h der Säule aus dem osmotischen Druck $p' = \rho_{\mathrm{L\"osung}} gh$ ergibt. Nutze auch, dass $\Delta v \approx v_{\mathrm{Dampf}}$ und $\rho_{\mathrm{Dampf}} v_{\mathrm{Dampf}} = \rho_{\mathrm{L\"osung}} v_{\mathrm{L\"osung}}$ ist.

8.3 Gibbssches Paradoxon

Betrachte die Mischungsentropie (8.7) und gehe zum Grenzfall identischer Atome über. Die Mischentropie $S-S_0$ bleibt unverändert, obwohl wir erwarten würden, dass im Grenzfall identischer Atome keine Mischentropie mehr auftritt, $S-S_0=0$. Entsprechend existiert kein kleiner Parameter, der die Unterscheidbarkeit der Atome quantifiziert: Der Atomismus der Materie verbietet den Grenzübergang. Beachte, dass ein ${}^{3}\text{He-}{}^{4}\text{He}$ Isotopengemisch eine Mischentropie aufweist, obwohl die Elektronenhüllen gleich sind (Entmischung bei $T\to 0, 3$. HS).

8.4 Ausklang

Es gibt eine Vielzahl von thermodynamischen Modellsystemen, die wir aus Zeitgründen nicht behandeln können. Einige Beispiele werden wir in den Übungen untersuchen, andere tauchen später in den Vorlesungen über 'Statistische Mechanik' und 'Phasenübergänge' auf. Besonders bekannt sind die

Hohlraumstrahlung: Photonengas, Plancksches Strahlungsgesetz.

Elastische Festkörper: Phononengas, Debye und Dulong-Petit.

Supraleitung: Phasenübergang zweiter Ordnung (Elektronenpaarung und Kondensation in k-Raum) der sehr gut durch die Molekularfeldnäherung beschrieben wird. Beachte, dass der superfluide Übergang im bosonischen System (Kondensation im Ortsraum) durch Fluktuationen dominiert wird, d.h., die Molekularfeldnäherung ist nur eingeschränkt gültig (z.B., für schwach wechselwirkende Gase).

Phasenseparation: Entmischung von ³He und ⁴He, Legierungen.

8.4. AUSKLANG 83

Magnetismus: Ordnungsphänomene, z.B., Ferromagnetismus oder Antiferromagnetismus, entstehen beim Abkühlen in Phasenübergängen zweiter Ordnung (starke Fluktuationen).

Galvanische Elemente

Kapitel 9

Thermodynamik irreversibler Prozesse / Transport*

Als letztes Thema der Thermodynamik betrachten wir Transportphänomene, was unter dem Titel 'Thermodynamik irreversibler Prozesse/Transport' zusammengefasst wird. Wir bemerken, dass die beiden Gebiete der *Phasenumwandlungen* und des *Transportes* zu den aktiven Forschungsgebieten zählen (speziell Transport in kleinen Strukturen wo sich Quanteneffekte bemerkbar machen, Verhalten von Zuständen (weit) weg vom Gleichgewicht).

9.1 Wärmeleitung

Wir beginnen mit der Wärmeleitung im homogenen, isotropen Festkörper (wir vernachlässigen thermische Expansionseffekte). Weg vom Gleichgewicht werden die Zustandsgrössen ortsabhängig: Dabei entfernen wir uns nur wenig vom Gleichgewicht, so dass wir das System immer noch als lokal im Gleichgewicht betrachten können. Das System lässt sich dann durch lokale Gleichgewichtsparameter wie die lokale Temperatur $T(\vec{r},t)$, den lokalen Druck $p(\vec{r},t)$, oder das lokale chemische Potential $\mu(\vec{r},t)$, und lokale Zustandsgrössen wie innere Energie $u(\vec{r},t)$, Entropie $s(\vec{r},t)$, ... beschreiben. Beachte dabei, dass eine ortsabhängige Temperatur $T(\vec{r},t)$ auch eine Ortsabhängigkeit der inneren Energie $u(\vec{r},t)$ (pro Masseneinheit) impliziert. Weiter induziert der Temperaturgradient ∇T einen Wärmefluss,

$$\vec{w}(\vec{r},t) = -\kappa \vec{\nabla}T \tag{9.1}$$

(Fourierscher Ansatz). In (9.1) nehmen wir an, dass ∇T genügend klein ist (mit dem System nahe am Gleichgewicht), so dass die 'Antwort \vec{w} ' auf die 'Kraft ∇T ' linear ist. Die Wärmeleitfähigkeit $\kappa (= v^2 c_v \tau/3, \tau$ die Streuzeit),

müssen wir durch eine mikroskopische Betrachtung finden¹.

Die Erhaltung der Energie verlangt die Kontinuitätsgleichung ($\rho=$ Massendichte)

$$\rho \frac{\partial u}{\partial t} + \vec{\nabla} \cdot \vec{w} = 0, \tag{9.2}$$

mit den Einheiten [u] = Energie/g, $[\rho]$ = g/Volumen. Mit der zweiten konstitutiven Gleichung

$$\rho du = c_v dT \to \frac{\partial u}{\partial t} = \frac{c_v}{\rho} \frac{\partial T}{\partial t}, \tag{9.3}$$

 $[c_v]$ = Energie/Volumen grad, erhalten wir die Wärmeleitungsgleichung

$$\frac{\partial T}{\partial t} = \frac{\kappa}{c_v} \Delta T = \mathcal{D}\Delta T, \tag{9.4}$$

mit der Diffusionskonstanten $\mathcal{D} = v^2 \tau / 3$.

9.2 Entropiebilanz

Wir wissen, dass die Diffusion (von Teilchen in Mischungen) ein irreversibler Prozess ist und interessieren uns deshalb für die Entropiebilanz. Mit du = T ds und (9.2) finden wir

$$\rho \frac{\partial s}{\partial t} = -\frac{1}{T} \vec{\nabla} \cdot \vec{w} = -\vec{\nabla} \cdot \frac{\vec{w}}{T} - \frac{1}{T^2} \vec{w} \cdot \vec{\nabla} T.$$

Indem wir $\vec{w}/T \equiv \vec{j}_s$ als Entropiefluss auffassen, finden wir mit der Entropiequelle $\vartheta = -[\vec{w} \cdot \vec{\nabla} T]/T^2 \stackrel{(9.1)}{=} (\kappa/T^2)(\vec{\nabla} T)^2 > 0$ die Kontinuitätsgleichung für die Entropie,

$$\rho \frac{\partial s}{\partial t} + \vec{\nabla} \cdot \vec{j}_s = \vartheta. \tag{9.5}$$

Im abgeschlossenen System ergibt (9.4) für $t \to \infty$, T = const, $\nabla T = 0$, Entropiequelle $\to 0$, Entropiefluss $\to 0$ und $\partial_t s = 0$, eine konstante Entropie s. Mit $\vartheta > 0$ kann die lokale Entropieerzeugung nie negativ sein, in Übereinstimmung mit dem 2. HS (beachte auch, dass gemäss (9.1) mit $\kappa > 0$ Wärme immer vom heisseren zum kälteren Ort fliesst.)

TZ.B.r, über die Streulänge ℓ ändert sich der Wärmeinhalt um $c_v \ell \nabla T$ mit ℓ der mittleren feien Weglänge. Diese Wärme wird mit der Geschwindigkeit v der Teilchen transportiert, also ist der Wärmestrom $\vec{w} \sim c_v \ell v \vec{\nabla} T = c_v \tau v^2 \vec{\nabla} T$, mit der Streuzeit $\tau = \ell/v$. Die Mittelung über v^2 ergibt noch einen Faktor 1/3, also ist $\kappa \approx (1/3)v^2 \tau c_v$.

9.3 Thermoelektrische Effekte

Als nächstes wollen wir thermoelektrische Effekte etwas genauer untersuchen: Die Teilchen, welche die Wärme transportieren, seien jetzt zusätzlich auch noch geladen, z.B., Elektronen mit Ladung $-e\ (e>0)$. Bei der Formulierung der Energieerhaltung müssen wir jetzt zusätzlich die potentielle Energie

$$\Phi \frac{\partial q}{\partial t} = -\Phi \vec{\nabla} \cdot \vec{j}$$

(mit der Ladungsdichte $q = \rho n L(-e)$ und der Stromdichte \vec{j}) und die dissipierte Energie $\vec{j} \cdot \vec{E}$, $\vec{E} = -\vec{\nabla}\Phi =$ elektrisches Feld, berücksichtigen,

$$\rho \frac{\partial u}{\partial t} = -\vec{\nabla} \cdot \vec{w} + \vec{j} \cdot \vec{E} - \Phi \vec{\nabla} \cdot \vec{j}. \tag{9.6}$$

Als konstitutive Gleichungen haben wir $\vec{w} = -\kappa \vec{\nabla} T$ und $\vec{j} = \sigma \vec{E} = -\sigma \vec{\nabla} \Phi$; das elektrische Potential Φ spielt im Ladungstransport die gleiche Rolle wie das Temperaturfeld T im Wärmetransport. Die Leitfähigkeit σ erhalten wir aus der Überlegung, dass anstelle von Wärme Ladung transportiert werden soll (n = N/V):

$$\kappa \sim v^2 c_v \tau \sim v^2 n k_B \tau \sim m v^2 n k_B \tau / m \sim (n \tau / m) k_B^2 T \rightarrow (n \tau / m) e^2$$
.

Dies ergibt die Drude Leitfähigkeit

$$\sigma = e^2 n \tau / m.$$

Das Verhältnis $\kappa/\sigma T=(3/2)(k_B/e)^2$ (Wiedemann und Franz) hängt nur von Naturkonstanten ab.

Die Kontinuitätsgleichung für die Entropie erhalten wir aus (9.6) und

$$Tds = du - (\mu - Le\Phi)dn, \tag{9.7}$$

mit dem elektrochemischen Potential zusammengesetzt aus chemischem (μ) und elektrischem (Φ) Potential. Wir leiten nach der Zeit ab und benutzen die Ladungserhaltung

$$-\frac{\partial q}{\partial t} = \rho L e \frac{\partial n}{\partial t} = \vec{\nabla} \cdot \vec{j}.$$

um zu finden, dass

$$T\rho \frac{\partial s}{\partial t} = \rho \frac{\partial u}{\partial t} - \rho(\mu - Le\Phi) \frac{\partial n}{\partial t}$$
$$= \rho \frac{\partial u}{\partial t} + \left(\Phi - \frac{\mu}{L_e}\right) \vec{\nabla} \cdot \vec{j}. \tag{9.8}$$

Einsetzen von (9.6) und Einführung des chemischen Potentials pro Teilchen $\xi = \mu/L$ ergibt dann die Kontinuitätsgleichung für die spezifische Entropie s,

$$\rho \frac{\partial s}{\partial t} + \vec{\nabla} \cdot \underbrace{\frac{\vec{w} + \xi \vec{j}/e}{T}}_{\vec{j}_s} = \underbrace{-\frac{\vec{w}}{T} \frac{\vec{\nabla}T}{T} + \frac{\vec{j}}{T} \left(\vec{E} + \vec{\nabla} \frac{\xi}{e} \right)}_{\vartheta}$$
(9.9)

mit der Entropiestromdichte $\vec{j}_s \equiv \vec{\mathrm{w}}/T = (\vec{w} + \xi \vec{j}/e)/T$ und dem elektrochemischen Kraftfeld $\vec{\mathcal{E}} = \vec{E} + \vec{\nabla} \xi/e$. Die Entropiequelle ϑ fassen wir wiederum als Produkt des verallgemeinerten Stromes $(\vec{\mathrm{w}}, \vec{j})$ und der verallgemeinerten Kräfte $(-(\vec{\nabla}T)/T, \vec{\mathcal{E}})$ auf. Für den Wärme- und Ladungstransport stellen wir den folgenden linearen Ansatz auf,

$$\vec{\mathbf{w}} = -\alpha \frac{\vec{\nabla}T}{T} + \beta \vec{\mathcal{E}},$$

$$\vec{j} = -\gamma \frac{\vec{\nabla}T}{T} + \delta \vec{\mathcal{E}}.$$
(9.10)

Auflösen nach $\vec{\mathrm{w}}$ und $\vec{\mathcal{E}}$ ergibt die Standardform

$$\vec{\mathbf{w}} = \vec{w} + \frac{\xi}{e} \vec{j} = -\kappa \vec{\nabla} T - \Pi \vec{j},$$

$$\vec{\mathcal{E}} = \vec{E} + \vec{\nabla} \frac{\xi}{e} = \frac{1}{\sigma} \vec{j} - \varepsilon \vec{\nabla} T,$$
(9.11)

mit

$$\begin{array}{lll} \alpha & = & \kappa T + \sigma \Pi \varepsilon T, \\ \beta & = & -\sigma \Pi, \\ \gamma & = & -\varepsilon \sigma T, \\ \delta & = & \sigma, \\ \kappa & = & \text{Wärmeleitungskoeffizient}, \\ \sigma & = & \text{Leitfähigkeit}, \\ \Pi & = & \text{Peltierkoeffizient}, \\ \varepsilon & = & \text{Thermokraft}. \end{array} \tag{9.12}$$

Aus der Onsager-Relation $\gamma=\beta$ (siehe später) folgt $\varepsilon=\Pi/T$. Der Peltier-koeffizient ist nicht einfach abzuschätzen.

Aus der ersten Gleichung von (9.11) folgt für $\vec{j}=0$ die Wärmeleitungsgleichung. In diesem Fall muss gemäss der zweiten Gleichung von (9.11) der Temperaturgradient $\vec{\nabla} T$ durch ein elektrisches Feld \vec{E} kompensiert werden, $\vec{E}=-\varepsilon\vec{\nabla} T(-\vec{\nabla}\xi/e)$, woraus sich die Bezeichnung 'Thermokraft' für den Koeffizienten ε in natürlicher Weise ergibt. Für T,ξ homogen folgt das

Ohm'sche Gesetz $\vec{j} = \sigma \vec{E}$. Allgemeiner gilt $\vec{j} = \sigma(\vec{E} + \vec{E}_e)$ mit der eingeprägten elektrischen Feldstärke $\vec{E}_e = \varepsilon \vec{\nabla} T (+\vec{\nabla} \xi/e)$. Beachte, dass für $\vec{j} \neq 0$ auch bei $\vec{\nabla} T = 0$ ein Wärmetransport stattfindet, $\vec{w} = -\Pi \vec{j}$.

Der Term $\vec{\nabla}\xi/e$ kommt in Metallkontakten zum Tragen: Betrachte zwei verschiedene, kontaktierende Metalle im Gleichgewicht. Mit $\vec{j}=\vec{\mathrm{w}}=\vec{\nabla}T=0$ gilt

$$\vec{E} = -\vec{\nabla}\frac{\xi}{e} \to \Delta\Phi = \frac{\Delta\xi}{e} = \text{Kontaktspannung.}$$
 (9.13)

Unter den thermoelektrischen Effekten erwähnen wir den Thomson-Effekt: Für einen stationären Transport mit $\vec{j} \neq 0$, $\vec{\nabla}T \neq 0$, $\vec{\nabla} \cdot \vec{j} = 0$ findet man durch Einsetzen von (9.11) in (9.6) und $\vec{\nabla}\Pi = (\partial \Pi/\partial T)\vec{\nabla}T$

$$\rho \,\partial_t u = \vec{\nabla} \cdot (\kappa \vec{\nabla} T) + \left(\frac{\partial \Pi}{\partial T} - \varepsilon \right) \vec{j} \cdot \vec{\nabla} T + \frac{1}{\sigma^2} \vec{j} \cdot \vec{j}, \tag{9.14}$$

wobei der erste und letzte Term auf der rechten Seite durch Wärmeleitung und Joulesche Wärme entstehen; der mittlere Term beschreibt die Thomson-Wärme. Der *Peltier-Effekt* ist das Phänomens des Wärmestaus $\Delta\Pi\,j$ an der Kontaktstelle zweier verschiedener Metalle.

Schliesslich erwähnen wir die elektromotorische Kraft in einem Stromkreis mit verschiedenen Metallen bei $\nabla T \neq 0$,

$$V_{EMK} = \Delta \varepsilon \left(T_2 - T_1 \right), \tag{9.15}$$

mit den verschiedenen Temperaturen T_i der beiden Lötstellen und $\Delta \varepsilon = \varepsilon_{II} - \varepsilon_I$, vgl. Abb. 9.1

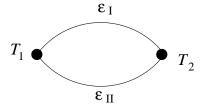


Abb. 9.1: Zur elektromotorischen Kraft in einem Stromkreis mit verschiedenen Metallen und getrieben durch eine Temperaturdifferenz zwischen den beiden Lötstellen.

9.4 Onsager Relationen

Eine wichtige Gesetzmässigkeit in all diesen Transportphänomenen sind die Onsager-Casimir-Reziprozitätsbeziehungen für die Transportkoeffizienten. Hier geben wir nur deren Formulierung; ihre Herleitung erfordert eine mikroskopische Betrachtung. Wir gehen aus von der Kontinuitätsgleichung für die Entropie,

$$\rho \frac{ds}{dt} + \vec{\nabla} \cdot \vec{j}_s = \vartheta \tag{9.16}$$

(ohne Konvektion, d.h. (9.16) gilt im mitströmenden System). Die lokale Entropieerzeugung ϑ lässt sich immer als Summe von Produkten von Flüssen X_i und thermodynamischen Kräften K_i schreiben,

$$\vartheta = \frac{1}{T} \sum_{i} X_i K_i. \tag{9.17}$$

Nahe beim Gleichgewicht ergeben sich die Flüsse aus den Kräften durch den linearen Zusammenhang

$$X_i = \sum_{j=1}^n a_{ij} K_j. (9.18)$$

Dann erfüllen die $Transportkoeffizienten a_{ij}$ die folgenden Onsager-Casimir-Reziprozitätsbeziehungen:

$$a_{ij} = \varepsilon_i \varepsilon_j a_{ji},$$

$$\varepsilon_i = \begin{cases} 1, & \text{falls } K_i(t) = K_i(-t) \\ -1, & \text{falls } K_i(t) = -K_i(-t). \end{cases}$$

$$(9.19)$$

Die Richtigkeit dieser Beziehungen basiert auf der mikroskopischen Zeitumkehr-Invarianz.

Betrachte als Beispiel die Wärmeleitung im anisotropen Medium. Es gilt

$$w_{i} = -\sum_{j} \kappa_{ij} \frac{\partial T}{\partial x_{j}}, \qquad (9.20)$$

$$\kappa_{ij} = \kappa_{ji}.$$

Im Magnetfeld verallgemeinert sich der zweite Teil von (9.20) zu

$$\kappa_{ij}(\vec{B}) = \kappa_{ji}(-\vec{B})$$

(für Elektronen im Magnetfeld gilt $m\dot{\vec{v}}=-e(\vec{v}\times\vec{B}\,)/c$; diese Dynamik ist unter gleichzeitiger Umkehr $t,\vec{B}\to -t,-\vec{B}$ invariant).

Kapitel 10

Statistische Beschreibungen

Wir beginnen nun damit, die Resultate der Thermodynamik mikroskopisch herzuleiten und in verschiedene Richtungen zu erweitern. Entsprechend wollen wir ein Vielteilchensystem betrachten, das wir durch einen Satz von Koordinaten beschreiben können, die gegeben sind durch

$$(p,q) \equiv \{p_1, \dots, p_{3N}, q_1, \dots, q_{3N}\} \in \Gamma$$
 (10.1)

mit dem Zustand (p,q) und dem Zustandsraum Γ , dim $\Gamma=6N$ und N die Teilchenzahl. Mit der Hamiltonfunktion $\mathcal{H}(p,q)$ wird die Dynamik des Systems festgelegt,

$$\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i},
\dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i}.$$
(10.2)

Im Experiment wird das System untersucht, indem eine Messgrösse $\mathcal{M}(p,q)$ über einen Zeitraum T betrachtet wird — man ist am Wert des Zeitmittels interessiert,

$$\overline{\mathcal{M}}^T = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \mathcal{M}[p(t), q(t)], \tag{10.3}$$

wobei [p(t),q(t)] eine Trajektorie in Γ beschreibt. Für ein System im thermodynamischen Gleichgewicht ergibt (10.3) ein endliches Resultat. Für den Theoretiker ist der Zeitmittelwert $\overline{\mathcal{M}}^T$ praktisch nicht zugänglich. Mit modernen Computern können $\sim 10^9$ Teilchen über einige Millionen Zeitschritte in molekulardynamischen Simulationen beschrieben werden; mit typischen Stosszeiten im Bereich 10^{-12} s entspricht dies einem Zeitintervall von 10^{-6} s — nicht nur sind derartige Rechnungen weit weg von den 10^{23} Teilchen, die über Zeiträume von Millisekunden bis Tage oder länger experimentell untersucht werden; auch sind wir meist an der resultierenden riesigen Datenmenge

wenig interessiert und extrahieren daraus nur spezifische Kenngrössen des Systems. Im statistisch mechanischen Zugang wird der Zeitmittelwert (10.3) als Zielgrösse durch den Ensemble-Mittelwert

$$\langle M \rangle = \frac{\int d^{3N} p \, d^{3N} q \, \mathcal{M}(p, q) \, \rho(p, q)}{\int d^{3N} p \, d^{3N} q \, \rho(p, q)}$$
(10.4)

ersetzt. Dabei besagt die Dichtefunktion

$$\rho(p,q)d^{3N}p\,d^{3N}q\tag{10.5}$$

mit welcher Wahrscheinlichkeit das System im Volumen $d^{3N}p\,d^{3N}q$ um den Punkt (p,q) des Phasenraumes Γ anzutreffen ist. Im allgemeinen ist $\rho(p,q,t)$ zeitabhängig: Die Dichteänderung $\partial \rho/\partial t$ im Volumen $\omega \subset \Gamma$ kann nur durch Abfluss/Zufluss von Dichte durch den Rand $\partial \omega$ erfolgen,

$$\int_{\omega \subset \Gamma} d\omega \, \frac{\partial \rho}{\partial t} = \int_{\partial \omega} d\vec{\sigma} \cdot (\dot{p}, \dot{q}) \rho$$

$$\stackrel{\text{Gauss}}{=} - \int_{\omega} d\omega \, (\nabla_{p}, \nabla_{q}) \cdot [(\dot{p}, \dot{q}) \rho], \quad \forall \omega$$

$$\rightarrow \frac{\partial \rho}{\partial t} = -(\nabla_{p}, \nabla_{q}) \cdot [(\dot{p}, \dot{q}) \rho]$$

$$= \sum_{i=1}^{3N} -\frac{\partial (\dot{p}_{i} \rho)}{\partial p_{i}} -\frac{\partial (\dot{q}_{i} \rho)}{\partial q_{i}}$$

$$= \sum_{i=1}^{3N} \frac{\partial \rho}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q_{i}} -\frac{\partial \rho}{\partial q_{i}} \frac{\partial \mathcal{H}}{\partial p_{i}}, \quad (10.6)$$

wobei wir benutzt haben, dass

$$\frac{\partial \dot{p}_i}{\partial p_i} + \frac{\partial \dot{q}_i}{\partial q_i} = 0,$$

$$\frac{\partial \mathcal{H}}{\partial q_i} = -\dot{p}_i, \qquad \frac{\partial \mathcal{H}}{\partial p_i} = \dot{q}_i.$$

Offensichtlich verschwindet die massive Ableitung von ρ ,

$$[\partial_t + (\dot{p}, \dot{q}) \cdot (\nabla_p, \nabla_q)]\rho = \frac{d\rho}{dt} = 0, \tag{10.7}$$

das Liouvillesche Theorem, aber die partielle Ableitung $\partial_t \rho \neq 0$ verschwindet im allgemeinen nicht¹.

In der statistischen Mechanik interessiert uns aber nicht ein allgemeiner Zustand des System, sondern spezifisch der thermodynamische Gleichgewichtszustand. Für ein isoliertes System (Volumen V, Teilchenzahl N,

 $^{^1}$ Man interpretiert die Zustandsdichte ρ dann als die Dichte einer *inkompressiblen* Flüssigkeit im Γ -Raum.

Energie E) wird die Dichtefunktion $\rho(p,q)$ durch das Postulat gleicher a priori Wahrscheinlichkeit

$$\rho(p,q) = \begin{cases} \text{const}, & E < \mathcal{H}(p,q) < E + \Delta, \\ 0, & \text{sonst} \end{cases}$$
 (10.8)

für jeden mit den Nebenbedingungen verträglichen Zustand (p,q) festgelegt. Da $\rho(p,q) = \rho(\mathcal{H}(p,q))$, gilt mit (10.6) sofort $\partial_t \rho = 0$, d.h., ρ ist im thermodynamischen Gleichgewichtszustand zeitunabhängig.

Man nennt einen Satz von Systemen präpariert unter identischen makroskopischen Bedingungen (z.B. V, N, E fixiert) ein Ensemble. Zum (Gleichgewichts-) Ensemble gehört die Dichtefunktion $\rho(p,q)$; das Ensemble charakterisiert durch V, N, E und $\rho(p,q)$ gemäss (10.8) heisst mikrokanonisch.

Die Grundidee der statistischen Mechanik ist dann, dass Zeitmittel und Ensemblemittel übereinstimmen,

$$\overline{\mathcal{M}}^T = \langle \mathcal{M} \rangle,$$
 (10.9)
Zeitmittel = Ensemblemittel.

Man überzeugt sich leicht, dass (10.9) richtig ist, falls das im Labor präparierte individuelle System im Zeitraum T der Messung alle mit den Nebenbedingungen N, V, E verträglichen Zustände in Γ gleich oft besucht, d.h. die Trajektorie [p(t), q(t)] überstreicht $\Gamma_{N,V,E}$ homogen. Diese Ergodenhypothese ist nichttrivial. Welche dynamischen Systeme sie (nicht) erfüllen, ist Gegenstand aktueller Forschung. Die Ergodenhypothese wird im Rahmen der Physik der Gläser relevant verletzt².

Im Zusammenhang mit (10.9) steht auch die Idee der *Selbstmittelung*: Wir könnten (10.9) glaubhaft realisieren, indem wir statt eines Systems eine grosse Anzahl derselben ausmessen,

$$\langle \mathcal{M} \rangle = \sum_{\text{viele Systeme}} \frac{\overline{\mathcal{M}}^T}{\text{Anzahl Systeme}}.$$
 (10.10)

Die Idee der Selbstmittelung besagt dann, dass wir ein System von 10^{23} Teilchen in V als eine Menge von statistisch unabhängigen Systemen in den Teilvolumina δV_i , $V = \sum_i \delta V_i$ auffassen können. Ebenso können wir das Zeitintervall T in Subintervalle δT_i , $T = \sum_i \delta T_i$ teilen und derart zu einer Menge von statistisch unabhängigen Experimenten gelangen. Wichtig ist dabei, dass die Volumina δV und Intervalle δT grösser sind als die im

 $^{^2}$ Wenn das System in den Glaszustand einfriert, entstehen für Temperaturen $T\to 0$ unendlich hohe Barrieren, die den Phasenraum Γ in Subräume unterteilen, aus denen das System nur in hierarchisch längeren unendlichen Zeiträumen entfliehen kann; d.h. das System wird in engen Teilgebieten von Γ eingefangen.

System auftauchenden Korrelationen in Ort und Zeit, $\delta V \gg \xi^3$, $\delta T \gg \tau$, $\xi = \text{Korrelationslänge}$, $\tau = \text{Korrelationszeit}$.

Ausgehend von obigen Konzepten lässt sich die statistische Physik in verschiedene Richtungen entwickeln:

- 1. Wir entwickeln die Thermodynamik aus dem a priori Ansatz für ρ_{mikro} im mikrokanonischen Ensemble und gehen anschliessend via Ankopplung des Systems an Reservoire (T-Reservoir, E fluktuiert; μ -Reservoir, N fluktuiert) zu neuen Ensembles über. Die neuen Ensembles sind das kanonische mit $\rho_{\text{kan}} \sim \exp[-\mathcal{H}(p,q)/T]$ und das grosskanonische mit $\rho_{\text{gkan}} \sim \exp[-(\mathcal{H}-\mu N)/T]$. Die natürlichen, zu den drei Ensembles gehörigen thermodynamischen Potentiale sind entsprechend der fixierten Variablen gerade S(U=E,V,N) (mikrokanonisch), F(T,V,N) (kanonisch), und $\Omega(T,V,z(\mu))$ (grosskanonisch).
- 2. Wir verallgemeinern diese klassischen Ideen auf quantenmechanische Systeme,

$$\rho_{(p,q)} \to \text{Dichteoperator } \rho = \sum_{i} w_{i} |\Psi_{i}\rangle\langle\Psi_{i}|$$
(10.11)

mit w_i der Wahrscheinlichkeit das System im Zustand $|\Psi_i\rangle$ zu finden.

- 3. Wir vereinfachen die statistische Beschreibung und analysieren die Physik weg von aber in der Nähe des Gleichgewichtes. Dies bringt uns zur Physik der *Transportphänomene* und der Relaxation.
- 4. Wir verallgemeinern die Nichtgleichgewichtsphysik/Transport auf Quantensysteme.
- 5. Wir studieren die Theorie stochastischer Prozesse, insbesondere die Langevin Dynamik dissipativer Systeme.

In dieser Vorlesung werden wir Aspekte von 3 und 1 (in dieser Reihenfolge) diskutieren. Eine tiefere Behandlung von 1 und 2 ist das Thema der Vorlesung 'Statistische Physik'; die Themen 4 und 5 sind sehr interessant aber mehr spezieller Natur.

Als Einstieg zur Transport/Nichtgleichgewichts Physik vereinfachen wir die statistische Beschreibung. Im Rahmen der klassischen kinetischen Theorie wird anstelle der ad hoc Annahme (10.8) das Konzept des molekularen Chaos eingeführt. Hierbei geht man durch Integration über die Koordinaten $(\vec{p}_2, \ldots, \vec{p}_N; \vec{q}_2, \ldots, \vec{q}_N)$ zu einer Einteilchen-Verteilungsfunktion $f(\vec{p}, \vec{q}, t)$ über,

$$f(\vec{p}, \vec{q}, t) = N \int d^3 p_2 \dots d^3 p_N d^3 q_2 \dots d^3 q_N \rho(\vec{p}, \vec{p}_2, \dots; \vec{q}, \vec{q}_2, \dots; \vec{q}_N),$$
(10.12)

wobei der Faktor N aus der Normierung

$$\int_{\Gamma} d\omega \, \rho = 1 \tag{10.13}$$

und der Symmetrie von ρ in den Argumenten $(\vec{p_i}, \vec{q_i})$ folgt (man kann jedes der N Teilchen als Repräsentant wählen). Eine Beschreibung des Systems via der Einteilchenverteilungsfunktion f macht nur Sinn, wenn die Korrelationen im System klein sind, was typischerweise in einem Gas der Fall ist. Mit

$$f_2(\vec{p}_1, \vec{q}_1; \vec{p}_2, \vec{q}_2; t) = \frac{N(N-1)}{2} \int d^3p_3 \dots d^3q_N \, \rho(\vec{p}_1, \vec{p}_2, \vec{p}_3, \dots \vec{q}_1, \vec{q}_2, \dots \vec{q}_N)$$
(10.14)

entspricht dies der Forderung

$$f_2(\vec{p}_1, \vec{q}_1; \vec{p}_2, \vec{q}_2; t) \approx f(\vec{p}_1, \vec{q}_1, t) f(\vec{p}_2, \vec{q}_2, t),$$
 (10.15)

der Forderung des molekularen Chaos. Üblicherweise verlangt man (10.15) bei $\vec{q}_1 = \vec{q}_2 = \vec{q}$. Für die Einteilchenverteilungsfunktion $f(\vec{p}, \vec{q}, t)$ können wir dann eine kinetische Gleichung, die Boltzmann-Transport-Gleichung, aufstellen und zu lösen versuchen.

Kapitel 11

Kinetische Gastheorie

Wir betrachten ein Gas¹ von Teilchen und beschreiben seine statistischen Eigenschaften durch die Einteilchenverteilungsfunktion

$$f(\vec{p}, \vec{q}, t) d^3p d^3q$$
 = Anzahl Teilchen zur Zeit t (11.1)
im Volumen $d^3p d^3q$ um den Punkt $(\vec{p}, \vec{q}) \in \mu$
des Einteilchenphasenraumes μ .

Es gilt die Normierung

$$\int d^3p \, d^3q \, f(\vec{p}, \vec{q}, t) = N. \tag{11.2}$$

Die Homogenität in \vec{q} ergibt (sofern diese vorliegt)

$$\int d^3p \, f(\vec{p}, \vec{q}, t) = \frac{N}{V} = n, \tag{11.3}$$

mit der Teilchendichte n=N/V. Die Kontinuitätsgleichung im μ -Raum besagt, dass keine Teilchen verschwinden,

$$\partial_t f + \partial_{x_\mu}(v_\mu f) = 0, \qquad x_\mu = (\vec{p}, \vec{q}), \qquad v_\mu = \dot{x}_\mu,$$

oder, in mehr konventioneller Notation,

$$\partial_t f + \dot{\vec{q}} \cdot \vec{\nabla}_{\vec{q}} f + \dot{\vec{p}} \cdot \vec{\nabla}_{\vec{p}} f = 0. \tag{11.4}$$

Die Hamiltongleichungen $\dot{\vec{p}} = -\partial_{\vec{q}}\mathcal{H} = \vec{F}$ und $\dot{\vec{q}} = \partial_{\vec{p}}\mathcal{H}$ ergeben die auf die Teilchen wirkende Kraft und die Geschwindigkeit in Abhängigkeit von der Position (\vec{p}, \vec{q}) im Phasenraum.

¹schwach wechselwirkend, nur Stösse sind relevant

Die Gleichung (11.4) gilt im reinen Strömungsfall. Die zwischen den Teilchen auftretenden Stösse müssen via eines Stossterms, vgl. Abb. 11.1,

$$\left. \frac{\partial f}{\partial t} \right|_{\text{Stösse}}$$

berücksichtigt werden und wir erhalten die Boltzmann Transportgleichung,

$$\partial_t f + \dot{\vec{q}} \cdot \vec{\nabla}_{\vec{q}} f + \dot{\vec{p}} \cdot \vec{\nabla}_{\vec{r}} f = \partial_t f|_{\text{Stösse}}.$$
 (11.5)

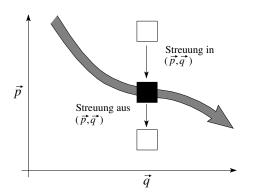


Abb. 11.1: Beiträge zur Veränderung von $f(\vec{p}, \vec{q}, t)$ am Ort \vec{q} aufgrund von Streuprozessen in das Volumen um \vec{p} hinein und um das Volumen um \vec{p} hinaus.

Beachte, dass \vec{p} in (11.5) der kanonische Impuls \vec{p}_c ist und nicht der kinetische Impuls \vec{p}_k , $\dot{\vec{p}}_k = \vec{F}$, mit der Kraft \vec{F} . Für ein Gas im Kraftfeld \vec{F} ist $\dot{\vec{q}} = \vec{p}/m, \ \dot{\vec{p}} = \vec{F}$.

11.1 Stossterme

Der Stossterm in der Boltzmann Transportgleichung ist üblicherweise sehr komplex und hängt vom System ab. Als einfachstes Beispiel können wir den Fall betrachten, wo die Gasteilchen an lokalen Defektpotentialen, Verunreinigungen stossen (vgl. Diagramme in Abb. 11.2), z.B., das dünne, sich klassisch verhaltende Elektronengas in einem dotierten Halbleiter. Die Streurate³

$$w_{\vec{p}',\vec{p}} \approx \frac{2\pi}{\hbar} N_{\rm imp} |\langle \vec{p}' | V_{\rm imp} | \vec{p} \rangle|^2 \delta(\varepsilon_{p'} - \varepsilon_p) \rho(p') = w_{\vec{p},\vec{p}'}$$
 (11.7)

$$df/dt = \partial_t f|_{\vec{q}, \vec{p}_k} + \dot{\vec{q}} \cdot \vec{\nabla}_{\vec{q}} f|_{\vec{p}_k, t} + \dot{\vec{p}} \cdot \vec{\nabla}_{\vec{p}_k} f|_{\vec{q}, t}. \tag{11.6}$$

Die Gleichung (11.5) beschreibt also auch ein geladenes Teilchen im Magnetfeld mit \vec{p} , $\dot{\vec{p}} = \vec{F}$, dem kinetischen Impuls.

 $^{^2}$ Für eine geschwindigkeitsunabhängige Kraft ist $\vec{p_c} = \vec{p_k}$. Für ein geladenes (Ladung q) Teilchen im Magnetfeld \vec{B} ist $\vec{p_c} = \vec{p_k} + q\vec{A}(\vec{q},t)$ und $\vec{p_k} = \vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$. Dann ist eine Transformation auf den kinetischen Impuls $\vec{p_k} = m\vec{v}$ angebracht: es ist $f_k(\vec{q},\vec{p_k})$ d^3q $d^3p_k = f_c(\vec{q},\vec{p_c})$ d^3q d^3p_c und bei fixem \vec{q} und t ist $d^3p_c = d^3p_k$; somit ist $f_k = f_c = f$. Das totale Differential df/dt lässt sich auch in den Koordinaten $(\vec{q},\vec{p_k},t)$ aufschreiben, also gilt für $f(\vec{q},\vec{p_k},t)$

³Man vergewissere ich, dass dieser Ausdruck dimensionell korrekt ist.

wird als mikroskopischer Prozess im Rahmen der Quantenmechanik berechnet. Die Deltafunktion mit den Energien ε_p , $\varepsilon_{p'}$ ist eine Folge der *Energieerhaltung* im Streuprozess (das Defektpotenial ist statisch); bei der Teilchen-Defekt Streuung ist der Impuls des Teilchens nicht erhalten.

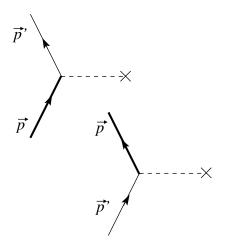


Abb. 11.2: Diagramme zur Teilchen-Defekt Streuung, mit Prozessen die das Gewicht im Kanal um den Impuls \vec{p} verringern (oben) beziehungsweise erhöhen (unten).

Für das Stossintegral erhalten wir den Ausdruck

$$\partial_t f|_{\text{St\"{o}sse}} = -\int d^3 p' \, w_{\vec{p}',\vec{p}} [f(\vec{p}) - f(\vec{p}')].$$
 (11.8)

Sind Streuprozesse zwischen den Teilchen zu berücksichtigen⁴ so tritt anstelle von (11.8) der Ausdruck

$$\partial_t f|_{\text{Stösse}} = -\int d^3 p' \, d^3 p_1 \, d^3 p'_1 [w_{\vec{p}', \vec{p}_1'; \vec{p}, \vec{p}_1} f(\vec{p}) f(\vec{p}_1) \qquad (11.9)$$
$$-w_{\vec{p}, \vec{p}_1; \vec{p}', \vec{p}_1'} f(\vec{p}') f(\vec{p}_1')].$$

Graphisch lassen sich diese Streuprozesse durch die in Abb. 11.3 skizzierten Diagramme darstellen.

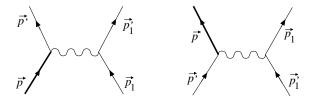


Abb. 11.3: Diagramme zur Teilchen-Teilchen Streuung, mit Prozessen die aus dem Volumen d^3p um \vec{p} hinaus (links) und hinein (rechts) führen.

⁴Im Gas ist dies der einzige Streuprozess, der das Gleichgewicht herstellen kann.

Die Matrixelemente (Streuraten) folgen wiederum aus quantenmechanischen Betrachtungen und weisen folgende Symmetrieeigenschaften auf,

$$\begin{array}{rclcrcl} w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} &=& w_{R\vec{p}',R\vec{p}_{1}';R\vec{p},R\vec{p}_{1}} & \text{Rotation } R, \\ w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} &=& w_{-\vec{p},-\vec{p}_{1};-\vec{p}',-\vec{p}_{1}'} & \text{Zeitumkehr } T, \\ w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} &=& w_{-\vec{p}',-\vec{p}_{1}';-\vec{p},-\vec{p}_{1}} & \text{Parität } P, & (11.10) \\ TP \to w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} &=& w_{\vec{p},\vec{p}_{1};\vec{p}',\vec{p}_{1}'} & \text{mikroskopisches Glgw}. \end{array}$$

Aus der Kombination von (11.9) und den Symmetrien (11.10) erhalten wir

$$\partial_t f|_{\text{St\"osse}} = -\int d^3 p' \, d^3 p_1 \, d^3 p'_1 \, w_{\vec{p}', \vec{p}_1'; \vec{p}, \vec{p}_1} [f(\vec{p}) f(\vec{p}_1) - f(\vec{p}') f(\vec{p}_1')]. \quad (11.11)$$

Für die Teilchen-Teilchen Streuung gilt die Erhaltung von Energie und Impuls, weshalb die Streuraten folgende δ -Funktionen involvieren,

$$w_{\vec{p}',\vec{p}_1';\vec{p},\vec{p}_1} \propto \delta^3(\vec{p} + \vec{p}_1 - \vec{p}' - \vec{p}_1')\delta(\varepsilon_p + \varepsilon_{p_1} - \varepsilon_{p'} - \varepsilon_{p'_1}). \tag{11.12}$$

Das Resultat (11.11) ist zentral für die Betrachtungen in diesem Kapitel. Versteckt haben wir die Annahme des molekularen Chaos gebraucht: In (11.11) sollten wir anstelle der Produkte jeweils die Zweiteilchen Verteilungsfunktion $f_2(\vec{p}, \vec{q}; \vec{p}_1, \vec{q}; t)$ und $f_2(\vec{p}', \vec{q}; \vec{p}_1', \vec{q}; t)$ benutzen. Dann müssten wir eine kinetische Gleichung für f_2 aufstellen, die dann via Teilchen-Teilchen-Streuung an f_3 koppelt, usf. Es resultiert die Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchie für die n-Teilchen Verteilungsfunktionen f_n . Indem wir die BBGKY-Hierarchie mit dem Ansatz $f_2(\vec{p}, \vec{q}; \vec{p}_1, \vec{q}; t) \approx f(\vec{p}, \vec{q}, t) f(\vec{p}_1, \vec{q}, t)$ des molekularen Chaos abbrechen, vernachlässigen wir Vielteilchen-Korrelationen im Gas.

11.1.1 Verallgemeinerungen des Stosszahlansatzes*

Der Vollständigkeit halber erwähnen wir noch einige weitere Punkte im Zusammenhang mit dem Stosszahlansatz $\partial_t f|_{\text{Stösse}}$; diese Diskussion soll uns die vielseitige Anwendbarkeit der Boltzmann-Transportgleichung aufzeigen.

Statistik

Beim Übergang zur quantenmechanischen Beschreibung der Streuprozesse ist die Statistik der Teilchen zu berücksichtigen. Insbesondere können Fermionen nicht in einen bereits besetzten Zustand hineingetreut werden und die Verteilungsfunktion f nimmt Werte im Intervall [0,1] an. Ein erfolgreicher Ansatz der diese Pauliblockade in der Teilchen-Defekt Streuung im (entarteten) Elektronengas berücksichtigt hat die Form

(11.8):
$$w[\] \rightarrow w_{\vec{p}',\vec{p}}f(\vec{p})(1-f(\vec{p}')) - w_{\vec{p},\vec{p}'}f(\vec{p}')(1-f(\vec{p}))$$

= $w_{\vec{p}',\vec{p}}[f(\vec{p})-f(\vec{p}')],$ (11.13)

wobei wir die Symmetrie $w_{\vec{p},\vec{p}'}=w_{\vec{p}',\vec{p}}$ genutzt haben. Offensichtlich hat die Pauliblockade keinen Einfluss auf die Form der Teilchen-Defekt Streuung. Für die Teilchen-Teilchen Streuung ergibt sich die Verallgemeinerung

(11.11):
$$[] \rightarrow f(\vec{p})f(\vec{p}_1)(1-f(\vec{p}'))(1-f(\vec{p}_1'))$$
$$-f(\vec{p}')f(\vec{p}_1')(1-f(\vec{p}))(1-f(\vec{p}_1)).$$
(11.14)

Gehen wir vom entarteten Fermigas (im Metall) zum nicht nichtentarteten Gas (in einem Halbleiter) über, so nimmt f immer kleine Werte an und wir können die Korrekturfaktoren $1-f\approx 1$ vernachlässigen. Für Bosonen mit der Verteilungsfunktion $N\in[0,\infty]$ sind ebenfalls Korrekturen $N\to N+1$ zu berücksichtigen.

Beachte, dass diese 'quantenmechanische' Beschreibung nur als Approximation betrachtet werden kann, da eine Verteilungsfunktion $f(\vec{p}, \vec{q}, t)$ mit scharfen Werten von \vec{p} und \vec{q} dem Heisenberg Unschärfe Prinzip widerspricht. Eine vollständig quantenmechanische Beschreibung einer kinetischen Gleichung ist enorm kompliziert und bringt (in der Praxis, zumeist) nur kleine Korrekturen hervor.

Teilchen-Moden Streuung

Oft stossen die Teilchen mit anderen quantisierten Anregungen des Systems welche Teilchencharakter aufweisen. Ein typisches Beispiel ist die Elektron-Phonon Wechselwirkung im Festkörper, die durch Elektron-Phonon Streuprozesse im Stosszahlansatz beschrieben wird (vgl. Abb. 11.4),

$$\partial_{t} f|_{\text{Stösse}} = -\int d^{3}q \left\{ w_{\vec{p},-\vec{q}}^{(+)}[f(\vec{p})(1-f(\vec{p}+\vec{q}))(1+N_{-\vec{q}}) - f(\vec{p}+\vec{q})(1-f(\vec{p}))N_{-\vec{q}}] + w_{\vec{p},\vec{q}}^{(-)}[f(\vec{p})(1-f(\vec{p}+\vec{q}))N_{\vec{q}} - f(\vec{p}+\vec{q})(1-f(\vec{p}))(1+N_{\vec{q}})] \right\},$$
(11.15)

wo $N_{\vec{q}}$ die bosonische Verteilungsfunktion der Phononen bezeichnet, $N_{\vec{q}}=1/[1+\exp(\varepsilon_{\vec{q}}/k_{\rm B}T)]$ im Gleichgewicht.

Die Erhaltung der Gesamtenergie im Streuprozess erzeugt die entsprechenden δ -Funktionen in den Streuraten,

$$\begin{array}{lcl} w_{\vec{p},-\vec{q}}^{(+)} & \propto & \delta(\varepsilon_{\vec{p}+\vec{q}} - \varepsilon_{\vec{p}} + \hbar\omega_{-\vec{q}}) \\ w_{\vec{p},\vec{q}}^{(-)} & \propto & \delta(\varepsilon_{\vec{p}+\vec{q}} - \varepsilon_{\vec{p}} - \hbar\omega_{\vec{q}}); \end{array} \tag{11.16}$$

entsprechend ist in der Teilchen-Moden Streuung weder die Energie noch der Impuls der Teilchen erhalten (nur die Gesamtenergie von Teilchen und Moden ist erhalten).

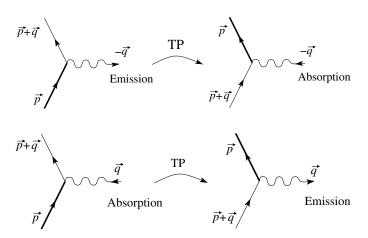


Abb. 11.4: Teilchen-Moden Streuprozesse; oben die vom ersten Term in (11.15) beschriebenen Prozesse mit Moden Emission (links) und Moden Absorption. Die unten skizzierten Prozesse werden im zweiten Term berücksichtigt.

Weiter sehen wir, dass wir in (11.15) das Pauli-Prinzip und die spontane Emission von Phononen berücksichtigt haben, indem wir die Besetzungsfaktoren $[1 - f(\vec{p})]$ und $[N_{\vec{q}} + 1]$ inkorporiert haben.

Schliesslich müssen wir noch beachten, dass die Lösung von (11.15) im allgemeinen simultan mit der Lösung einer BTG für die Phononen erfolgen muss. Der Stossterm für das Phononengas enthält dann bosonische Besetzungszahlfaktoren

$$N_{\vec{q}}N_{\vec{q}_1}(1+N_{\vec{q}'})(1+N_{\vec{q}_1'}) - N_{\vec{q}'}N_{\vec{q}_1'}(1+N_{\vec{q}})(1+N_{\vec{q}_1}). \tag{11.17}$$

11.1.2 Erhaltungssätze

Von besonderer Wichtigkeit sind die im Stosszahlansatz $\delta_t f|_{\text{Stösse}}$ auftretenden Erhaltungssätze: Gemäss (11.7), (11.12) und (11.16) finden wir für die Teilchen-Defekt (T-D), die Teilchen-Teilchen (T-T) und die Teilchen-Moden (T-M) Streuung die Erhaltungssätze in der Tabelle 11.1.2.

	Prozess		
Erhalten	T-D	Т-Т	T- M
Teilchenzahl	+	+	+
Energie	+	+	_
Impuls	_	+	_

Wir sehen, dass die T-M Streuung erlaubt, Energie und Impuls aus dem Teilchensystem zu entfernen. Im Gas mit T-T Streuung allein bleiben

Energie und Impuls dagegen immer erhalten.

Im allgemeinen stellt die Lösung der BTG ein schwieriges Problem dar: Zu lösen ist eine nichtlineare, partielle Integrodifferentialgleichung. Überlassen wir aber das System sich selber, so stellt sich nach einiger Zeit das thermodynamische Gleichgewicht ein. Als Nächstes wollen wir die entsprechende Gleichgewichts-Verteilungsfunktion f_0 finden.

11.2 Gleichgewicht: H-Theorem und Maxwell-Boltzmann Verteilung

Wir betrachten ein Gas, beschrieben durch die Verteilungsfunktion $f(\vec{p}, \vec{q}, t)$, welche Lösung der BTG sein soll,

$$\partial_t f + \frac{\vec{p}}{m} \cdot \vec{\nabla}_{\vec{q}} f + \vec{F} \cdot \vec{\nabla}_{\vec{p}} f = \partial_t f|_{\text{Stösse}},$$
 (11.18)

$$\partial_t f|_{\text{Stösse}} = -\int d^3 p' \, d^3 p_1 \, d^3 p'_1$$

$$\times w_{\vec{p}', \vec{p}_1'; \vec{p}, \vec{p}_1} \left[f(\vec{p}) f(\vec{p}_1) - f(\vec{p}') f(\vec{p}_1') \right].$$
(11.19)

Im ungetriebenen Fall $(\vec{F}=0)$ stellt sich mit der Zeit Homogenität $(\vec{\nabla}_{\vec{q}}f=0)$ und Zeitunabhängigkeit $(\partial_t f=0)$ ein. Entsprechend muss $\partial_t f|_{\text{Stösse}}$ im thermodynamischen Gleichgewicht verschwinden und wir suchen die Gleichgewichts-Lösung f_0 von (11.18) mit $\partial_t f_0|_{\text{Stösse}}=0$. Unsere Leitidee ist, dass sich für $t\to\infty$ alle Grössen, ausser den durch $\partial_t f|_{\text{Stösse}}$ erhaltenen, verändern. Betrachte dann irgend eine Grösse

$$\Phi[\vec{p}, f(\vec{p}, \vec{q}, t)]$$

und ihre assoziierte Dichte

$$\rho_{\Phi}(\vec{q},t) = \int d^3 p \,\Phi[\vec{p},f] f(\vec{p},\vec{q},t). \tag{11.20}$$

Unter Stössen ändert sich ρ_{Φ} gemäss

$$\partial_t \rho_{\Phi}|_{\text{Stösse}} = \int d^3 p \, \partial_f(\Phi f) \, \partial_t f|_{\text{Stösse}}$$

$$= \int d^3 p \, d^3 p' \, d^3 p_1 \, d^3 p'_1 \, [\Phi + f \partial_f \Phi] w_{\vec{p}', \vec{p}_1'; \vec{p}, \vec{p}_1} (f' f'_1 - f f_1).$$

$$(11.21)$$

Wir vertauschen die Variablen \vec{p} , \vec{p}' , \vec{p}_1 , \vec{p}_1' und nutzen dabei die Symmetrien in $w_{\vec{p}',\vec{p}_1';\vec{p},\vec{p}_1}$:

$$w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} = w_{\vec{p}_{1}',\vec{p}';\vec{p}_{1},\vec{p}}$$

$$PT \to w_{\vec{p}_{1},\vec{p};\vec{p}_{1}',\vec{p}'}$$

$$= w_{\vec{p},\vec{p}_{1};\vec{p}',\vec{p}_{1}'}.$$
(11.22)

Indem wir diese Vertauschungen in (11.21) ausführen, erhalten wir die vier Versionen (wir schreiben $\bar{\Phi} = \Phi + f \partial_f \Phi$)

$$\partial_{t}\rho_{\Phi}|_{\text{Stösse}} = \int d^{3}p \, d^{3}p' \, d^{3}p_{1} \, d^{3}p'_{1} \, w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}}$$

$$\begin{cases} \bar{\Phi}(\vec{p})(f'f'_{1} - ff_{1}) \\ \bar{\Phi}(\vec{p}_{1})(f'_{1}f' - f_{1}f) \\ \bar{\Phi}(\vec{p}'_{1})(f_{1}f - f'_{1}f') \end{cases} . \tag{11.23}$$

Wir rekonstruieren (11.21), indem wir je einen Viertel der vier Varianten von (11.23) nehmen und addieren,

$$\partial_{t} \rho_{\Phi}|_{\text{Stösse}} = -\int d^{3}p \, d^{3}p' \, d^{3}p_{1} \, d^{3}p'_{1} \, w_{\vec{p}',\vec{p}_{1}';\vec{p},\vec{p}_{1}} (ff_{1} - f'f'_{1})$$

$$\times \frac{1}{4} [\bar{\Phi} + \bar{\Phi}_{1} - \bar{\Phi}' - \bar{\Phi}'_{1}].$$
(11.24)

Das Resultat (11.24) ist äusserst zweckmässig. Indem wir $\Phi = \ln f$ setzen, erhalten wir das⁵

Boltzmannsche H-Theorem

$$\Phi = \ln f
\rho_{\ln f} = \int d^3 p \, f \ln f \equiv H(t)
\rightarrow \partial_t H|_{\text{Stösse}} = -\frac{1}{4} \int d^3 p \, d^3 p' \, d^3 p_1 \, d^3 p'_1 \, w_{\vec{p}', \vec{p}_1'; \vec{p}, \vec{p}_1} \qquad (11.25)
\underbrace{(f f_1 - f' f'_1) \ln \frac{f f_1}{f' f'_1}}_{(x - y) \ln(x/y) \ge 0}.$$

Die durch Stösse erzeugte H-Produktion ist immer negativ,

$$\partial_t H|_{\text{Stösse}} < 0.$$
 (11.26)

Mit der Definition der Entropiedichte ($k_{\rm B}$ die Boltzmann-Konstante)

$$s(\vec{q},t) = -k_{\rm B} \int d^3p \, f \ln f$$

findet man entsprechend, dass Stösse zu einer Zunahme der Entropie(dichte) führen (siehe auch (11.41), (11.42)),

$$\partial_t s|_{\text{Stösse}} \ge 0.$$
 (11.27)

 $^{^5 {\}rm Mit} \ \vec F = 0$ nehmen wir üblicherweise Homogenität an.

Im Gleichgewicht muss $\partial_t H|_{\text{St\"osse}} = 0$ sein ($\rightarrow \partial_t s|_{\text{St\"osse}} = 0$ und s maximal). Aus (11.25) folgt, dass

$$\partial_t H|_{\text{St\"osse}} = 0 \leftrightarrow f_0(\vec{p}) f_0(\vec{p_1}) = f_0(\vec{p}') f_0(\vec{p_1}')$$
 (11.28)

gelten muss: im Gleichgewicht ist $\log f_0$ unter Stössen erhalten,

$$\log f_0(\vec{p}) + \log f_0(\vec{p}) = \log f_0(\vec{p}') + \log f_0(\vec{p}_1'). \tag{11.29}$$

Andererseits wissen wir, dass für die Teilchen-Teilchen Streuung die Grössen $\Phi=1,\ \vec{p},\ p^2$ (Teilchenzahl, Impuls und Energie) erhalten sind. Entsprechend folgt aus (11.24), dass $\partial_t \rho_1|_{\mathrm{St\"{o}sse}}=0,\ \partial_t \rho_{\vec{p}}|_{\mathrm{St\"{o}sse}}=0,\ \partial_t \rho_{p^2}|_{\mathrm{St\"{o}sse}}=0.$ Wir ziehen den Schluss, dass $\log f_0$ eine Linearkombination der erhaltenen Grössen $1,\ \vec{p},\ p^2=2m\varepsilon$ ist,

$$\log f_{0} = A 1 + \vec{B} \cdot \vec{p} - C \varepsilon$$

$$= \log a - \frac{C}{2m} (\vec{p} - \vec{p}_{0})^{2}, \quad \vec{B} = \frac{C}{m} \vec{p}_{0}.$$

$$f_{0} = a \exp[-(C/2m)(\vec{p} - \vec{p}_{0})^{2}]. \tag{11.31}$$

Der Faktor a ergibt sich aus der Normierung

$$n = a \int d^3 p \, e^{-\frac{C}{2m}(\vec{p} - \vec{p}_0)^2} = a \int d^3 p \, e^{-\frac{C}{2m}p^2} = a \left(\frac{2\pi m}{C}\right)^{3/2}$$
$$\to a = n \left(\frac{C}{2\pi m}\right)^{3/2}. \tag{11.32}$$

Der $Vektor \vec{p}_0$ beschreibt die konvektive Strömung des Gases (Galilei-Invarianz)

$$\langle \vec{p} \rangle = \frac{\int d^3 p \, \vec{p} f_0}{\int d^3 p \, f_0} = \vec{p}_0.$$
 (11.33)

Schliesslich erhalten wir die Konstante C aus der Berechnung⁶ des Druckes $p = F_x/A$ ($F_x = pA$ die Kraft und A die Fläche) auf eine Wand bei x = const,

$$p = \int_{v_x>0} d^3p \, 2p_x v_x f_0 = \frac{a}{m} \int d^3p \, p_x^2 e^{-\frac{C}{2m}p^2}$$
$$= \frac{n}{m} \left(\frac{C}{2\pi m}\right)^{3/2} \frac{4\pi}{3} \int_0^\infty dp \, p^4 \, e^{-\frac{C}{2m}p^2} = \frac{n}{C}, \tag{11.34}$$

$$\int_0^\infty dp \, p^4 e^{-\frac{C}{2m}p^2} = \partial_\alpha^2 \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \bigg|_{\alpha = C/2m} = \frac{3}{8} \sqrt{\frac{\pi}{\alpha}} \frac{1}{\alpha^2} \bigg|_{\alpha = C/2m}.$$

⁶Wir integrieren gemäss

mit $2p_x$ dem Impulsübertrag auf die Wand und der einfallenden Stromdichte $v_x f_0$. Durch Vergleich mit der Zustandsfunktion des Gases $pV = Nk_{\rm B}T$, $p = nk_{\rm B}T$, folgt

 $C = \frac{1}{k_{\rm B}T}.\tag{11.35}$

Für die Einteilchen-Verteilungsfunktion im thermodynamischen Gleichgewicht erhalten wir damit den folgenden Ausdruck für die

Maxwell-Boltzmann Verteilung

$$f_0 = f_{\text{MB}}(\vec{p}) = n \underbrace{\left(\frac{1}{2\pi m k_{\text{B}} T}\right)^{3/2}}_{(\lambda/h)^3} e^{-\frac{(\vec{p} - \vec{p_0})^2}{2m k_{\text{B}} T}}, \tag{11.36}$$

wobei sich die Länge λ aus der Beziehung

$$\lambda^2 = \frac{2\pi\hbar^2}{mk_{\rm B}T}$$

ergibt. Dabei ist $\hbar = h/2\pi$ die Plancksche Konstante und λ entspricht der de Broglie Wellenlänge eines Teilchens mit Energie $k_{\rm B}T$. Der Vorfaktor zu $f_{\rm MB}$ hat dann die elegante Form $n\lambda^3/h^3$, wobei $n\lambda^3$ der dimensionslose Gasparameter ist und h^3 (h eine Wirkung) die korrekte Einheit der Verteilungsfunktion garantiert. Der tiefere physikalische Sinn dieser Schreibweise ergibt sich natürlich beim Übergang zu Quantengasen; hier erhalten wir eine praktische Form für f_0 .

Die mittlere Energie $\langle \varepsilon \rangle$ ergibt sich zu $(\vec{p}_0 = 0)$

$$\langle \varepsilon \rangle = \frac{\int d^3 p \left(p^2 / 2m \right) f_0}{\int d^3 p f_0} = \frac{3}{2} k_{\rm B} T \tag{11.37}$$

und die wahrscheinlichste $(\partial_p (4\pi p^2 f_0(p))|_{\bar{p}} = 0)$ und mittlere Geschwindigkeit sind (wieder für $\vec{p}_0 = 0$) gegeben durch

$$\bar{v} = \sqrt{\frac{2k_{\rm B}T}{m}},$$

$$\langle v^2 \rangle^{1/2} = \sqrt{\frac{3k_{\rm B}T}{m}} > \bar{v}.$$
(11.38)

Typische Geschwindigkeiten in Gasen bei Zimmertemperatur betragen etwa $v \sim 10^5 \, \mathrm{cm/s}$ (für $\mathrm{O_2}$). Bei einem Wirkungsquerschnitt von $\sigma \sim \pi r^2 \sim 3 \cdot 10^{-15} \, \mathrm{cm^2}$ ergibt sich die freie Weglänge $\ell \sim 1/n\sigma \sim 1000 \, \mathrm{\mathring{A}}$, wobei man $n = L/V_{\mathrm{mol}} \simeq 2.7 \cdot 10^{19} \, \mathrm{cm^{-3}}$ aus der Loschmidtschen Zahl L und dem Molvolumen V_{mol} bei Zimmertemperatur und Normaldruck findet. Daraus

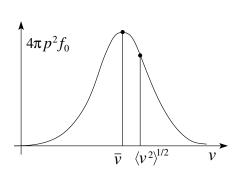


Abb. 11.5: Maxwell-Boltzmann Verteilung im klassischen Gas. Typische Werte bei Druck $p \approx 760\,\mathrm{Torr}$ und Temperatur $T \approx 300\,\mathrm{K}$ sind $a \sim 30\,\mathrm{\mathring{A}}$ (Abstand zwischen Atomen), mittlere freie Weglänge $\ell \sim 1000\,\mathrm{\mathring{A}}$, Streuzeit $\tau \sim 10^{-10}\,\mathrm{s}$, Geschwindigkeiten $v \sim 10^5\,\mathrm{cm/s}$, Dichten $n \sim 3\cdot 10^9\,\mathrm{cm}^{-3}$.

resultiert eine typische Stosszeit $\tau \sim 10^{-10}\,\mathrm{s}$. Beachte, dass der mittlere Abstand $a=1/n^{1/3}\sim 30\,\mathrm{\AA} \ll \ell \sim 1000\,\mathrm{\AA}$ ist; im Gas ist die Wechselwirkung zwischen den Atomen/Molekülen klein und Stösse sind selten.

Um die Thermodynamik des idealen Gases vollständig zu bestimmen, berechnen wir die innere Energie aus (11.37).

$$U = N\varepsilon = \frac{3}{2}Nk_{\rm B}T = \frac{3}{2}n_{\rm mol}RT, \qquad (11.39)$$

$$\rightarrow C_v = \frac{3}{2}Nk_{\rm B}, \tag{11.40}$$

sowie die Boltzmann H-Funktion im Gleichgewicht,

$$H_0 = \int d^3 p \, f_0 \log f_0 = n \log \frac{n}{(2\pi m k_{\rm B} T)^{3/2}} - \frac{3}{2} n.$$

Aus H_0 erhalten wir durch Multiplikation mit $-k_{\rm B}V$ die Entropie

$$S = Nk_{\rm B}\log\frac{T^{3/2}V}{N} + \text{const.}$$
 (11.41)

Der Vergleich mit (3.21),

$$S = n_{\text{mol}}(c_v \ln T + R \ln V)$$

= $Nk_{\text{B}} \ln T^{3/2} V$ (11.42)

erbringt die Verbesserung $V \to V/N$, wodurch S jetzt wirklich extensiv ist. Solange wir uns nur um Entropieänderungen im abgeschlossenen System mit N= const beschäftigen, ist diese Korrektur irrelevant. Wir werden später darauf zurückkommen.

11.2.1 Verteilungsfunktion für Fermionen und Bosonen*

Wir haben bereits erwähnt, dass wir beim Übergang von klassischen Teilchen zu Fermionen den quantenstatistischen Aspekt dieser Quantengase in die BTG inkorporieren können, indem wir im Stosszahlansatz den Faktor $ff_1 - f'f'_1$ durch die entsprechenden Ausdrücke ersetzen, vgl. (11.14) und auch (11.17). Die Kombination von (11.14), (11.17) mit (11.29), (11.30) ergibt sofort die Gleichgewichtsverteilungen in den Quantengasen ($\vec{p}_0 = 0$),

Fermionen: Aus (11.14) folgt

$$\frac{f_0(\vec{p})}{1 - f_0(\vec{p})} \frac{f_0(\vec{p}_1)}{1 - f_0(\vec{p}_1)} = \frac{f_0(\vec{p}')}{1 - f_0(\vec{p}')} \frac{f_0(\vec{p}_1')}{1 - f_0(\vec{p}_1')}$$

$$\stackrel{(11.30)}{\to} \log \frac{f_0}{1 - f_0} = \frac{\mu}{k_{\rm B}T} - \frac{\varepsilon_{\vec{p}}}{k_{\rm B}T}$$

$$\to f_0 = f_{\rm FD} = \frac{1}{\exp[(\varepsilon_{\vec{p}} - \mu)/k_{\rm B}T] + 1}.$$
(11.43)

Bosonen: Aus (11.17) folgt

$$\frac{N_0(\vec{q})}{1 + N_0(\vec{q})} \frac{N_0(\vec{q}_1)}{1 + N_0(\vec{q}_1)} = \frac{N_0(\vec{q}')}{1 + N_0(\vec{q}')} \frac{N_0(\vec{q}_1')}{1 + N_0(\vec{q}_1')}$$

$$\stackrel{(11.30)}{\to} \log \frac{N_0(\vec{q})}{1 + N_0(\vec{q})} = \frac{\mu}{k_{\rm B}T} - \frac{\varepsilon_{\vec{q}}}{k_{\rm B}T}$$

$$\to N_0 = N_{\rm BE} = \frac{1}{\exp[(\varepsilon_{\vec{q}} - \mu)/k_{\rm B}T] - 1}.$$
(11.44)

Für $\vec{p}_0 \neq 0$ geht $\varepsilon_{\vec{p}}$ über in $\varepsilon_{\vec{p}} - \vec{p} \cdot \vec{p}_0$ (Galilei-Transformation).

11.2.2 Alternative Herleitung von f_{MB}^*

Eine bemerkenswerte Eigenschaft der Maxwell-Boltzmann Verteilung ist ihre Unabhängigkeit von jeglichen Details des Stossprozesses. Diese Universalität von $f_{\rm MB}$ lässt vermuten, dass sich $f_{\rm MB}$ auch ohne Rückführung auf eine kinetische Gleichung finden lässt. Tatsächlich lässt sich $f_{\rm MB}$ aus einem statistischen Konzept herleiten.

Wir unterteilen den Ein-Teilchen-Phasenraum μ in K Boxen mit Volumen $\omega = \Delta^3 p \Delta^3 q$ um die Positionen $(\vec{p_i}, \vec{q_i}) \in \mu$. Die diskrete Einteilchenverteilungsfunktion f_i ergibt sich aus der Angabe der Teilchenzahl N_i in der i-ten Box,

$$f_i = \frac{N_i}{\omega}. (11.45)$$

Indem wir (11.45) über das $mikrokanonische\ Ensemble\ (10.8)$ mitteln, erhalten wir die Verteilungsfunktion im Gleichgewicht (vgl. (10.12))

$$f_{0i} = \frac{\langle N_i \rangle}{\omega},\tag{11.46}$$

wobei die Nebenbedingungen

$$\sum_{i=1}^{K} N_i = N, \quad \sum_{i=1}^{K} N_i \frac{p_i^2}{2m} = E$$
 (11.47)

zu erfüllen sind. Es ist klar, dass viele Punkte $(p,q) \in \Gamma_{E,V,N}$ dieselbe Verteilungsfunktion f_i definieren. Wir suchen diejenige Verteilung von $\{N_i\}_1^K$, die das grösste Volumen in $\Gamma_{E,V,N}$ einnimmt, indem wir annehmen, dass die wahrscheinlichste Verteilung gerade die Verteilung des Gleichgewichtes ist. Sei $\Omega\{N_i\}$ das zu $\{N_i\}_1^K$ gehörige Volumen in $\Gamma_{E,V,N}$. Mit $N!/N_1!N_2!\dots N_K!$ Anzahl Möglichkeiten N ununterscheidbare Teilchen auf K Boxen zu verteilen mit N_i Teilchen in der i-ten Box und $\rho_{\text{mikro}} = \text{const}$ ist

$$\Omega\{N_i\} \propto \frac{N!}{N_1! N_2! \dots N_{K!}!} g_1^{N_1} \dots g_K^{N_K};$$
 (11.48)

dabei sind die Zählparameter g_i am Schluss auf 1 zu setzen, $g_i = 1$. Wir berechnen den Logarithmus des Volumens (eine \sim extensive Grösse) unter Verwendung der Formel von Stirling, $\log N! \approx N \log N - N$,

$$\log \Omega\{N_i\} = \log N! - \sum_{i=1}^K \log N_i! + \sum_{i=1}^K N_i \log g_i + C$$

$$\approx N \log N - \sum_{i=1}^K N_i \log N_i + \sum_{i=1}^K N_i \log g_i + C.$$
(11.49)

Wir finden das Maximum von $\log \Omega$ unter Berücksichtigung der Nebenbedingungen (11.47) durch Variation nach N_i des Ausdruckes (α und β sind die zu den Nebenbedingungen gehörigen Lagrange Parameter),

$$\begin{split} \delta \left[\log \Omega - \alpha \sum_{i} N_{i} - \beta \sum_{i} N_{i} \varepsilon_{i} \right] &= 0 \\ \to -(1 + \log N_{0i}) + \log g_{i} - \alpha - \beta \varepsilon_{i} &= 0 \\ \to N_{0i} &= g_{i} \exp[-\alpha - \beta \varepsilon_{i} - 1] \\ \to f_{0i} &= C \exp[-\beta p_{i}^{2}/2m]. \end{split}$$
 (11.50)

Mit den üblichen Bedingungen ($\int f = n$, $p = nk_BT$) ergibt sich aus (11.50) die Maxwell-Boltzmann Verteilung als die Wahrscheinlichste aller Verteilungen, die mit den Nebenbedingungen (11.47) verträglich ist.

Wir können uns noch fragen, wie wahrscheinlich diese wahrscheinlichste Verteilung ist. Dazu betrachten wir die Varianz

$$\langle N_k^2 \rangle - \langle N_k \rangle^2 = \frac{\sum_{\{N_i\}} N_k^2 \Omega\{N_i\}}{\sum_{\{N_i\}} \Omega\{N_i\}} - \left(\frac{\sum_{\{N_i\}} N_k \Omega\{N_i\}}{\sum_{\{N_i\}} \Omega\{N_i\}}\right)^2$$
$$= g_k \frac{\partial}{\partial g_k} \langle N_k \rangle \stackrel{\text{(11.50)}}{=} N_{0k}$$
(11.51)

$$\left[\left\langle \left(\frac{N_k}{N} \right)^2 \right\rangle - \left\langle \frac{N_k}{N} \right\rangle^2 \right]^{1/2} = \frac{1}{\sqrt{N}} \left(\frac{N_{0k}}{N} \right)^{1/2}. \tag{11.52}$$

Die Verteilung $\mathcal{P}(N_k)$ ist also eng um den Maxwell-Boltzmann Wert N_{0k} herum verteilt. Für ein grosses System ist die Verteilungsfunktion f_i prak-

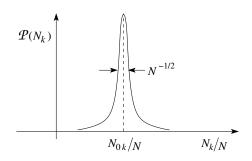


Abb. 11.6: Verteilungsfunktion $\mathcal{P}(N_k)$ zentriert um N_{0k}/N und Breite $\propto 1/\sqrt{N}$ welche im thermodynamischen Limes $N, V \to \infty$ verschwindet.

tisch immer beliebig nahe an der MB-Verteilung, $f_i \approx f_{0i}$, fast immer. Wir nennen Verteilungsfunktionen im Peak von $\mathcal{P}(N_k)$ 'essentiell MB'.

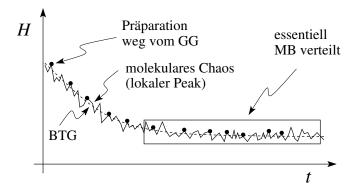


Abb. 11.7: Zeitliche Trajektorie von der Funktion H für ein System welches sich dem Gleichgewicht annähert und dann durch eine essentiell Maxwell-Boltzmann Verteilung beschrieben wird. In den durch einen Punkt bezeichneten lokalen Spitzen gilt molekulares Chaos.

Einige Bemerkungen zum H-Theorem, molekularem Chaos, Maxwell-Boltzmann Verteilung und Boltzmann Transport Gleichung. Das H-Theorem besagt, dass, falls das Gas im Zustand molekularen Chaos ist, dann gilt

$$\frac{dH}{dt}\Big|_{0+} \le 0 \quad \text{und} \quad \frac{dH}{dt}\Big|_{0+} = 0 \Leftrightarrow f = f_{\text{MB}}.$$
 (11.53)

Aus der mikroskopischen Zeitumkehrinvarianz folgt, dass dann auch

$$\left. \frac{dH}{dt} \right|_{0-} \ge 0; \tag{11.54}$$

entsprechend sind die Zustände des molekularen Chaos dort zu finden, wo H einen Peak zeigt (aber nicht jeder Peak korrespondiert einem Zustand molekularen Chaos). Eine Trajektorie der Funktion H hat damit auf einer mikroskopischen Skala das in Abbildung 11.7 skizzierte Aussehen. Die Verteilungsfunktion f ist Maxwell-Boltzmannsch in den Minima der Trajektorie (denn f_{MB} minimiert H).

Beachte, dass das H-Theorem nur in ausgewählten Zuständen des molekularen Chaos gilt (Peaks in H(t)). Es sind die Stösse im System die dasselbe in den Zustand des molekularen Chaos bringen und es auch wieder aus dem Zustand des molekularen Chaos rausnehmen. Entsprechend ist H keine mikroskopisch stetige Funktion.

11.3 Relaxation und Transport

In diesem Abschnitt untersuchen wir Nicht-Gleichgewichts Situationen, wobei wir uns aber nicht zu weit vom Gleichgewicht entfernen wollen. Typische Probleme sind die Relaxation eines Zustandes ins Gleichgewicht und der Transport in einem äusseren Kraft-oder Gradienten Feld (z.B., ein Temperaturgradient ∇T). Ausser in Spezialfällen ist die Lösung der Boltzmann Transportgleichung illusorisch. Wir betrachten deshalb Approximationen zur Boltzmann Transportgleichung, die eine systematische Lösung erzeugen.

Ein wichtiges Konzept in diesem Zusammenhang ist die Einführung des lokalen Gleichgewichtes beschrieben durch die lokale Maxwell-Boltzmann Verteilungsfunktion $f_{\ell 0}$,

$$f_{\ell 0} = \frac{n(\vec{r})}{[2\pi m k_{\rm B} T(\vec{r})]^{3/2}} \exp[-(\vec{p} - \vec{p}_0(\vec{r}))^2 / 2m k_{\rm B} T(\vec{r})], \tag{11.55}$$

wobei $n(\vec{r})$, $\vec{p}_0(\vec{r})$ und $T(\vec{r})$ lokale Gleichgewichtsparameter der Dichte (\leftrightarrow chemisches Potential $\mu(\vec{r})$), der Konvektion, und der Temperatur bezeichnen (entsprechend den Invarianten $1 \leftrightarrow n, \mu; \vec{p} \leftrightarrow \vec{p}_0; \vec{p}^2 \leftrightarrow T$). Im Falle zeitabhängiger Phänomene tritt eine zusätzliche Zeitabhängigkeit in diesen Parametern auf.

Die Verteilung $f_{\ell\,0}$ ist keineLösung der Boltzmann Transportgleichung, denn

$$\mathcal{D}f_{\ell 0} \equiv \left[\partial_t + \vec{v} \cdot \vec{\nabla}_{\vec{r}} + \frac{\vec{F}}{m} \cdot \vec{\nabla}_{\vec{p}} \right] f_{\ell 0} \neq 0, \quad \text{aber}$$

$$\partial_t f_{\ell 0}|_{\text{Stösse}} = 0. \tag{11.56}$$

Um eine Lösung zu finden, müssen wir eine Korrektur g berücksichtigen, $f = f_{\ell 0} + g$. Bleiben wir in der Nähe des (lokalen) Gleichgewichtes so können wir g als klein annehmen und linearisieren. Dabei konzentrieren wir uns typischerweise auf Lösungen zu Problemen vom Typ

- i) Relaxation: Gegeben $f(\vec{p}, \vec{r}, t = 0)$; wie relaxiert f gegen f_0 (keine Treiber).
- ii) Stationärer Transport: Gegeben ein Satz zeitunabhängiger Treiber, z.B., $\vec{F} \neq 0$, $\vec{\nabla}T \neq 0$, $\vec{\nabla}\mu \neq 0$ oder $\vec{\nabla}n \neq 0$: wie sieht die stationäre Lösung f_s aus?

11.3.1 Linearisierung

Linearisiert wird zumeist an zwei Orten in der Boltzmann Transportgleichung, im Flussterm $\mathcal{D}f$ und im Stossterm $\partial_t f|_{\text{Stösse}}$. Wir konzentrieren uns zunächst auf den Stossterm ⁷ (11.11) und betrachten den Ansatz

$$f = f_{\ell 0}(1 + \Psi) \tag{11.57}$$

mit $\Psi \ll 1$ eine kleine Störung. Konkret heisst dies für das Relaxationsproblem i), dass f(t=0) nahe an f_0 ist; im Transportproblem ii) soll der Treiber $\vec{\mathcal{F}}$ klein sein, wobei $\vec{\mathcal{F}} = \vec{F}, \vec{\nabla} T, \vec{\nabla} \mu, \ldots$ Mit $\partial_t f_{\ell 0}|_{\text{Stösse}} = 0$ finden wir ausgehend von (11.11) sofort

$$\partial_{t} f|_{\text{Stösse}} = -f_{\ell 0}(\vec{p}) \int d^{3}p' \, d^{3}p_{1} \, d^{3}p'_{1} \, w_{\vec{p}', \vec{p}_{1}'; \vec{p}, \vec{p}_{1}} f_{\ell 0}(\vec{p}_{1})$$

$$\times [\Psi(\vec{p}) + \Psi(\vec{p}_{1}) - \Psi(\vec{p}') - \Psi(\vec{p}'_{1})]$$

$$\equiv f_{\ell 0}(\vec{p}) L \Psi,$$
(11.58)

mit L einem linearen Operator.

Als Nächstes wenden wir uns dem Flussterm $\mathcal{D}f$ zu. Mit (11.57) finden wir

$$\mathcal{D}f = (\mathcal{D}f_{\ell 0})(1+\Psi) + f_{\ell 0}\mathcal{D}\Psi. \tag{11.59}$$

Betrachte zuerst die Aufgabe i), Relaxation ohne Treiber, dann ist $\vec{\mathcal{F}} = 0$ und wir betrachten eine homogene Situation mit $\vec{\nabla}_{\vec{r}} = 0$. Dann ist $f_{\ell 0} = f_0$, $\mathcal{D}f_0 = 0$, und zu lösen bleibt das lineare Problem

$$\partial_t \Psi = L \Psi. \tag{11.60}$$

Im Transportproblem ii) verlangen wir $\partial_t = 0$ (Stationarität) und mit \mathcal{F} klein können wir $\mathcal{D}f$ linearisieren: die Korrektur Ψ ist $\propto \mathcal{F}$ und der führende Term lässt sich vereinfachen zu,

$$\mathcal{D}f \approx \mathcal{D}f_{\ell 0} \propto \mathcal{F}.$$

Das zu lösende zweifach (in $\mathcal F$ und in Ψ) linearisierte Problem lautet dann

$$\mathcal{D}f_{\ell 0} = f_{\ell 0}L\Psi. \tag{11.61}$$

 $^{^7\}mathrm{Beachte},$ dass der Stossansatz (11.8) für die Teilchen-Defekt Streuung bereits linear ist.

Relaxation*

Wir diskutieren zuerst die Lösung des (homogenen, ungetriebenen) Relaxationsproblems (11.60),

$$\partial_t \Psi = L \Psi.$$

wobei die Anfangsbedingung $\Psi(\vec{p})(t=0) = f(\vec{p},t=0)/f_{\ell 0}(\vec{p}) - 1$ vorgegeben ist. Mit dem Separationsansatz

$$\Psi = \alpha(t)g(\vec{p}) \tag{11.62}$$

erhalten wir das Eigenwertproblem

$$Lg_{\lambda}(\vec{p}) = -\lambda g_{\lambda}(\vec{p}), \tag{11.63}$$

wobei der Eigenwert λ den Zerfall der Komponente $\Psi_{\lambda}(\vec{p},t) = e^{-\lambda t}g_{\lambda}(\vec{p})$ beschreibt. Dass die Lösungen Ψ_{λ} wirklich zerfallen (d.h. $\lambda > 0$), folgt aus der Negativität des Operators L bezüglich des Skalarproduktes

$$(g_1, g_2) \equiv \int d^3 p \, f_0(\vec{p}) g_1(\vec{p}) g_2(\vec{p}),$$

$$(g, Lg) \leq 0.$$
(11.64)

Die Negativität (11.64) folgt aus w>0 und den Symmetrieeigenschaften (11.22). Beachte auch, dass L bezüglich (11.64) hermitesch ist, $(g_1, Lg_2)=(g_2, Lg_1)$. Eine Ausnahme bilden die Erhaltungsgrössen $g_0^1 \sim 1$, $(g_0^{p_x}, g_0^{p_y}, g_0^{p_z}) \sim \vec{p}$, $g_0^{p^2} \sim p^2$, die alle zum Eigenwert $\lambda=0$ gehören und daher nicht zerfallen. Mit der vollständigen $Basis\ g_{\lambda}(\vec{p})$ können wir die Lösung zu (11.60) entwickeln,

$$\Psi = \sum_{\lambda \neq 0} A_{\lambda} g_{\lambda}(p) e^{-\lambda t}, \qquad (11.65)$$

wobei die Gewichte A_{λ} durch die Anfangsbedingung $\Psi(0)$ gegeben sind,

$$A_{\lambda} = \int d^{3}p \, f_{0}(\vec{p}) g_{\lambda}(\vec{p}) \Psi(\vec{p}, t = 0)$$

= $(g_{\lambda}, \Psi(t = 0)).$ (11.66)

Obwohl substantiell vereinfacht, stellt die Lösung des Eigenwert-Problems (11.63) immer noch ein aufwändiges Problem dar, das nur in Ausnahmefällen einfach lösbar ist. Ein bekanntes Beispiel sind die Maxwell-Moleküle mit $V_{rep}(r) \propto r^{-4}$, siehe Übungen.

Transport

Zu lösen ist die Transportgleichung (stationäres Problem)

$$\mathcal{D}f_{\ell 0} = [(1/m)\vec{F} \cdot \vec{\nabla}_{\vec{v}} + \vec{v} \cdot \vec{\nabla}_{\vec{r}}]f_{\ell 0} = f_{\ell 0}L\Psi. \tag{11.67}$$

Das generische Beispiel für Transport im klassischen Gas ist der Wärmetransport im Temperaturgradienten $\vec{\nabla}T$ mit $\vec{F}=0$ (keine direkte äussere Kraft). Mit

$$f_{\ell 0} = \exp[-(\varepsilon_p - \mu(\vec{r}))/k_{\rm B}T(\vec{r})] \tag{11.68}$$

finden wir

$$\mathcal{D}f_{\ell 0} = \vec{v} \cdot \vec{\nabla}_{\vec{r}} f_{\ell 0} = -\frac{\partial f_{\ell 0}}{\partial \varepsilon_p} \vec{v} \cdot \left[\frac{\varepsilon_p - \mu}{T} \vec{\nabla} T + \vec{\nabla} \mu \right].$$

Wir schreiben $\nabla \mu(p,T)$ um auf ∇T : Im strömungsfreien Fall $(\vec{p_0}=0)$ ist der Druck p= const und mit $\mu=\mu(T)$ erhalten wir

$$\vec{\nabla}\mu = \frac{\partial\mu}{\partial T}\Big|_p \vec{\nabla}T.$$

Mit $\mu = G/N$, $\partial G/\partial T = -S$ und der Enthalpie H = G + TS ist

$$\mu - T \frac{\partial \mu}{\partial T} \Big|_{p} = \frac{1}{N} (G + TS) = \frac{H}{N} = h \tag{11.69}$$

und wir finden

$$\mathcal{D}f_{\ell 0} = -\frac{\partial f_{\ell 0}}{\partial \varepsilon_p} (\vec{v} \cdot \vec{\nabla}T) \frac{\varepsilon_p - h}{T}.$$
 (11.70)

Für ein klassisches Gas ist $\partial_{\varepsilon_p} f_{\ell 0} = -f_{\ell 0}/k_{\rm B}T$ und das Transportproblem (11.61) reduziert sich mit (11.70) zu

$$\frac{\mathcal{D}f_{\ell 0}}{f_{\ell 0}} = \frac{\varepsilon_p - h}{k_B T^2} \vec{v} \cdot \vec{\nabla} T = L\Psi. \tag{11.71}$$

Bezeichnen wir den Treiber mit

$$X = -\frac{\varepsilon_p - h}{k_B T^2} \vec{v} \cdot \vec{\nabla} T \tag{11.72}$$

so gilt es, die Lösung

$$\Psi = -L^{-1}X \propto \vec{\nabla}T \tag{11.73}$$

zu finden. Die Wärmestromdichte w ist definiert als

$$\vec{w} = \int d^3 p \, f \vec{v} \varepsilon_p \tag{11.74}$$

und gehorcht dem Fourierschen Gesetz,

$$w = -\kappa \, \vec{\nabla} T. \tag{11.75}$$

Setzen wir die formale Lösung $\Psi = -L^{-1}X \propto \vec{\nabla}T$ in die Definition (11.74) ein, so finden wir einen kompakten Ausdruck für den Wärmeleitungskoeffizienten κ^{-8} ,

$$\vec{w} = \int d^3p \, f \vec{v} \varepsilon_p = \int d^3p \, f_{\ell 0}(1 + \Psi) \vec{v} \varepsilon_p$$

$$= \underbrace{(\vec{v} \varepsilon_p, 1)}_{=0} + (\vec{v} \varepsilon_p, \Psi) - \underbrace{(\vec{v} h, \Psi)}_{=h(\vec{v}, \Psi)=0} = (\vec{v} (\varepsilon_p - h), \Psi)$$

$$= -\left[k_{\rm B} \frac{T^2}{(\vec{\nabla} T)^2} (X, \Psi)\right] \vec{\nabla} T, \qquad (11.76)$$

$$\rightarrow \kappa = -k_{\rm B} \left(\frac{T}{\vec{\nabla} T}\right)^2 (X, \Psi).$$

Zur tatsächlichen Berechnung des Wärmeleitungskoeffizienten κ brauchen wir einen Ausdruck für Ψ . Standard Techniken beruhen auf der Lösung des Eigenwertproblems⁹ $Lg_{\lambda}(\vec{p}) = -\lambda g_{\lambda}(\vec{p})$, siehe (11.63), oder der Nutzung eines Variationsprinzips.¹⁰ Hier konzentrieren wir uns auf eine weitere Ap-

$$(X,g_{\mu}) = -(L\sum_{\lambda \neq 0} A_{\lambda}g_{\lambda}, g_{\mu}) = \lambda_{\mu}A_{\mu} \to A_{\mu} = (X,g_{\mu})/\lambda_{\mu}$$

erhalten wir das elegante Resultat

$$\kappa = k_{\rm B} \left(\frac{T}{\vec{\nabla}T}\right)^2 \sum_{\lambda \neq 0} \frac{(X, g_{\lambda})^2}{\lambda}.$$
 (11.77)

Das obige Schema lässt sich in gleicher Weise zur Bestimmung anderer Transportkoeffizienten nutzen.

¹⁰Mit der Definition

$$H = -L \tag{11.78}$$

lautet unsere Aufgabe, eine Lösung des inhomogenen Problems

$$H\Psi = X \tag{11.79}$$

zu finden, wobei X der bekannte Treiber und L der linearisierte Stossoperator in (11.58) ist. Dabei muss die Funktion X orthogonal zu den Erhaltungsgrössen sein, $X \perp Eig^H_{\lambda=0} = \{g^1_0, \vec{g}_0, g^{p^2}_0\}$ (damit die Gleichung (11.79) lösbar ist) und $\Psi \perp Eig^H_{\lambda=0}$, damit sich für $t \to \infty$, $\vec{\mathcal{F}} \to 0$ das Gleichgewicht einstellt. Gemäss der Definition (11.78) und der Eigenschaft (11.64) ist H positiv (semi-)definit.

Unser Ziel ist die Bestimmung von Transportkoeffizienten vom Typ (siehe (11.76))

$$(X, \Psi). \tag{11.80}$$

Dabei erweist sich das folgende Variationsprinzip als nützlich: Sei $U(\vec{p})$ eine beliebige Funktion von \vec{p} . Dann ist

$$(X, \Psi) \ge \frac{(X, U)^2}{(U, HU)}$$

⁸Der Ausdruck $h(\vec{v}, \Psi)$ verschwindet, da $\Psi \perp Eig_{\lambda=0}^H$, vgl. nächster Abschnitt, sonst wäre $\vec{w} \neq 0$ nach Abschalten von $\vec{\nabla}T$.

 $^{{}^{9}\}mathrm{Mit}\,\Psi = \sum_{\lambda \neq 0} A_{\lambda} g_{\lambda} \text{ und}$

proximation für den Stossterm, die Relaxationszeitapproximation.

11.3.2 Relaxationszeitapproximation

Mit der linearisierten Transportgleichung (11.61), den expliziten Ausdrücken (11.70) (Liouville Term) und (11.71) (Treiber), und (11.78) besteht unsere Aufgabe in der Lösung der Differentialgleichung

$$\mathcal{D}f_{\ell 0} = -f_{\ell 0}X = -f_{\ell 0}H\Psi,\tag{11.81}$$

wobei $f_{\ell 0}$ lokal Maxwell-Boltzmannsch ist und X als bekannt betrachtet wird, z.B., für einen Temperaturgradienten als Treiber im Problem der Wärmeleitung ist

$$X = -\frac{\varepsilon_p - h}{k_B T^2} \vec{v} \cdot \vec{\nabla} T.$$

Die Invertierung $\Psi=H^{-1}X$ ist im allgemeinen schwierig. Eine drastische Vereinfachung bringt die Relaxationszeitapproximation. Dabei geht man von der Annahme aus, dass Stösse die Verteilungsfunktion f innerhalb einer charakteristischen Stosszeit τ_r zu f_r relaxieren. Der Stossterm $f_{\ell 0}H\Psi$ reduziert sich dann zu

$$f_{\ell 0}H\Psi \to \frac{f - f_r}{\tau_r}.\tag{11.82}$$

Es ergibt sich die wichtige Frage: Was sind physikalisch vernünftige Ansätze für f_r und τ_r ? Wir werden später genauer darauf eingehen und konzentrieren uns vorerst auf die Konsequenzen der Approximation (11.82). Dabei betrachten wir τ_r als Stosszeit Parameter und brauchen für f_r den Ansatz $f_r \sim f_{\ell 0}$. Damit reduziert sich (11.82) zu

$$H\Psi \to \frac{\Psi}{\pi}.$$
 (11.83)

Mit dem Ansatz (11.83) ersetzen wir das Spektrum des linearen Operators $H \geq 0$ durch einen einzigen Wert $1/\tau$. Mit (11.81) finden wir sofort die Lösung

$$\Psi = \tau X = -\frac{\tau}{k_B T^2} (\varepsilon_p - h) \vec{v} \cdot \vec{\nabla} T$$
 (11.84)

für die Wärmeleitung¹¹. Die Definition der Wärmestromdichte und der Fourieransatz

$$\vec{w} = \int d^3p \, f_{\ell \, 0} \vec{v} \, \varepsilon_p \Psi = -\kappa \, \vec{\nabla} T \ [= -\kappa (\partial_x T, 0, 0)]$$

und wir erhalten eine untere Schranke für den entsprechenden Transportkoeffizienten (Zum Beweis minimiert man den Ausdruck $((\Psi - \lambda U), H(\Psi - \lambda U)) \geq 0$ bezgl. λ : $\lambda = (U, H\Psi)/(U, HU)$. Einsetzen ergibt die Schwarzsche Ungleichung $(\Psi, H\Psi)(U, HU) \geq (U, H\Psi)^2$). Oft ergibt U = X eine gute erste Abschätzung.

¹¹Zeige, dass (11.84) tatsächlich $(\vec{v}, \Psi) = 0$ erfüllt.

ergeben für den Wärmeleitungskoeffizienten den Ausdruck (wir benutzen die Isotropie $v_x^2=v^2/3=2\varepsilon_p/3m)$

$$\kappa = \frac{\tau}{k_{\rm B}T^2} \int d^3p \, f_{\ell 0} \, v_x^2 \, \varepsilon_p(\varepsilon_p - h)$$
$$= \frac{2\tau n}{3mk_{\rm B}T^2} \langle \varepsilon_p^2(\varepsilon_p - h) \rangle,$$

wobei wir den Erwartungswert

$$\langle A \rangle = \frac{\int d^3 p \, f_{\ell \, 0} A}{\int d^3 p \, f_{\ell \, 0}} \tag{11.85}$$

definieren. Für ein ideales Gas ist $h=c_pT=5k_{\rm B}T/2$ und die Momente $\langle \varepsilon_p^n \rangle$ ergeben sich zu¹²

$$\langle \varepsilon_p^n \rangle = (k_{\rm B}T)^n \frac{\Gamma(n+3/2)}{\Gamma(3/2)};$$
 (11.86)

damit erhalten wir das Schlussresultat

$$\kappa = nc_p \tau \frac{k_{\rm B}T}{m}.\tag{11.87}$$

Spektrum von H^*

Im nächsten Schritt wollen wir die Natur der Relaxationszeit τ_r besser verstehen. Dazu betrachten wir die Teilchen-Defekt-Streuung als einfachstes Beispiel. Das Teilchen-Defekt Eigenwertproblem ist exakt lösbar und gibt uns Einblick in die Funktionsweise der Relaxationszeitapproximation. Ausgehend von der Streurate (11.7) mit der Zustandsdichte $\rho(p') = 1/(2\pi\hbar)^3$, Vol = 1 und dem Ansatz

$$N_{\text{imp}} |\langle \vec{p}' | V_{\text{imp}} | \vec{p} \rangle|^2 = \sum_{\ell} W_{\ell} P_{\ell}(\cos \vartheta), \quad \cos \vartheta = \hat{p}' \cdot \hat{p},$$
 (11.88)

schreiben wir das Stossintegral um auf die Form

$$\partial_t f|_{\text{Stösse}} = -\frac{2\pi}{\hbar} \int d\Omega_{\hat{p}'} \frac{dp'p'^2}{(2\pi\hbar)^3} \sum_{\ell} W_{\ell} P_{\ell}(\cos\vartheta) \delta(\varepsilon_p - \varepsilon_{p'}) [f(\vec{p}) - f(\vec{p}')]. \tag{11.89}$$

Wir zerlegen $f(\vec{p})$ in seine Winkelanteile

$$f(\vec{p}) = \sum_{\ell',m'} f_{\ell',m'}(\varepsilon_p) Y_{\ell',m'}(\theta,\phi)$$
(11.90)

 $^{^{12}\}Gamma(x+1) = x\Gamma(x)$

und benutzen das Additionstheorem

$$P_{\ell}(\cos \vartheta) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta, \phi) Y_{\ell m}^{*}(\theta', \phi'), \tag{11.91}$$

$$\partial_{t} f|_{\text{Stösse}} = -\frac{2\pi}{\hbar} \int d\Omega_{\hat{p}'} \frac{dp'p'^{2}}{(2\pi\hbar)^{3}} \sum_{\ell,m,\ell',m'} \frac{4\pi}{2\ell+1} W_{\ell} f_{\ell'm'} \delta(\varepsilon_{p} - \varepsilon_{p'})$$

$$\times Y_{\ell m}(\theta,\phi) Y_{\ell m}(\theta',\phi') \left[Y_{\ell'm'}(\theta,\phi) - Y_{\ell'm'}(\theta',\phi') \right]$$

$$= -\sum_{\ell,m} Y_{\ell m}(\theta,\phi) \frac{2\pi}{\hbar} \int d\varepsilon_{p'} \frac{\sqrt{2m\varepsilon_{p'}}m}{(2\pi\hbar)^{3}} \delta(\varepsilon_{p} - \varepsilon_{p'})$$

$$\times \left[W_{0} - \frac{W_{\ell}}{2\ell+1} \right] f_{\ell m}(\varepsilon_{p'});$$

die Integrale über den Raumwinkel $\Omega_{\hat{p}'}$ ergeben für den Term $\propto Y_{\ell'm'}(\theta,\phi)$ das Resultat $\delta_{\ell 0}\delta_{m0}Y_{\ell'm'}(\theta,\phi)$ und für $Y_{\ell'm'}(\theta',\phi')$ den Ausdruck $\delta_{\ell\ell'}\delta_{mm'}Y_{\ell m}(\theta,\phi)$. Offensichtlich sind die Funktionen $f_{\ell m}(\varepsilon_p)$ gerade Eigenfunktionen zum Operator $\partial_t f|_{\text{Stösse}}$,

$$\partial_{t} f_{\ell m}(\varepsilon_{p})|_{\text{Stösse}} = -\frac{1}{\tau_{\ell}(\varepsilon_{p})} f_{\ell m}(\varepsilon_{p}), \qquad (11.92)$$

$$\frac{1}{\tau_{\ell}(\varepsilon_{p})} = \frac{2\pi}{\hbar} \frac{m\sqrt{2m\varepsilon_{p}}}{(2\pi\hbar)^{3}} \left[W_{0}(\varepsilon_{p}) - \frac{W_{\ell}(\varepsilon_{p})}{2\ell + 1} \right].$$

Für Fermionen spielt sich der Transport an der Fermifläche ab und wir können $\varepsilon_p = \varepsilon_F$ setzen. Das Resultat (11.92) zeigt uns, dass jede Deformation $f_{\ell m}$ der Verteilungsfunktion mit ihrer eigenen Zeitskala $\tau_\ell(\varepsilon_p)$ zerfällt. Beachte, dass alles Gewicht beim jeweiligen ε_p bleibt, eine Folge der Energieerhaltung $\delta(\varepsilon_p - \varepsilon_{p'})$ im Streuprozess. Auch beinhalten die Komponenten $f_{\ell>0,m}$ keine netto Teilchenzahl da $\int d\Omega \, Y_{\ell\geq0,m} = 0$. Entsprechend ist der Eigenwert $\tau_0^{-1} \propto [W_0 - W_\ell/(2\ell+1)|_{\ell=0}] = 0$, die Teilchenzahl ist eine Invariante. Besonders relevant ist die Relaxationszeit τ_1 der 'Dipol'-Komponente $f_{1,m}$ von $f(\vec{p})$: Die meisten Treiber erzeugen eine Dipolquelle $\mathcal{D}f_{\ell\,0} \propto \vec{v} \cdot \vec{\mathcal{F}} \to Y_{1m}$ und die entsprechende Relaxationszeit lässt sich schreiben als

$$\frac{1}{\tau_1} = \int d^3 p' \, w_{\vec{p}', \vec{p}} (1 - \hat{p}' \cdot \hat{p}) \equiv \frac{1}{\tau_{\text{Transport}}}.$$
 (11.93)

Wir sehen, dass die Vorwärtsstreuung mit $\hat{p}' \cdot \hat{p} = 1$ den Dipol nicht relaxiert, während die Umkehrstreuung mit $\hat{p}' \cdot \hat{p} = -1$ doppelt effizient ist.

Aus unserem Beispiel lernen wir zwei wichtige Dinge:

1. In der Relaxationszeit Approximation $-(f - f_r)/\tau_r$ soll die Relaxationszeit der Symmetrie der Quelle X angepasst werden. Für einen

Dipoltreiber X ist $\tau_r = \tau_{\text{Transport}}$ eine gute Wahl. Beachte, dass die Streuzeit $\tau_{\text{Streu}} = \int d^3 p' \, w_{\vec{p}',\vec{p}} \neq \tau_{tr}$ keine Gewichtung im Winkel aufweist.

2. Die Verteilung f_r , zu der f relaxiert, soll den Erhaltungssätzen angepasst werden. Im Beispiel der Teilchen-Defekt Streuung haben wir gesehen, dass jede Inhomogenität $f_{\ell>0}$ in der Winkelstreuung relaxiert und nur $f_{\ell=0} = \langle f \rangle_{\Omega}$

$$\langle f \rangle_{\Omega} = \int \frac{d\Omega}{4\pi} f(\varepsilon_p, \Omega)$$

überlebt. Ein guter Ansatz für f_r im Problem der Teilchen-Defekt Streuung ist deshalb $f_r = \langle f \rangle_{\Omega}$.

Aus 1. und 2. ergibt sich für die Relaxationszeit Approximation bei der Teilchen–Defekt Streuung der Ansatz

$$\left. \frac{\partial f}{\partial t} \right|_{\mathrm{T-D}} \approx -\frac{f - \langle f \rangle_{\Omega}}{\tau_{\mathrm{Transport}}}.$$
 (11.94)

Entsprechend findet man gute Relaxationszeit Approximationen für die Probleme der Teilchen-Teilchen und der Teilchen-Moden Streuung:

T–T Streuung: Die Teilchen-Teilchen Streuung vermag den Dipol nicht zu relaxieren (\vec{p} ist erhalten). Das erste relaxierte Moment ist der Quadrupol und entsprechend ist die Streuzeit $\tau_r = \tau_2$ relevant. Trotzdem benutzt man oft $\tau_r = \tau_{\rm Streu}$ als einfachsten Ansatz,

$$\tau_{\text{Streu}}(p) = \int d^3 p' \, d^3 p_1 \, d^3 p'_1 \, w_{\vec{p}', \vec{p}_1 \, '; \vec{p}, \vec{p}_1}.$$

Für die relaxierte Verteilung f_r wählt man die lokale Maxwell-Boltzmann Verteilung $f_{\ell 0}$, wobei die Erhaltungssätze berücksichtigt werden, indem $n, T, \vec{p_0}$ für f und $f_{\ell 0}$ die gleichen Erwartungswerte liefern. Die lokalen Werte von $n, T, \vec{p_0}$ ergeben sich aus der Hydrodynamik, siehe Kapitel 12. Zusammenfassend hat die Relaxationszeit Approximationen für die Teilchen-Teilchen die Form

$$\left. \frac{\partial f}{\partial t} \right|_{\mathrm{T-T}} \approx -\frac{f - f_{\ell 0}}{\tau_{\mathrm{Streu}}}.$$
 (11.95)

T–M Streuung: Die Teilchen-Moden Streuung relaxiert die Verteilung zum Gleichgewicht f_0 , wobei T durch die Temperatur des Modenbades (z.B. Phononentemperatur = Temperatur des Kristalles) gegeben ist. Für τ_r benutzt man meist die Teilchen-Moden Streuzeit $\tau_{\rm T-M}$,

$$\left. \frac{\partial f}{\partial t} \right|_{\mathrm{T-M}} \approx -\frac{f - f_0}{\tau_{\mathrm{T-M}}}.$$
 (11.96)

Ein beliebter Ansatz, der die Invarianten sauber berücksichtigt, ist die Substitution (vgl. (11.83))

$$H\Psi \to \frac{1}{\tau} \Big[\Psi - \sum_{i} (g_0^{(i)}, \Psi) g_0^{(i)} \Big]$$
 (11.97)

mit $Hg_0^{(i)}=0$, den Invarianten von H. Der Ansatz (11.97) ersetzt das Spektrum von H durch die zwei Eigenwerte 0 und $1/\tau$. Für die Teilchen-Teilchen Streuung sind die gemäss (11.64) normierten Funktionen gegeben durch

$$g_0^1 = \frac{1}{\sqrt{n}},$$

$$g_0^{p_i} = \frac{p_i}{m} \sqrt{\frac{nk_B T}{m}}, \quad i = x, y, z,$$

$$g_0^{p^2} = \sqrt{\frac{2}{3n}} \left[\frac{p^2}{2mk_B T} - \frac{3}{2} \right]. \quad (11.98)$$

Kapitel 12

Hydrodynamik

Die Grundidee der Hydrodynamik ist die Reduktion der kinetischen Gleichung (11.18) für ein Gas/Fluidum auf ein System von Transportgleichungen für die ersten drei Momente der Verteilungsfunktion f. Entsprechend wird angenommen, dass f durch diese Momente charakterisiert wird und man betrachtet den Ansatz

$$f = f_{\ell 0} + g \tag{12.1}$$

mit der lokalen Maxwell-Boltzmann Verteilung

$$f_{\ell 0} = n(\vec{r}, t) \left(\frac{1}{2\pi m k_{\rm B} T(\vec{r}, t)}\right)^{3/2} \exp\left[-\frac{m(\vec{v} - \vec{u}(\vec{r}, t))^2}{2k_{\rm B} T(\vec{r}, t)}\right].$$
(12.2)

Der Ansatz (12.2) involviert die fünf (hydrodynamischen) Parameter

$$n(\vec{r},t)$$
 Dichte,
 $\vec{u}(\vec{r},t)$ konvektive Strömung,
 $T(\vec{r},t)$ Temperatur. (12.3)

Wir finden dynamische Gleichungen für diese hydrodynamischen Felder indem wir den durch die Boltzmann Gleichung definierten Fluss der Erhaltungsgrössen $\phi=1,\,\vec{p},\,p^2$ bestimmen,

$$\int d^3 p \, \mathcal{D} f \, \phi = \int d^3 p \, \frac{\partial f}{\partial t} \Big|_{\text{Stösse}} \phi = 0,$$

$$\parallel$$

$$\frac{\partial}{\partial t} \int d^3 p \, f \, \phi + \vec{\nabla}_r \cdot \int d^3 p \, \vec{v} f \phi - \vec{F} \cdot \int d^3 p \, (\vec{\nabla}_{\vec{p}} \, \phi) f = 0. \quad (12.4)$$

Den letzten Term erhält man nach partieller Integration und $f \to 0$ für $p \to \infty$. Die resultierenden Gleichungen haben die Form

$$\phi = 1 : \partial_t n + \partial_i j_i = 0,$$

$$\phi = \vec{p} : \partial_t j_k + \frac{1}{m} \partial_i \Pi_{ik} = \frac{n}{m} F_k,$$

$$\phi = p^2 : \partial_t e + \partial_i \varepsilon_i = j_i F_i.$$
(12.5)

Dabei haben wir die Grössen

Dichte:
$$n = \int d^3p \, f$$
,
Stromdichte: $j_k = \int d^3p \, v_k f$,
Energie: $e = \int d^3p \, \frac{p^2}{2m} f$,
Impulsstromdichte: $\Pi_{ik} = m \int d^3p \, v_i v_k f$,
Energiestromdichte: $\varepsilon_k = \int d^3p \, \frac{p^2}{2m} v_k f$, (12.6)

eingeführt. Indem wir für f den lokalen Maxwell Boltzmann Ansatz (12.2) in den Ausdrücken (12.6) verwenden,

$$f(\vec{r}, \vec{v}, t) \approx f_{\ell o}[n, \vec{u}, T; \vec{v}],$$
 0-te Ordnung, Eulergleichung, (12.7)

können wir j, e, Π , und ε durch die hydrodynamischen Felder n, \vec{u} , und T ausdrücken und erhalten aus (12.5) einen ersten Satz hydrodynamischer Gleichungen ($nullte\ Ordnunq$).

Die Bedingung, dass (12.1) die Boltzmann Transport Gleichung erfüllen soll,

$$\mathcal{D}f = \frac{\partial f}{\partial t}\Big|_{\text{Stösse}},$$

erlaubt es, die Korrektur g durch $f_{\ell 0}$ auszudrücken und einen verbesserten Satz hydrodynamischer Gleichungen zu finden. Unter Verwendung der Relaxationszeit Approximation erhalten wir die Gleichung

$$\mathcal{D}f_{\ell 0} + \mathcal{D}g = -\frac{f - f_{\ell 0}}{\tau} = -\frac{g}{\tau}.$$
 (12.8)

In erster~Ordnungvernachlässigen wir den Term $\mathcal{D}g$ auf der linken Seite und finden die Korrektur

$$g = -\tau \mathcal{D}f_{\ell 0}.\tag{12.9}$$

Durch einsetzen von $f \approx f_{\ell 0} - \tau \mathcal{D} f_{\ell 0}$ in die Ausdrücke (12.6) erhalten wir die Navier-Stokes-Gleichung. Beachte, dass gemäss Definition die Momente

 n, j_k, e bezgl. f und $f_{\ell 0}$ identisch sind (Erhaltungssätze). Andererseits sind Π_{ik} und ε_k für f und $f_{\ell 0}$ verschieden. Entsprechend differieren diese Grössen in nullter $(f \approx f_{\ell 0})$ und erster Ordnung $(f \approx f_{\ell 0} - \tau \mathcal{D} f_{\ell 0})$.

Die Hydrodynamik beschreibt erfolgreich die Transportphänomene in Gasen und in Flüssigkeiten, die sich durch lokales Gleichgewicht beschreiben lassen (f nahe am Gleichgewicht). Die Zeitskalen ($\partial_t \sim \omega$) und Längenskalen ($\vec{\nabla} \sim \vec{k}$), auf denen sich n, \vec{u} und T ändern, müssen dabei gross gegenüber den mikroskopischen Skalen $\tau =$ Streuzeit und $\ell = v\tau =$ freie Weglänge sein, das heisst es gilten für $X = n, \vec{u}, T,$ dass

$$\frac{|\partial_t X|}{X} \ll \frac{1}{\tau}, \qquad \qquad \frac{|\vec{\nabla} X|}{X} \ll \frac{1}{\ell},$$

$$\omega \tau \ll 1, \qquad k\ell \ll 1. \qquad (12.10)$$

Typische Anwendungsgebiete der hydrodynamischen Idee sind die Fluiddynamik, Verbrennung, Aerodynamik, Atmosphärenphysik, Wärme- und Ladungstransport in Festkörpern/Flüssigkeiten/Gasen, Akustik, etc.

Im Folgenden skizzieren und diskutieren wir die Herleitung und die Struktur, die Eigenschaften der Eulergleichung und der Navier-Stokes-Gleichung. Wir verzichten auf detaillierte Rechnungen, die aufwändig, aber trivial sind. In 12.3 diskutieren wir einige Anwendungen.

12.1 Nullte Ordnung, Euler-Gleichung

Wir separieren die Ausdrücke in (12.6) in konvektive (\vec{u}) und thermische $(\vec{\nu})$ Beiträge,

$$\vec{v} = \vec{u} + \vec{\nu}, \qquad (12.11)$$

$$\int d^3p \, \vec{v} f = n\vec{u}, \qquad \int d^3p \, \vec{\nu} f = 0.$$

Für die Grössen \vec{j} , e, Π_{ik} , und ε_k erhalten wir konvektive und thermische Anteile,

$$j_{k} = nu_{k},$$

$$e = \frac{mn}{2}u^{2} + q, q = \frac{m}{2}\int d^{3}p \,\nu^{2}f,$$

$$\Pi_{ik} = mnu_{i}u_{k} + p_{ik}, p_{ik} = m\int d^{3}p \,\nu_{i}\nu_{k}f,$$

$$\varepsilon_{k} = \frac{mn}{2}u^{2}u_{k} + qu_{k} + u_{i}p_{ik} + w_{k}, w_{k} = \frac{m}{2}\int d^{3}p \,\nu^{2}\nu_{k}f.$$
(12.12)

In nullter Ordnung ist $f = f_{\ell 0}$ und wir finden

$$q=(3/2)nk_{\rm B}T~(=U/V,U={\rm innere~Energie}),$$
 $p_{ik}=\delta_{ik}p,~p=nk_{\rm B}T~(={\rm isotroper~Druck}),$ $w_k=0~({\rm keine~W\ddot{a}rmestromdichte}).$ (12.13)

Einsetzen in (12.5) ergibt die Eulergleichung (zweite Zeile)

$$\begin{split} &\partial_t n + \partial_i (nu_i) = 0, \quad \text{(Kontinuitätsgleichung)}, \\ &m \partial_t (nu_k) + \partial_i (mnu_i u_k + \delta_{ik} n k_{\text{B}} T) = n F_k, \\ &\partial_t \left(\frac{mn}{2} u^2 + \frac{3}{2} n k_{\text{B}} T \right) + \partial_i \left[\left(\frac{mn}{2} u^2 + \frac{5}{2} n k_{\text{B}} T \right) u_i \right] = n F_i u_i. \end{split}$$

Eine elegantere Form findet man mit Hilfe der substantiellen Ableitung

$$D_t \equiv \partial_t + u_i \partial_i; \tag{12.15}$$

sei $X(\vec{r},t) = X(\vec{r}' + \vec{u}t,t)$ die interessierende Grösse. Dann ist

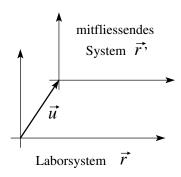


Abb. 12.1: Zur Definition der substantiellen Ableitung. Die Transformation ins mitfliessende System involviert die Ersetzung $\vec{r} = \vec{r}' + \vec{u}t$ und entsprechend läst sich das Feld X schreiben als $X(\vec{r},t) = X(\vec{r}' + \vec{u}t,t)$.

$$\frac{dX}{dt} = \partial_t X + \vec{u} \cdot \vec{\nabla} X = D_t X.$$

X enthält damit zwei Zeitabhängigkeiten, eine 'echte' (∂_t) und eine triviale, von der Konvektion herrührende $(\vec{u} \cdot \vec{\nabla})$. Die Gleichungen (12.14) vereinfachen sich dann zu

$$D_t n + n \vec{\nabla} \cdot \vec{u} = 0,$$

$$mnD_t \vec{u} + \vec{\nabla}(nk_B T) = n \vec{F},$$

$$\frac{3}{2} D_t T + T \vec{\nabla} \cdot \vec{u} = 0.$$
 (12.16)

Diese 0. Ordnung Gleichungen beschreiben ein *ideales* Fluidum: Es tritt keine Dissipation auf und die durch die Kraft \vec{F} ins System hineingepumpte Energie geht in konvektiven Fluss über (idealer Leiter). Weiter wird die

Wärme nur via Konvektion transportiert. Entlang einer Stromlinie fliesst das Gas/Fluidum adiabatisch:

$$D_{t}n = -n\vec{\nabla} \cdot \vec{u},$$

$$-\frac{3}{2}\frac{n}{T}D_{t}T = n\vec{\nabla} \cdot \vec{u},$$

$$\sum \to D_{t}n - \frac{3}{2}\frac{n}{T}D_{t}T = D_{t}(nT^{-3/2}) = 0,$$
(12.17)

und mit $nT^{-3/2} \propto (n^{-5/3}p)^{-3/2} = \text{const}$ entlang einer Stromlinie finden wir die Adiabatengleichung (3.17),

$$pv^{5/3} = \text{const} \tag{12.18}$$

entlang der Stromlinie. Alternativ lässt sich die Temperaturgleichung in (12.16) auf eine Entropiegleichung der Form $\partial_t s + \vec{\nabla} \cdot (s\vec{u}) = 0$ umschreiben, woraus sofort folgt, dass $D_t(s/n) = 0$, d.h., die Entropie pro Teilchen entlang der Strömungslinien ist konstant; man nennt diese Strömung adiabatisch. Ist s/n = const im Fluidum zur Zeit t = 0, so gilt s/n = const zu jedem späteren Zeitpunkt.

Zur Eulergleichung

Wir starten mit der Eulergleichung in der Form

$$mn[\partial_t \vec{u} + (\vec{u} \cdot \vec{\nabla})\vec{u}] = n\vec{F} - \vec{\nabla}p.$$

Mit der thermodynamischen Beziehung

$$d\left(\frac{h}{n}\right) = Td\left(\frac{s}{n}\right) + \frac{dp}{n} = \frac{dp}{n}$$

finden wir für die adiabatische Strömung den Zusammenhang

$$\vec{\nabla} \left(\frac{h}{n} \right) = \frac{\vec{\nabla}p}{n}$$

und damit lässt sich die Eulergleichung in die Form

$$m[\partial_t \vec{u} + (\vec{u} \cdot \vec{\nabla})\vec{u}] = \vec{F} - \vec{\nabla} \left(\frac{h}{n}\right)$$
 (12.19)

bringen. Beachte, dass d(s/n) = 0 nicht ds = 0 fordert; die Entropie pro Teilchen, nicht pro Volumen, ist erhalten.

Mit der Vektoridentität

$$\vec{\nabla}(\vec{a}\cdot\vec{b}\,) = (\vec{a}\cdot\vec{\nabla}\,)\,\vec{b} + (\vec{b}\cdot\vec{\nabla}\,)\,\vec{a} + \vec{a}\wedge(\vec{\nabla}\wedge\vec{b}\,) + \vec{b}\wedge(\vec{\nabla}\wedge\vec{a}\,)$$

findet man sofort

$$\frac{1}{2} \vec{\nabla} u^2 = (\vec{u} \cdot \vec{\nabla}) \, \vec{u} + \vec{u} \wedge (\vec{\nabla} \wedge \vec{u}),$$

und es gibt sich die weitere Form

$$m[\partial_t \vec{u} - \vec{u} \wedge (\vec{\nabla} \wedge \vec{u})] = \vec{F} - \vec{\nabla} \left(\frac{mu^2}{2} + \frac{h}{n}\right);$$
 (12.20)

deren Rotation ergibt (die rechte Seite ist potential/longitudinal, $\vec{\nabla} \wedge \vec{F} = -\vec{\nabla} \wedge \vec{\nabla} \Phi = 0$)

$$\partial_t(\vec{\nabla} \wedge \vec{u}) = \vec{\nabla} \wedge (\vec{u} \wedge (\vec{\nabla} \wedge \vec{u})). \tag{12.21}$$

Die Formen (12.19), (12.20) und (12.21) der Eulergleichung sind sehr nützlich. Zusammenfassend gilt für ideale Fluida (Kontinuitätsgleichung, drei Formen der Eulergleichung, drei Formen der Wärmeleitungsgleichung):

$$D_{t}n + n\vec{\nabla} \cdot \vec{u} = \partial_{t}n + \vec{\nabla} \cdot (n\vec{u}) = 0,$$

$$mD_{t}\vec{u} = \vec{F} - \frac{\vec{\nabla}p}{n} = \vec{F} - \vec{\nabla} \cdot \left(\frac{h}{n}\right),$$

$$m[\partial_{t}\vec{u} - \vec{u} \wedge (\vec{\nabla} \wedge \vec{u})] = \vec{F} - \vec{\nabla} \left(\frac{mu^{2}}{2} + \frac{h}{n}\right),$$

$$\partial_{t}(\vec{\nabla} \wedge \vec{u}) = \vec{\nabla} \wedge [\vec{u} \wedge (\vec{\nabla} \wedge \vec{u})],$$

$$\partial_{t}\left(\frac{mn}{2}u^{2} + \frac{3}{2}nk_{B}T\right) + \vec{\nabla} \cdot \left[\left(\frac{mn}{2}u^{2} + \frac{5}{2}nk_{B}T\right)\vec{u}\right] = n\vec{F} \cdot \vec{u},$$

$$nD_{t}\left(\frac{s}{n}\right) = \partial_{t}s + \vec{\nabla} \cdot (s\vec{u}) = 0,$$

$$\frac{3}{2}D_{t}T + T\vec{\nabla} \cdot \vec{u} = 0.$$
(12.22)

12.2 Erste Ordnung, Navier-Stokes-Gleichung

Wir evaluieren die Ausdrücke (12.12) mit (siehe (12.9))

$$f \approx f_{\ell 0} - \tau \mathcal{D} f_{\ell 0} \tag{12.23}$$

und benutzen die 0. Ordnung Gleichung (12.16) um den Ausdruck für $\mathcal{D}f_{\ell 0}$ zu vereinfachen ($\mathcal{D}f_{\ell 0}$ ist bereits die Korrektur 1. Ordnung). Man findet nach einigen Rechnungen

$$\frac{1}{f_{\ell 0}} \mathcal{D} f_{\ell 0} = \frac{m}{k_{\rm B} T} N_{ik} U_{ik} + \left(\frac{m}{2k_{\rm B} T} \nu^2 - \frac{5}{2} \right) \nu_i \frac{\partial_i T}{T}, \quad (12.24)$$
mit $N_{ik} = \nu_i \nu_k - \delta_{ik} \nu^2 / 3, \qquad U_{ik} = [\partial_i u_k + \partial_k u_i] / 2.$

Einsetzen von (12.23) und (12.24) in (12.12) ergibt die neuen Ausdrücke für p_{ik} und w_k , ¹

$$p_{ik} = \left(nk_{\rm B}T + \frac{2}{3}\eta\vec{\nabla}\cdot\vec{u}\right)\delta_{ik} - \eta(\partial_i u_k + \partial_k u_i),$$

$$w_k = -\kappa\partial_k T. \tag{12.25}$$

Dabei findet man den Viskositätskoeffizienten

$$\eta = nk_{\rm B}T\tau = p\tau$$

und den Wärmeleitungskoeffizienten (vgl. (11.87))

$$\kappa = \frac{1}{m} c_p k_{\mathrm{B}} T \tau, \quad c_p = \frac{5}{2} n k_{\mathrm{B}}. \tag{12.26}$$

Beachte, dass die Beziehung

$$\frac{\kappa}{\eta} = \frac{c_p}{nm}$$

den Wärmetransport κ und den Impulstransport η via einer Konversion von Wärmedichte (c_p) zu Massendichte (nm) ineinander überführt (vergleiche mit dem Wiedemann-Franz Gesetz $\kappa/\sigma=(3/2)(k_{\rm B}/e)^2T$ im Elektronen Gas, mit der elektrischen leitfähigkeit σ). Einsetzen dieser Resultate in (12.5) ergibt die Navier-Stokes-Gleichung für den Transport des Impulses: Mit

$$[\hat{\mathbf{p}}]_{ik} = \hat{p}_{ik} = -\eta \left[(\partial_i u_k + \partial_k u_i) - \frac{2}{3} (\vec{\nabla} \cdot \vec{u}) \delta_{ik} \right]$$

finden wir die Kontinuitätsgleichung, Navier-Stokes-Gleichung und Wärmeleitungs-Gleichung in erster Ordnung,

$$D_{t}n + n\vec{\nabla} \cdot \vec{u} = 0,$$

$$mnD_{t}\vec{u} + \vec{\nabla}(nk_{\rm B}T) = n\vec{F} - \vec{\nabla} \cdot \hat{\mathbf{p}},$$

$$nk_{\rm B} \left[\frac{3}{2} D_{t}T + T \vec{\nabla} \cdot \vec{u} \right] = \vec{\nabla} \cdot (\kappa \vec{\nabla}T) - (\hat{\mathbf{p}} \cdot \vec{\nabla}) \cdot \vec{u},$$

$$(12.27)$$

Beachte, dass κ und η von n und T abhängen.

Die Gleichungen (12.27) beschreiben die Dynamik eines realen Fluidums und berücksichtigen dissipative Prozesse wie viskosen Fluss und Wärmeleitung. Alle ins System via \vec{F} eingespiesene Energie verbleibt im System, allerdings kann jetzt konvektive Strömungsenergie in Wärme transformiert werden, was zu einer Erhöhung der Temperatur T führt. Oft vernachlässigt man die Terme $\propto u^2$ auf der rechten Seite der Entropie-Gleichung. Für $\vec{u}=0$ findet man die Diffusionsgleichung für die Temperatur T (vgl.(9.4)),

$$\partial_t T = \frac{\kappa}{c_v} \nabla^2 T, \quad c_v = \frac{3}{2} n k_{\rm B}.$$
 (12.28)

 $^{^1}$ Für ein polyatomares Gas ergibt sich in p_{ik} ein zusätzlicher Term $-\zeta \partial_j u_j \delta_{ik}$ mit $\zeta = (2/3)(1-3k_{\rm B}/2c_v)nk_{\rm B}T\tau_\zeta, \, \tau_\zeta$ die Relaxationszeit für die interne Schwingungs- und Rotations-Energie des Moleküls.

Die letzte Gleichung von (12.27) wird oft als Energie²- oder als Entropie³- Transportgleichung geschrieben,

$$\partial_t \left(\frac{mn}{2} u^2 + q \right) + \vec{\nabla} \cdot \left[\left(\frac{mn}{2} u^2 + h \right) \vec{u} \right] = n \vec{F} \cdot \vec{u} - \vec{\nabla} \cdot (\hat{\mathbf{p}} \cdot \vec{u} + \vec{w}),$$

$$T[\partial_t s + \vec{\nabla} \cdot (s\vec{u})] = -\vec{\nabla} \cdot \vec{w} - (\hat{\mathbf{p}} \cdot \vec{\nabla}) \cdot \vec{u}. \quad (12.29)$$

Im Vergleich von (12.29) mit (9.5) beachte man, dass wir im Kapitel 9 das Volumen und damit die Dichte n fixiert haben. Auch ist mit $\kappa \propto T$ die Divergenz des Wärmestromes gegeben durch

$$-\frac{\vec{\nabla} \cdot \vec{w}}{T} = \kappa \left(\frac{\vec{\nabla}T}{T}\right)^2 + \kappa \frac{\nabla^2 T}{T}.$$

Strömungslinien

Wir haben mehrmals den Begriff der 'Strömungslinien' benutzt. Diese sind definiert als Lösung der Differentialgleichungen

$$\frac{dx}{u_x} = \frac{dy}{u_y} = \frac{dz}{u_z} \quad (d\vec{r} \parallel \vec{u}). \tag{12.30}$$

Für eine stationäre Strömung geben die Strömungslinien gerade die Teilchentrajektorien; im zeitabhängigen Fall geben die Tangenten der Strömungslinien die momentane Strömungsrichtung an. Beachte, dass die Strömungslinien beliebig parametrisierbar sind (Tangente \neq Geschwindigkeit im allgemeinen). Oft wird vom auf 1 normierten Tangentialfeld \vec{t} Gebrauch gemacht, $|\vec{t}|=1, \ \vec{t} \cdot u=\vec{u}, \ \vec{t} \cdot (\vec{\nabla} X)=\partial X/\partial \ell=$ Ableitung entlang der Strömungsrichtung (= Ableitung entlang der Strömung für $\partial_t=0$.)

Typen von Strömungen, Flüssigkeiten

Schliesslich führen wir noch einige Begriffe ein: Eine Strömung heisst

adiabatisch, falls
$$D_t(s/n) = 0$$
,
stationär, falls $\partial_t \vec{u} = 0$,
rotierend, falls $\vec{\nabla} \wedge \vec{u} \neq 0$, (12.31)
nicht-rotierend, falls $\vec{\nabla} \wedge \vec{u} = 0$,
potential $\vec{u} = -\vec{\nabla} \phi$.

 $^{^{2}}u = q = (3/2)nk_{\rm B}T = h - p$

 $^{^3}Tds = dq - g(dn/n)$; dies folgt aus dU = TdS - pdV, U = uV, S = sV, dV/V = -dn/n; Einsetzen ergibt $d(uV) = Td(sV) - pdv \rightarrow Vdu + udV = VTds + TsdV - pdV \rightarrow du = Tds - (dV/V)(u - Ts + p) = Tds - (dV/V)g$; zusammen ergibt dies du = Tds + g(dn/n). Schliesslich ersetzen wir $u \rightarrow q$ um Verwechslungen mit der Konvektion vorzubeugen.

Eine Flüssigkeit heisst

inkompressibel, falls
$$n = \text{const}, \stackrel{\text{kont.Gl.}}{\rightarrow} \vec{\nabla} \cdot \vec{u} = 0,$$
 ideal, falls $\kappa = 0, \, \eta = 0.$ (12.32)

12.3 Anwendungen

Wir beschränken uns auf *ideale Fluida* und diskutieren hydrostatische Phänomene, das Bernoulligesetz, die (Dipol-)Strömung um eine Kugel, und Schallwellen.

12.3.1 Hydrostatik

In der Hydrostatik ist $\partial_t=0,\,\vec{u}=0$ und die Eulergleichung (12.22) vereinfacht sich zu

$$\vec{\nabla}p = n\vec{F}.\tag{12.33}$$

Inkompressibles Fluidum

Für ein inkompressibles Fluidum der Massendichte $\rho=mn$ im Gravitationsfeld der Erde ($g_e=$ Erdbeschleunigung) gilt

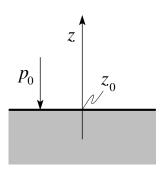


Abb. 12.2: Inkomressibles Fluidum im Gravitationsfeld.

$$\vec{F} = -mg_e\hat{z}$$

und mit (12.33) finden wir bei konstanter Dichte n sofort

$$p(z) = p_0 + \rho g_0(z_0 - z). \tag{12.34}$$

Kompressibles Gas

Für ein Gas im thermodynamischen Gleichgewicht (T = const) ist die Dichte abhängig vom Druck, $n = p/k_{\text{B}}T$, und (12.33) führt auf die Differentialglei-

chung⁴

$$\partial_z p = nF = -\frac{p}{k_{\rm B}T} m g_e.$$

Durch Integration erhalten wir die barometrische Höhenformel

$$p(z) = p(0)e^{-mg_e z/k_B T}. (12.35)$$

Stabiler Stern

Für einen gravitationel stabilen Stern ist ($G=6.674\ 10^{-11}\ \mathrm{m^3/kg\ s^2}$ die Gravitationskonstante)

$$\vec{F} = -m\vec{\nabla}\Phi, \quad \text{mit} \qquad \Delta\Phi = 4\pi G\rho,$$

$$\vec{\nabla}p = -\rho\vec{\nabla}\Phi,$$

$$\vec{\nabla}\cdot(\vec{\nabla}p/\rho) = -4\pi G\rho. \quad (12.36)$$

Mit der Zustandsgleichung $p(\rho, T)$ erhalten wir aus (12.36) die Massenverteilung im Stern. Im allgemeinen ist $T \neq \text{const}$ und es ist zusätzlich die Gleichung für das Temperaturprofil T zu lösen; mit $T \neq \text{const}$ ergibt sich zudem eine Konvektion im Stern, also kommt noch eine Gleichung für \vec{u} dazu. Entsprechend ist (12.36) stark idealisiert.

Konvektion*

In diesem Zusammenhang ist es interessant, die Stabilität des Systems gegenüber konvektiver Strömung zu untersuchen. Tatsächlich kann die hydrostatische Gleichung (12.33) des mechanischen Gleichgewichtes auch in einem thermodynamischen Nichtgleichgewicht gelten wo die Temperatur im Fluidum nicht konstant ist. Allerdings wird dieses mechanische Gleichgewicht instabil wenn der Temperaturgradient zu gross wird; in diesem Fall ergibt sich eine konvektive Strömung im Fluidum die den Temperaturgradienten ausgleichen will.

Um das Stabilitätskriterium zu finden betrachten wir Element des Gases/Fluidums auf der Höhe z mit spezifischem Volumen V, Entropie S und beim Druck p; wir wählen S und p als Variablen, V = V(p, s). Wir lassen das Fluidum adiabatisch um dz nach oben (z' = z + dz) driften und erhalten das durch den (kleineren) Druck modifizierte (grössere) Volumen V(p', S) aufgrund des neuen Druckes p' bei z'. Im Gleichgewicht muss dieser

⁴ Alternativ verwende man das Potential g(p,T) = u - Ts + p und d(g/n) = -(s/n)dT + dp/n, woraus sich mit (12.33) bei T = const die Beziehung $g/n + mg_ez = \text{const}$ ergibt. Mit $g/n = (3/2)k_BT + k_BT \ln(p/p_0) - (3/2)k_BT \ln(T/T_0) + k_BT$ ergibt sich wiederum (12.35).

Prozess eine rücktreibende Kraft (nach unten) erfahren (das nach oben gedriftete Volumen muss schwerer sein als das verdrängte Volumen; also darf das Gas mit zunehmender Höhe nicht zu schnell kalt werden, sonst ist die Luft oben zu schwer): die rücktreibende Kraft resultiert aus dem Massenunterschied zwischen dem neuen Volumen V(p', S) und dem verdrängten Volumen V(p', S'), welches durch die Entropie S' bei z' determiniert wird,

$$F_{\text{rück}} \propto [V(p', S') - V(p', S)] \sim \frac{\partial V}{\partial S} \Big|_{p} \frac{\partial S}{\partial z} > 0.$$

Gemäss (4.37) lässt sich der erste Faktor umschreiben, $\partial_S V|_p=(T/c_p)$ $\partial_T V|_p>0$ und mit $T,\ c_p>0$ gilt

$$\frac{\partial V}{\partial T}\Big|_{p}\frac{\partial S}{\partial z} > 0.$$
 (12.37)

Für die meisten Substanzen ist $\partial_T V|_p>0$ und die Entropie nimmt mit zunehmender Höhe zu, $\partial_z S>0$. Die Zustandsgleichung

$$dS = \frac{c_p}{T}dT - \frac{\partial V}{\partial T}dp$$

zeigt auf, dass sich der Temperaturabfall und der Druckabfall mit zunehmender Höhe die Waage halten müssen. Mit (12.34), $\partial_z p = -g_e \rho$, und dem Ausdehnungskoeffizienten $\beta = (1/V)\partial_T V|_p$ findet man als Stabilitätskriterium

$$0 < -\frac{dT}{dz} < G\beta \frac{T}{c_p}. (12.38)$$

Für ein ideales Gas ist $\beta = 1/T$, $c_p = 5k_B/2m$,

$$0 < -\frac{dT}{dz} < \frac{2}{5} \frac{g_e m}{k_{\rm B}}. (12.39)$$

Ist das Fluidum/Gas in der Höhe zu kalt, so fällt es runter und es entsteht eine konvektive Strömung⁵.

12.3.2 Bernoullis Gesetz

Wir betrachten eine stationäre Strömung mit

$$\partial_t \vec{u} = 0. \tag{12.40}$$

Dann folgt aus (12.22) die Eulergleichung in der Form $(\vec{F} = -\vec{\nabla}\Phi)$

$$\vec{u} \wedge (\vec{\nabla} \wedge \vec{u}) = \vec{\nabla} \left(\frac{1}{2} u^2 + \frac{h}{\rho} + \frac{\Phi}{m} \right). \tag{12.41}$$

 $^{^5\}mathrm{Beachte},$ dass (12.39) ein System weg vom thermodynamischen Gleichgewicht charakterisiert.

Die Multiplikation mit dem Strömungsvektor \vec{t} ergibt mit $\vec{u} \wedge (\vec{\nabla} \wedge \vec{u}) \perp \vec{t}$ das Gesetz von Bernoulli:

$$\frac{\partial}{\partial \ell} \left(\frac{1}{2} u^2 + \frac{h}{\rho} + \frac{\Phi}{m} \right) = 0,$$

$$\frac{1}{2} u^2 + \frac{h}{\rho} + \frac{\Phi}{m} = \text{const}$$
(12.42)

entlang der Strömung. Für ein kompressibles Gas ist $h=(5/2)nk_{\rm B}T=(5/2)p$ und wir finden für $\vec{F}=0$

$$\frac{1}{2}\rho u^2 + \frac{5}{2}p = \text{const.}$$
 (12.43)

Für ein inkompressibles Fluidum ist $\vec{\nabla}(h/\rho) = \vec{\nabla}(p/\rho)$ und damit

$$\frac{1}{2}\rho u^2 + p = \text{const};$$
 (12.44)

der Druck ist dort am grössten, wo die Strömungsgeschwindigkeit am kleinsten ist.

12.3.3 Nichtrotierende Strömungen*

Wir definieren die Rotation des Geschwindigkeitsfeldes entlang der Schleife γ als

$$\Gamma = \oint_{\gamma} d\vec{\ell} \cdot \vec{u}. \tag{12.45}$$

Man zeigt leicht, dass

$$\frac{d\Gamma}{dt} = D_t \Gamma = 0 : (12.46)$$

im idealen Fluidum ist die Rotation erhalten (Helmholtz-Kelvin-Theorem). Im Beweis ist zu beachten, dass sich nicht nur das Geschwindigkeitsfeld \vec{u} , sondern auch die Position der Schleife γ verändert. Mit $d\vec{\ell} = \delta \vec{r}$ ist

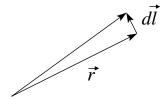


Abb. 12.3: Das Differential $d\vec{\ell} = \delta \vec{r}$ entlang der Schleife.

$$D_t \Gamma = \oint [D_t \vec{u}] \cdot \delta \vec{r} + \oint \vec{u} \cdot [D_t \delta \vec{r}]$$

Mit (12.22) und $\vec{F} = -\vec{\nabla}\Phi$ ist der erste Term ein Gradientenfeld und verschwindet,

$$\oint [D_t \vec{u}] \cdot \delta \vec{r} = -\oint \vec{\nabla} \left(\frac{h}{\rho} + \frac{\Phi}{m} \right) \cdot \delta \vec{r} = 0$$

Im zweiten Term schreiben wir $D_t \delta \vec{r} = \delta D_t \vec{r} = \delta \vec{u}$; das Schleifenintegral über $\vec{u} \cdot \delta \vec{u} = \delta u^2/2$ verschwindet, also ist $D_t \Gamma = 0$. Beachte, dass (12.46) nur für isentrope Strömungen gilt.

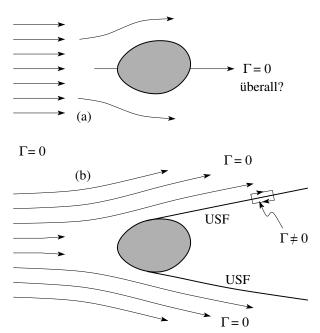


Abb. 12.4: (a) Wird die im Eingangskanal nicht rotierende Strömung ($\Gamma=0$) hinter dem Hindernis weiterhin rotationsfrei fliessen? (b) Hinter dem umflossenen Objekt bilden sich Unstetigkeitsflächen (USF) innerhalb deren die Strömung turbulent (also auch rotierend) wird.

Aus (12.46) folgt für eine stationäre Strömung, dass die Rotation entlang einer Strömungslinie erhalten ist⁶. Man möchte schliessen, vgl. Abb. 12.4(a), dass für eine stationäre Strömung um einen Körper herum die Strömung nicht rotiert, wenn sie asymptotisch im Eingangskanal nicht rotiert.

Dieser Schluss ist falsch. Der Grund liegt darin, dass Strömungslinien, die dem Körper folgen, von diesem separieren können, es entsteht eine Unstetigkeitsfläche mit einem Sprung in der Strömungsgeschwindigkeit, vgl. Abb. 12.4(b). Die hydrodynamischen Gleichungen lassen eine Vielzahl von Lösungen mit Unstetigkeitsflächen zu. Die zugehörigen tangentialen Unstetigkeiten sind instabil, die Strömung wird turbulent. In diesem Bereich bricht die Approximation eines idealen Fluidums zusammen und die endliche Viskosität der Flüssigkeit muss berücksichtigt werden.

Trotzdem gibt es Beispiele, wo die Annahme einer nichtrotierenden Strömung um einen Körper Sinn macht:

 $^{^6}$ Für $\partial_t \vec{u} \neq 0$ gilt die Erhaltung der Rotation entlang der Teilchentrajektorien.

1. Ein *stromlinienförmiger Körper* erzeugt Turbulenz nur in einem engen Schattenkanal, vgl. Abb. 12.5.

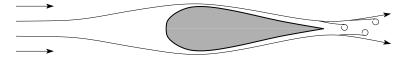


Abb. 12.5: Schattenkanal mit Turbulenz hinter einem stromlinienförmigen Körper.

2. Ein oszillierender Körper erzeugt bei genügend kleiner Amplitude $a \ll \ell = \text{Dimension}$ des Körpers keine Wirbel. Dazu schätzen wir die Grösse der verschiedenen Terme in (12.22) ab,

$$\partial_t \vec{u} + \vec{u} (\vec{\nabla} \cdot \vec{u}) = -\vec{\nabla} \left(\frac{h}{\rho} + \frac{\Phi}{m} \right).$$

Mit $v = \omega a$ der Geschwindigkeit des Körpers ist

$$\vec{u} (\vec{\nabla} \cdot \vec{u}) \sim v^2 / \ell, \quad \partial_t \vec{u} \sim \omega v \sim v^2 / a \gg v^2 / \ell,$$

$$\rightarrow \partial_t \vec{u} \approx -\vec{\nabla} \left(\frac{h}{\rho} + \frac{\Phi}{m} \right) \rightarrow \partial_t (\vec{\nabla} \wedge \vec{u}) \approx 0, \qquad (12.47)$$

$$\rightarrow \vec{\nabla} \wedge \vec{u} \approx 0.$$

Wir nennen eine nichtrotierende Strömung auch eine Potentialströmung und schreiben

$$\vec{u} = \vec{\nabla}\phi. \tag{12.48}$$

Mit der Eulergleichung (12.22) folgt sofort

$$\frac{\partial \phi}{\partial t} + \frac{1}{2}u^2 + \frac{h}{\rho} + \frac{\Phi}{m} = f(t). \tag{12.49}$$

OBdA können wir f = 0 setzen (Umeichung von Φ durch f(t)). Ist die Strömung stationär, so folgt das Gesetz von Bernoulli,

$$\frac{1}{2}u^2 + \frac{h}{\rho} + \frac{\Phi}{m} = \text{const}$$
 (12.50)

in verstärkter Form: In (12.42) hängt die Konstante von der Strömungslinie ab, in (12.50) ist die Konstante dieselbe im ganzen Fluidum.

12.3.4 Inkompressible Fluida und Potentialströmung

Für ein inkompressibles Fluidum ist $\rho=mn=$ const und wir können das Geschwindigkeitsfeld \vec{u} unabhängig von n finden. Aus der Kontinuitätsgleichung folgt das Verschwinden der Divergenz

$$\vec{\nabla} \cdot \vec{u} = 0 \tag{12.51}$$

und für die rotatorische Komponente gilt mit (12.22)

$$\partial_t(\vec{\nabla} \wedge \vec{u}) = \vec{\nabla} \wedge (\vec{u} \wedge (\vec{\nabla} \wedge \vec{u})). \tag{12.52}$$

Gemäss (12.44) lautet die Bernoulli-Gleichung

$$\frac{1}{2}\rho u^2 + p + \frac{\rho\Phi}{m} = \text{const}; \qquad (12.53)$$

ist die Strömung zudem potential, $\vec{u} = -\vec{\nabla}\phi$, so ist die Konstante in (12.53) universell im Fluidum und mit $\vec{\nabla} \cdot \vec{u} = 0$ ist $\vec{\nabla} \wedge \vec{u} = 0$,

$$\Delta \phi = 0. \tag{12.54}$$

Besonders elegant lassen sich rotationssymmetrische Strömungen um einen entsprechenden Körper herum lösen, vgl. Abb. 12.6. Das 2D-Problem kann

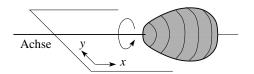


Abb. 12.6: Rotationssymmetrische Strömung um einen rotationssymmetrischen Körper.

mit Hilfe der Methoden der Funktionentheorie gelöst werden. Aus $\vec{\nabla} \cdot \vec{u} = 0$ folgt

$$u_x = \partial_y \chi, \quad u_y = -\partial_x \chi,$$
 (12.55)

und $\vec{\nabla} \wedge \vec{u} = 0$ ergibt

$$u_x = \partial_x \phi, \quad u_y = \partial_y \phi,$$
 (12.56)

$$\Rightarrow u_x = \partial_x \phi = \partial_y \chi, \quad u_y = \partial_y \phi = -\partial_x \chi.$$
 (12.57)

Dies sind gerade die Cauchy-Riemann Bedingungen für die in z=x+iy analytische Funktion $w=\phi+i\chi$. Für w gilt dann (mit $\partial_z=(\partial_x-i\partial_y)/2$ und $\partial_{\bar{z}}=(\partial_x+i\partial_y)/2$)

$$\frac{dw}{dz} = u_x - iu_y, \qquad \frac{dw}{d\bar{z}} = 0. \tag{12.58}$$

Die Randbedingung $\vec{u}_{\vec{n}} = 0$ ($\vec{n} =$ Oberflächennormale, Körper in Ruhe) bedeutet, dass das Körperprofil eine Strömungslinie ist. Die Aufgabe besteht dann im Auffinden der Funktion $w \in \mathcal{A}$ mit w reell auf dem Körperprofil.

Ein beliebtes Beispiel ist der Potentialfluss um die Kugel

$$\Delta \phi = 0,
\vec{u} = \vec{\nabla} \phi \stackrel{r \to \infty}{\to} \vec{u}_0, \qquad \vec{u}_n = 0.$$
(12.59)

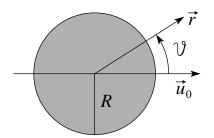


Abb. 12.7: Zur Geometrie der Strömung um die bewegte Kugel.

Transformieren auf das Fluidsystem ergibt die Strömung um die bewegte Kugel,

$$\begin{split} \Delta \phi &= 0, \\ \left. \frac{\partial \phi}{\partial r} \right|_{r=R} &= u_0 \cos \vartheta, \qquad \phi \stackrel{r \to \infty}{\to} 0. \end{split}$$

Man findet leicht die Lösung in der Form eines Dipolfeldes

$$\phi(\vec{r}) = -\frac{u_0}{2} R^3 \frac{\cos \vartheta}{r^2}, \quad r > R,$$

$$\vec{u}(\vec{r}) = -\frac{u_0}{2} R^3 \vec{\nabla} \frac{\cos \vartheta}{r^2}, \quad r > R.$$
(12.60)

Die totale kinetische Energie (in der Bewegung der Kugel mit Masse m_0

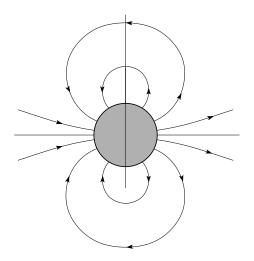


Abb. 12.8: Dipolfeld der bewegten Kugel; beachte den Rückfluss (backflow) in der Strömung.

und im Geschwindigkeitsfeld \vec{u}) lässt sich in der Form

$$E = \frac{1}{2}(m_0 + m')u_0^2$$

$$m' = \frac{1}{2}\frac{4\pi}{3}R^3\rho$$
(12.61)

schreiben, woraus sich die effektive Masse

$$m_{\text{eff}} = m_0 + m'$$

ergibt (der Vorfaktor zu $u_0^2/2$ in der Energie ist die totale effektive Masse des zusammengesetzten Systems; alternativ definiert man die Masse als Vorfaktor zur Beschleunigung $\dot{\vec{u}}$ des Systems unter der Wirkung einer Kraft \vec{F}).

12.3.5 Schallwellen

Wir starten mit den Gleichungen (12.22) in der Form

$$\partial_t \rho + \vec{\nabla} \cdot (\rho \vec{u}) = 0,$$

$$\partial_t \vec{u} + \vec{u} \, \vec{\nabla} \cdot \vec{u} = -\frac{\vec{\nabla} p}{\rho},$$
(12.62)

und suchen eine Lösung der Form $\rho, p, T, \vec{u} \sim \text{const} + Ae^{i(\vec{q}\cdot\vec{r}-\omega t)}$. Die Amplituden $A \sim \rho', p', T', \vec{u}$ sollen klein sein, so dass wir (12.62) entwickeln können. Dann ist in erster Ordnung

$$\partial_t \rho' + \rho \vec{\nabla} \cdot \vec{u} = 0,$$

$$\partial_t \vec{u} + \frac{1}{\rho} \vec{\nabla} p' = 0.$$
 (12.63)

In (12.63) eliminieren wir ρ' zugunsten von p' und benützen dabei die Adiabatizität $D_t(s/n) = 0$,

$$p' = \left. \frac{\partial p}{\partial \rho} \right|_{s/p} \rho'. \tag{12.64}$$

Einsetzen in (12.63) ergibt in erster Ordnung

$$\partial_t p' + \rho (\partial_\rho p)_{s/n} \vec{\nabla} \cdot \vec{u} = 0,$$

$$\partial_t \vec{u} + \frac{1}{\rho} \vec{\nabla} p' = 0.$$
 (12.65)

Wir diskutieren zwei klassische Lösungswege:

1. via Fouriertransformation:

$$-i\omega p' + i\rho(\partial_{\rho}p)_{s/n}\vec{q} \cdot \vec{u} = 0,$$

$$\vec{q} \cdot | -i\omega \vec{u} + \frac{i}{\rho}\vec{q}p' = 0,$$

$$\rightarrow -i\omega \vec{q} \cdot \vec{u} + i\frac{q^2}{\rho}p' = 0.$$
(12.66)

In Matrixschreibweise finden wir sofort die Säkulargleichung

$$\begin{pmatrix} -\omega & \rho(\partial_{\rho}p)_{s/n} \\ q^{2}/\rho & -\omega \end{pmatrix} \begin{pmatrix} p' \\ \vec{q} \cdot \vec{u} \end{pmatrix} = 0,$$
$$\rightarrow \omega^{2} - \left(\frac{\partial p}{\partial \rho}\right) q^{2} = 0,$$

und daraus die Dispersion

$$\omega = \sqrt{\frac{\partial p}{\partial \rho}\Big|_{s/n}} = cq. \tag{12.67}$$

Beachte: Der Schall ist eine kollektive Mode. Sie beruht auf der Kompressibilität

$$\left. \frac{\partial p}{\partial \rho} \right|_{s/n} = \frac{1}{\rho \kappa_s}$$

und involviert Oszillationen in Dichte versus Druck. Der Schall im Gas ist longitudinal, für $\vec{q} \cdot \vec{u} = 0$ (transversaler Schall) ergibt sich keine propagierende Lösung. Der Grund ist, dass eine Dichteschwankung an den Druck koppelt, was eine rücktreibende Kraft erzeugt. Für eine transversale Mode ist $\vec{\nabla} \cdot \vec{u} = 0$ und es ergibt sich keine Dichteschwankung und somit auch keine rücktreibende Kraft.

2. Wir setzen $\vec{u} = -\vec{\nabla}\phi$, $p' = \rho\partial_t\phi$ (aus (12.65.b)) und finden die Wellengleichung aus (12.65.a)

$$\partial_t^2 \phi - c^2 \Delta \phi = 0, \quad c = \sqrt{\frac{\partial p}{\partial \rho}\Big|_{s/n}}.$$
 (12.68)

Die Lösung von (12.68) hat die Form (wir betrachten die Propagation entlang der x-Achse)

$$\phi = f(x - ct) \rightarrow u = \partial_x f = f'.$$

Der Vergleich mit

$$p' = -\rho \partial_t f = \rho c f'$$

ergibt

$$u = \frac{1}{ac}p'$$
.

Ersetzen wir mit (12.64) $p' = c^2 \rho'$ so finden wir

$$u = \frac{c}{\rho} \rho' \to \frac{p'}{p} = \frac{c^2 \rho}{p} \frac{\rho'}{\rho}.$$

Mit $T' = \partial_p T|_{s/n} \, p' = (VT\alpha/c_p) \, p'$ vgl. (4.38), finden wir die Temperaturschwankungen

$$\frac{T'}{T} = \frac{pV\alpha}{c_p} \frac{p'}{p} = \frac{nRT\alpha}{c_p} \frac{p'}{p}.$$
 (12.69)

Für ein ideales Gas ist $c_p=(5/2)nR$, $\alpha=1/T$, $\kappa_T=1/p$, $\kappa_s=(c_v/c_p)\kappa_T=(3/5)\kappa_T$, $c^2=1/\rho\kappa_s=(5/3)k_{\rm B}T/m$, unabhängig vom Druck. Für die Amplituden gilt

$$\frac{T'}{T} = \frac{2}{3} \frac{\rho'}{\rho} = \frac{2}{5} \frac{p'}{p} = \sqrt{\frac{4m}{15k_{\rm B}T}} u,$$

$$c^2 \approx 10^4 \frac{T[K]}{\text{#Nukleonen}} \frac{m^2}{s^2}.$$
(12.70)

Kapitel 13

Klassische statistische Mechanik

Wir kommen auf unsere Diskussion statistischer Beschreibungen im Kapitel 10 zurück und entwickeln die Thermodynamik (allgemein und spezifischer Systeme) aus den verschiedenen Ensembles. Wir erinnern an das Konzept des 6N-dimensionalen Phasenraumes Γ , dessen Punkte $(p,q)=(p_1,\ldots,p_{3N},q_1,\ldots,q_{3N})$ den (momentanen) Zustand eines Systems beschreiben. Ebenso erinnern wir an die auf Γ definierte Dichtefunktion $\rho(p,q)$, mit deren Hilfe wir die Ensemblemittelwerte

$$\langle \mathcal{M} \rangle = \frac{\int d^{3N} p \, d^{3N} q \, \mathcal{M}(p, q) \rho(p, q)}{\int d^{3N} p \, d^{3N} q \, \rho(p, q)}$$
(13.1)

definieren, die unter der Annahme von Ergodizität gleich den gemessenen Zeitmittelwerten $\overline{\mathcal{M}}^T$ sind. Der Wert der Dichtefunktion ρ auf Γ hängt vom Ensemble ab. In der Folge diskutieren wir die drei relevanten Ensembles der statistischen Mechanik (es ist E die Energie, V das Volumen und N die Teilchenzahl des Systems):

E, V, N fest, abgeschlossenes System, mikrokanonisches Ensemble

- V,N fest, System im Kontakt mit einem Wärmereservoir der Temperatur $T,\ kanonisches\ Ensemble.$
- V fest, System im Kontakt mit einem Wärme- und Teilchenreservoir der Temperatur T und mit chemischem Potential μ , grosskanonisches Ensemble.

13.1 Mikrokanonisches Ensemble

Wir basieren die statistische Mechanik auf dem Postulat gleicher a priori Wahrscheinlichkeit $\rho(p,q)$ für jeden mit den Bedingungen E,V,N verträglichen Zustand in Γ ,

$$\rho(p,q) = \begin{cases} 1/h^{3N}N!, & E < H(p,q) < E + \Delta, \\ 0, & \text{sonst.} \end{cases}$$
 (13.2)

Die Konstante h hat die Dimension einer Wirkung und fällt im Erwartungswert $\langle \mathcal{M} \rangle$, (13.1), raus. Der Faktor N! beruht auf einem Ansatz von Gibbs und löst das Gibbssche Paradoxon: Das Mischen gleicher Atome wird unter Berücksichtigung dieses Faktors keine Mischentropie erzeugen. Mit diesem Faktor zählen wir alle permutierten Zustände $(p_{\pi(1)}, \ldots, p_{\pi(N)}, q_{\pi(1)}, \ldots, q_{\pi(N)}), \pi \in S^N$, nur einmal \to 'korrektes Boltzmann-Zählen'. Dass die Atome wirklich ununterscheidbar sind, ist ein Postulat aus der Quantenstatistik und geht (im Prinzip) über die klassische Beschreibung hinaus.

Wir definieren das durch das mikrokanonische Ensemble besetzte (dimensionslose) Volumen

$$\Gamma(E) \equiv \int d^{3N} p \, d^{3N} q \, \rho(p, q)$$

$$= \int_{E < H(p, q) < E + \Delta} \frac{d^{3N} p \, d^{3N} q}{N! h^{3N}}$$
(13.3)

im Zustandsraum Γ . Mit den Definitionen

$$\Sigma(E) \equiv \int_{H(p,q) < E} \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!}$$

$$\omega(E) \equiv \frac{d\Sigma(E)}{dE} \qquad \text{(Zustandsdichte)}$$
(13.4)

können wir Γ schreiben als

$$\Gamma(E) = \Sigma(E + \Delta) - \Sigma(E) \approx \omega(E)\Delta. \tag{13.5}$$

Mit (13.3) definieren wir die Grösse S(E, V, N),

$$S(E, V, N) = k_{\rm B} \ln \Gamma(E), \tag{13.6}$$

mit $k_{\rm B}=1.380\cdot 10^{-16}\,{\rm erg/K}=(1/11605)\,{\rm eV/K}$ und $1\,{\rm eV}=1.602\cdot 10^{-19}\,{\rm J}.$ Die Grösse S ist (Beweis siehe unten)

$$-$$
 extensiv in E, V, N

- maximal im abgeschlossenen System, d.h. (13.7)
$$S(E, V, N) > S(E, V, N; \text{Hemmungen}).$$

Aufgrund der Aussagen (13.7) identifizieren wir S(E, V, N) mit der Entropie des Systems. Wir erkennen damit auch die mikroskopische Bedeutung der Entropie: Sie zählt die zur Verfügung stehenden Zustände im Γ -Raum und steuert das System in Richtung maximaler molekularer Unordnung.

S ist extensiv: Wir unterteilen das System E,V,N in zwei Teilsysteme E_1,V_1,N_1 und E_2,V_2,N_2 (die Wechselwirkung zwischen den Systemen skaliert mit $V^{2/3}$ und wir vernachlässigen diesen Beitrag in den folgenden Betrachtungen). Die isolierten Systeme 1 und 2 mit Energien in $(E_1,E_1+\Delta)$ und $(E_2,E_2+\Delta)$ haben die Entropien

$$S_1(E_1, V_1, N_1) = k_{\rm B} \ln \Gamma_1(E_1),$$

 $S_2(E_2, V_2, N_2) = k_{\rm B} \ln \Gamma_2(E_2),$ (13.8)

wo $\Gamma_{1,2}$ die von den Systemen 1,2 besetzten Volumina in Γ sind, siehe Abb. 13.1.

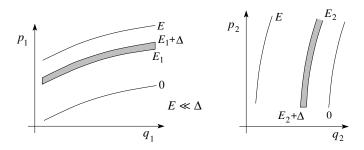


Abb. 13.1: Aufteilung des Volumen Γ im Phasenraum.

Das (in $E,\,V$ und N) gehemmte System besetzt das Phasenraumvolumen

$$\Gamma_1(E_1)\Gamma_2(E_2). \tag{13.9}$$

Als nächstes relaxieren wir die Hemmung in E: Die totale Energie E lässt sich dann beliebig auf die Subsysteme verteilen, wobei für die Energien E, E_1 , E_2 folgende Relationen gelten,

$$E < E_1 + E_2 < E + 2\Delta. \tag{13.10}$$

Das Phasenraumvolumen $\Gamma(E)$ ergibt sich aus der Summe aller möglichen Aufteilungen der Energie, $E_1 \equiv E_{1i} = i\Delta$ und $E_2 = E - E_1$, $k = 0, \dots E/\Delta$,

$$\Gamma(E) = \sum_{i}^{E/\Delta} \Gamma_{1}(E_{1i}) \Gamma_{2}(E - E_{1i}) \text{ und}$$

$$S(E, V, N) = k_{\rm B} \log \sum_{i}^{E/\Delta} \Gamma_{1}(E_{1i}) \Gamma_{2}(E - E_{1i}). \tag{13.11}$$

Betrachte jetzt den grössten Summanden in (13.11),

$$\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)$$
 mit $\bar{E}_1 + \bar{E}_2 = E$.

Dann ist

$$\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2) \le \Gamma(E) \le \frac{E}{\Delta}\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2). \tag{13.12}$$

Da aber $\log \Gamma_i \propto N_i$, $\log E/\Delta \sim \log N$ ist, finden wir sofort das Resultat

$$S(E, V, N) = S_1(\bar{E}_1, V_1, N_1) + S_2(\bar{E}_2, V_2, N_2) + \mathcal{O}(\log N)$$
(13.13)

und S ist extensiv. Das Resultat (13.13) impliziert auch, dass von allen möglichen Verteilungen der Energie E auf die beiden Subsysteme die Verteilung $E = \bar{E}_1 + \bar{E}_2$ die Wahrscheinlichste ist: Fast alle Konfigurationen haben die optimale Energieverteilung.

Da \bar{E}_1 und \bar{E}_2 den Hauptbeitrag zur Entropie geben verschwindet die Variation

$$\delta[\Gamma_1(E_1)\Gamma_2(E_2)]\Big|_{\bar{E}_1,\bar{E}_2} = 0 \tag{13.14}$$

und wir finden einen Gleichgewichtsparameter,

$$\frac{\delta\Gamma_{1}}{\Gamma_{1}} = -\frac{\delta\Gamma_{2}}{\Gamma_{2}}, \text{ und mit } \delta E_{1} = -\delta E_{2}$$

$$\frac{\partial}{\partial E_{1}} \log \Gamma_{1} = \frac{\partial}{\partial E_{2}} \log \Gamma_{2}$$

$$\rightarrow \frac{1}{T_{1}} \equiv \frac{\partial S_{1}}{\partial E_{1}} \Big|_{\bar{E}_{1}} = \frac{\partial S_{2}}{\partial E_{2}} \Big|_{\bar{E}_{2}} \equiv \frac{1}{T_{2}};$$
(13.15)

die Ableitung von S nach E definiert einen Gleichgewichtsparameter, den wir mit der (inversen) $Temperatur\ T$ identifizieren,

$$\frac{1}{T} = \frac{\partial S}{\partial E} \bigg|_{V,N}.$$
(13.16)

S ist maximal: Durch Wegfall einer Hemmung wird das Phasenraumvolumen immer vergrössert und entsprechend ist S(E, V, N) > S(E, V, N; Hemmungen).

Schliesslich führt uns die Relaxierung der Hemmungen in V und N auf die weiteren Gleichgewichtsparameter p (Druck) und μ (chemisches Potential),

$$p = T \frac{\partial S}{\partial V} \bigg|_{E,N}, \qquad \mu = T \frac{\partial S}{\partial N} \bigg|_{E,V}.$$
 (13.17)

Mit der offensichtlichen Identifizierung $U \equiv E$ haben wir mit (13.6) gerade die Entropie S als Funktion der extensiven Variablen E, V, N als thermodynamisches Potential gefunden,

$$S(U \equiv E, V, N) = k_{\rm B} \log \Gamma(E). \tag{13.18}$$

Die Auflösung nach U(S, V, N) gibt uns die innere Energie als Funktion der Variablen S, V, N und die thermischen $(p = \dots, \mu = \dots)$ und die kalorische (eliminiere S in U(S, V, N) mit Hilfe von $T = \dots$) Zustandsgleichungen,

$$T = \frac{\partial U}{\partial S}\Big|_{V,N},$$

$$p = -\frac{\partial U}{\partial V}\Big|_{S,N},$$

$$\mu = \frac{\partial U}{\partial N}\Big|_{S,V}.$$
(13.19)

Mit der Berechnung von $\Gamma(E)$ (oder $\Sigma(E)$, $\omega(E)$) und (13.18) erhalten wir die gesamte Thermodynamik des abgeschlossenen Systems charakterisiert durch die extensiven Variablen E, V, N. Beachte, dass $\log \Gamma \sim \log \Sigma \sim \log \omega$. Durch Legendretransformation können wir mit F = U - TS, G = U - TS + pV zu offenen Systemen übergehen.

Beispiel: Ideales Gas

Mit dem Hamiltonian der freien Gasteilchen

$$H = \frac{1}{2m} \sum_{i=1}^{N} p_i^2 = E, \quad N, V = \text{const}$$
 (13.20)

ist das Integral

$$\Sigma(E) = \frac{1}{h^{3N} N!} \underbrace{\int d^3 q_1 \dots d^3 q_N}_{V^N} \int_{H < E} d^3 p_1 \dots d^3 p_N$$
 (13.21)

zu berechnen. Die Integration über die 3N-dimensionale Kugel mit Radius $\sqrt{\sum_i p_i^2} = \sqrt{2mE} \equiv R$ ergibt das Volumen¹

$$S^{3N}(R) = \frac{\pi^{n/2}}{\Gamma(n/2+1)} R^n \bigg|_{n=3N}$$
 (13.22)

$$\Gamma(1/2) = \sqrt{\pi}, \qquad \Gamma(z+1) = z\Gamma(z) \stackrel{z=n}{=} n!$$

$$S^{1} = \frac{\sqrt{\pi}}{\sqrt{\pi}/2}R = 2R, \qquad S^{2} = \frac{\pi}{1}R^{2}, \quad S^{3} = \frac{\sqrt{\pi}\pi}{(3/4)\sqrt{\pi}}R^{3} = \frac{4\pi}{3}R^{3}.$$

Übungen: Berechne die Formel für die Oberfläche/das Volumen einer n-dimensionalen Kugel mit Hilfe der Integration einer Gaussfunktion in karthesischen und in Kugelkoordinaten. Zeige, dass sich das Volumen einer hoochdimensionalen Kugel auf die Oberläche konzentriert. Berechne die Stirling Formal aus $N! = \int_0^\infty dx \, e^{S(x)}, \, S(x) = N \ln x - x$ und berechne das Integral via 'steepest descent'.

¹Es ist

und wir erhalten das Resultat

$$\Sigma(E) = \frac{1}{N!} \frac{V^N}{h^{3N}} \frac{\pi^{3N/2}}{\Gamma(3N/2+1)} (2mE)^{3N/2}.$$
 (13.23)

Mit der Stirlingschen Formel

$$\Gamma(1+z) = z^z e^z \sqrt{2\pi z} (1+r(z)), \quad 0 < r(z) < 1/12z + \dots$$
 (13.24)

finden wir die Entropie des idealen Gases (Sackur-Tetrode),

$$S(E, V, N) = k_{\rm B} \log \Sigma$$

= $Nk_{\rm B} \left[\log \frac{V}{N} + \log \left(\frac{4\pi mE}{3Nh^2} \right)^{3/2} + \frac{5}{2} \right].$ (13.25)

Dabei ist der Vorfaktor $\propto N$ extensiv und die beiden Summanden in der Klammer sind intensiv, $\propto N/V$ (von N!) und $\propto E/N$ (von $\Gamma(3N/2+1)$). Für die innere Energie ergibt sich der Ausdruck

$$U(S, V, N) = \frac{3h^2}{4\pi m} \left(\frac{N}{V}\right)^{2/3} N \exp\left[\frac{2}{3} \frac{S}{Nk_{\rm B}} - \frac{5}{3}\right], \tag{13.26}$$

woraus sich leicht die Temperatur und kalorische Zustandsgleichung

$$T = \frac{\partial U}{\partial S}\Big|_{V} = \frac{2}{3} \frac{U}{Nk_{\rm B}}, \quad U = \frac{3}{2} Nk_{\rm B} T = E$$
 (13.27)

finden lassen. Mit der spezifischen Wärme

$$C_V = \frac{\partial U}{\partial T} = \frac{3}{2} N k_{\rm B} \tag{13.28}$$

erhalten wir den vertrauten Ausdruck für S(V,T) zurück,

$$S = Nk_{\rm B}\log\frac{V}{N} + C_V\log T + \text{const.}$$
 (13.29)

Die thermische Zustandsfunktion folgt aus

$$p = -\frac{\partial U}{\partial V}\Big|_{S} = \frac{2}{3}\frac{U}{V} = \frac{Nk_{\rm B}T}{V}.$$
 (13.30)

Damit haben wir die Zustandsfunktionen des idealen Gases mikroskopisch hergeleitet.

Äquipartitionsprinzip

Als zweite Anwendung der statistischen Mechanik formuliert im mikrokanonischen Ensemble leiten wir das Äquipartitionsprinzip her; dieses besagt, dass der Erwartungswert der Produkte $x_i \partial H/\partial x_j$ gegeben ist durch

$$\left\langle x_i \frac{\partial H}{\partial x_j} \right\rangle = \delta_{ij} k_{\rm B} T.$$
 (13.31)

Für das ideale Gas mit $H = \sum p_i^2/2m$ ergibt sich mit $x_i = x_j = p_i$

$$\left\langle \frac{p_i^2}{2m} \right\rangle = \frac{k_{\rm B}T}{2},\tag{13.32}$$

d.h., im Gleichgewicht trägt jeder Freiheitsgrad der Bewegung die Energie $k_{\rm B}T/2$; entsprechend ergibt sich für die Gesamtenergie des idealen Gases

$$\langle H \rangle = U = \frac{3}{2} N k_{\rm B} T, \quad C_V = \frac{3}{2} k_{\rm B},$$
 (13.33)

in Übereinstimmung mit (13.27) und (13.28).

Für ein System von harmonischen Oszillatoren, $H = \sum_i a_i p_i^2 + b_i q_i^2$ erhalten wir

$$\sum_{i} \left\langle p_{i} \frac{\partial H}{\partial p_{i}} + q_{i} \frac{\partial H}{\partial q_{i}} \right\rangle = \left\langle 2H \right\rangle \stackrel{a_{i}, b_{i} \neq 0}{=} \sum_{i} 2 k_{B} T. \tag{13.34}$$

Damit trägt jeder kinetische und jeder potentielle Freiheitsgrad die Energie $k_{\rm B}T/2$.

Beweis:

Unter Zuhilfenahme der Umformung

$$\begin{split} \int_{H < E} dp \, dq \, x_i \frac{\partial H}{\partial x_j} &= \int H < E p \, dq \, x_i \frac{\partial (H - E)}{\partial x_j} \\ &= \underbrace{\int_{H < E} dp \, dq \, \frac{\partial}{\partial x_j} (x_i (H - E))}_{=0, \text{ Randterm wo } H - E = 0} - \delta_{ij} \int_{H < E} dp \, dq \, (H - E) \end{split}$$

finden wir

$$\begin{split} \left\langle x_i \frac{\partial H}{\partial x_j} \right\rangle &= \frac{1}{\Gamma} \int_{E < H < E + \Delta} dp \, dq \, x_i \frac{\partial H}{\partial x_j} = \frac{\Delta}{\Gamma} \frac{\partial}{\partial E} \int_{H < E} dp \, dq \, x_i \frac{\partial H}{\partial x_j} \\ &= \frac{\delta_{ij}}{\omega} \frac{\partial}{\partial E} \int_{H < E} dp \, dq \, (E - H) = \frac{\delta_{ij}}{\omega} \int_{H < E} dp \, dq = \frac{\delta_{ij}}{\omega} \Sigma \\ &= \delta_{ij} \frac{1}{\partial_E \log \Sigma} = \delta_{ij} \frac{k_{\rm B}}{\partial_E S} = \delta_{ij} k_{\rm B} T. \end{split}$$

Mit $\dot{p}_i = -\partial_{q_i} H$ erhält man sofort das Virialtheorem,

$$-\sum_{i=1}^{3N} \left\langle q_i \frac{\partial H}{\partial q_i} \right\rangle = \underbrace{\left\langle \sum_{i=1}^{3N} q_i \dot{p}_i \right\rangle}_{\text{Virial d. kl. Mechanik}} = -3Nk_{\text{B}}T. \tag{13.35}$$

Ein paar warnende Worte zum Äquipartitionsprinzip: Man ist versucht zu argumentieren, dass c_V für harmonische Systeme immer trivial sei, $c_V=(f/2)k_{\rm B}$, mit f der Anzahl Freiheitsgrade pro Teilchen, sowohl kinetische als auch potentielle. Dies gilt nur für ein klassisches System, wo jeder Freiheitsgrad durch beliebig kleine Energien angeregt wird. In der Quantenmechanik muss oft eine endliche Energie E_g erbracht werden, um eine Mode/ein Freiheitsgrad anzuregen (z.B., $E_g=\hbar\omega$ im harmonischen Oszillator). Erst wenn $T>E_g$ ist, nimmt der Freiheitsgrad mit vollem Gewicht $k_{\rm B}T/2$ an der spezifischen Wärme teil. Die Gewichtsfunktion ist $\propto \hbar\omega \coth(\hbar\omega/2k_{\rm B}T) \stackrel{T\to 0}{\to} \hbar\omega$ bei endlichen Frequenzen, $k_{\rm B}T>\hbar\omega \over D$

13.2 Kanonisches Ensemble

Wir betrachten ein System (E_1, V_1, N_1) im Kontakt mit einem grossen System $(E_2, V_2, N_2) \gg (E_1, V_1, N_1)$, das wir als Energiereservoir interpretieren. Wir betrachten das Gesamtsystem als abgeschlossen mit der Energie $E < (E_1 + E_2) < E + 2\Delta$. Es bezeichne $\Gamma_2(E_2)$ das zum Reservoir gehörige Volumen des Phasenraumes, dann ist die Wahrscheinlichkeit $\rho(p_1, q_1)$ das System 1 im Zustand (p_1, q_1) zu finden gegeben durch

$$\rho(p_1, q_1) \propto \Gamma_2(E - E_1). \tag{13.36}$$

Aus der vorhergegangenen Diskussion zur Extensivität von S, siehe (13.13), folgt, dass nur ein Energiewert $E_1 = \bar{E}_1 \ll E$ relevant ist, so dass wir $\Gamma_2(E - E_1)$ entwickeln können,

$$\Gamma_2(E - E_1) = e^{\log \Gamma_2} = e^{S_2(E - E_1)/k_B}$$

$$\approx e^{S_2(E)/k_B} e^{-(E_1/k_B)} \partial_{E_2} S_2 \Big|_E$$

$$= \text{const } e^{-E_1/k_B T_2}, \tag{13.37}$$

wo T_2 gerade die Temperatur des Reservoirs ist. Mit $E_1 = H(p_1, q_1)$ können wir die Wahrscheinlichkeitsdichte des kanonischen Ensembles definieren als

$$\rho(p,q) = \frac{1}{h^{3N} N!} e^{-H(p,q)/k_{\rm B}T}.$$
(13.38)

Wir definieren die kanonische Zustandssumme Z_N als

$$Z_{N}(V,T) = \int d^{3N} p \, d^{3N} q \, \rho(p,q)$$

$$= \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} N!} \exp\left[-\frac{H(p,q)}{k_{\rm B}T}\right], \qquad (13.39)$$

und definieren die Grösse²

$$F(V, T, N) = -k_{\rm B}T \log Z_N(V, T).$$
 (13.40)

Die Grösse F ist extensiv³ und erfüllt die Beziehung (Beweis folgt)

$$F = U - TS. (13.41)$$

Entsprechend interpretieren wir den Ausdruck $F = -k_{\rm B}T\log Z_N$ als die freie Energie des Systems. Das Resultat (13.41) folgt aus der Normierung (wir definieren $\beta = 1/k_{\rm B}T$)

$$1 = \frac{1}{Z_N} \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} e^{-H/k_B T},$$

$$Z_N = e^{-\beta F} = \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} e^{-\beta H},$$

und Ableitung nach β ,

$$\frac{1}{Z_N} \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} e^{-\beta H} \left[F - H + \beta \partial_{\beta} F \right] = 0$$

$$\rightarrow \langle H \rangle = F + \beta \frac{\partial F}{\partial \beta}$$

$$\rightarrow U = F - T \frac{\partial F}{\partial T}. \quad (13.42)$$

Die Differentialgleichung (13.42) ist gerade die aus der Legendretransformation folgende Differentialgleichung für die freie Energie F.

Für ein kanonisches Ensemble ergibt sich demnach die Thermodynamik aus der Berechnung der Zustandssumme

$$Z_N(T,V) = \int d^{3N} p \, d^{3N} q \, \frac{e^{-\beta H(p,q)}}{h^{3N} \, N!}$$

Beachte, dass wir die Einschränkung $E_1 < E$ in (13.39) haben fallen lassen, da grosse Energien H(p,q) einen verschwindenden Beitrag zu Z_N liefern.

 $^{^{3}}Z_{N_{1}+N_{2}}(V_{1}+V_{2};T) \approx Z_{N_{1}}(V_{1},T) Z_{N_{2}}(V_{2},T)$

und der daraus folgenden freien Energie

$$F(T,V,N) = -k_{\rm B}T \ln Z_N(T,V), \qquad (13.43)$$

$$S = -\frac{\partial F}{\partial T}\Big|_{V,N}, \qquad U = F + TS, \quad \text{kalorische Zustandsgleichung}, \qquad p = -\frac{\partial F}{\partial V}\Big|_{T,N}, \quad \text{thermische Zustandsgleichung}, \qquad \mu = \left. \frac{\partial F}{\partial N} \right|_{T,V}, \quad \text{thermische Zustandsgleichung}.$$

13.3 Grosskanonisches Ensemble

Wir betrachten ein System (V_1, N_1) angekoppelt an ein Teilchenreservoir $(V_2, N_2) \gg (V_1, N_1)$ (und das Gesamtsystem angekoppelt an ein Wärmereservoir T). Die Zustandssumme

$$Z_N(V,T) = \int \frac{d^{3N}p \, d^{3N}q}{h^{3N}N!} e^{-\beta H(p,q,N)}$$
 (13.44)

lässt sich als Produkt des partitionierten Systems schreiben wo jeweils $N_1=N-N_2$ Teilchen im betrachteten Volumen V_1 (unser System) verweilen,⁴

$$Z_{N} = \frac{1}{h^{3N} N!} \int dp_{1} dp_{2} \sum_{N_{1}=0}^{N} \frac{N!}{N_{1}! N_{2}!} \int dq_{1} e^{-\beta H(p_{1}, q_{1}, N_{1})}$$

$$\int dq_{2} e^{-\beta H(p_{2}, q_{2}, N_{2})}$$

$$= \sum_{N_{1}=0}^{N} \int \frac{dp_{1} dq_{1}}{h^{3N_{1}} N_{1}!} e^{-\beta H(p_{1}, q_{1}, N_{1})} \int \frac{dp_{2} dq_{2}}{h^{3N_{2}} N_{2}!} e^{-\beta H(p_{2}, q_{2}, N_{2})}$$

$$\equiv \sum_{N_{1}=0}^{N} \int dp_{1} dq_{1} \rho(p_{1}, q_{1}, N_{1}) Z_{N}, \qquad (13.45)$$

mit der Zustandsdichte

$$\rho(p_1, q_1, N_1) = \frac{1}{Z_N(T, V)} \frac{e^{-\beta H(p_1, q_1, N_1)}}{h^{3N_1} N_1!} \underbrace{\int \frac{dp_2 dq_2}{h^{3N_2} N_2!} e^{-\beta H(p_2, q_2, N_2)}}_{Z_{N_2}(T, V_2)}$$

$$= \frac{Z_{N_2}(T, V_2)}{Z_N(T, V)} \frac{e^{-\beta H(p_1, q_1, N_1)}}{h^{3N_1} N_1!} \tag{13.46}$$

⁴Der Faktor $N!/N_1!N_2!$ zählt, auf wie viele Arten sich die Teilchen auf die Volumina V_1 und V_2 verteilen lassen.

und der Normierung

$$\sum_{N_1=0}^{N} \int dp_1 \, dq_1 \, \rho(p_1, q_1, N_1) = 1. \tag{13.47}$$

Aus (13.43) folgt (wir nutzen die Zustandsgleichungen $\partial_V F = -p = \text{Druck}$, $\partial_N F = \mu = \text{chemisches Potential im Reservoir } T, V_2, N_2$).

$$\frac{Z_{N_2}(T, V_2)}{Z_N(T, V)} = e^{-\beta[F(T, V - V_1, N - N_1) - F(T, V, N)]}$$

$$\approx e^{-\beta[pV_1 - \mu N_1]}.$$
(13.48)

Indem wir die Fugazität

$$z = e^{\beta \mu} \tag{13.49}$$

einführen, erhalten wir für die Dichtefunktion des grosskanonischen Ensembles den Ausdruck

$$\rho(p,q,N) = \frac{z^{N}}{h^{3N} N!} e^{-\beta pV - \beta H(p,q)}
= \frac{e^{-\beta [H - \mu N + pV]}}{h^{3N} N!}.$$
(13.50)

Das Reservoir ist durch die intensiven Parameter p,T und μ charakterisiert. Indem wir $V\to\infty$ streben lassen, sind alle Werte $0\le N<\infty$ zulässig. Wir definieren die $grosskanonische\ Zustandssumme$

$$\mathcal{Z}(T, V, z) = \sum_{N=0}^{\infty} z^{N} Z_{N}(T, V)$$

$$= \sum_{N=0}^{\infty} \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} e^{-\beta \left[H(p, q) - \mu N\right]}$$
(13.51)

und finden mit Hilfe der Normierung (13.47) und der Dichtefunktion (13.50) das $Grosse\ Potential\ ^5$

$$-\Omega = pV = k_{\rm B} T \log \mathcal{Z}(T, V, z). \tag{13.52}$$

Die grosskanonische Zustandssumme liefert uns direkt die thermische Zustandsgleichung $p = p(T, V, \mu)$. Die kalorische Zustandsgleichung finden wir

$$1 = \sum_N \int dp \, dq \, \rho = e^{-pV/k_{\rm B}T} \sum_N z^N \!\! \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} e^{-\beta \, H} = e^{-pV/k_{\rm B}T} \mathcal{Z}.$$

⁵Es ist

durch Berechnung der mittleren Energie

$$U = \langle H \rangle = \sum_{N} \int d^{3N} p \, d^{3N} q \, H(p,q) \rho(p,q,N)$$

$$= \underbrace{e^{-\beta p V}}_{1/\mathcal{Z}} \sum_{N} z^{N} \underbrace{\int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} H(p,q) e^{-\beta H(p,q)}}_{-\partial_{\beta} Z_{N}(T,V)},$$

$$U = -\frac{\partial}{\partial \beta} \log \mathcal{Z}(\beta, V, z) \Big|_{Vz}. \tag{13.53}$$

Ebenso findet man für die Teilchenzahl

$$N = \langle N \rangle = \frac{\sum_{N} N z^{N} Z_{N}}{\sum_{N} z^{N} Z_{N}} = z \frac{\partial}{\partial z} \log \mathcal{Z}(\beta, V, z) \Big|_{\beta, V}.$$
 (13.54)

Die Ableitung nach V gibt trivial die thermische Zustandsgleichung

$$p = k_{\rm B} T \frac{\partial}{\partial V} \log \mathcal{Z}(\beta, V, z) \Big|_{\beta, z}.$$
 (13.55)

Aus (13.53-13.55) lassen sich alle Potentiale konstruieren, z.B.,

$$F=U-TS$$
 aus U gemäss (13.53)
$$\text{und} \quad S=\int_0^T dT \, \frac{c_V}{T}, \quad c_V=\frac{\partial U}{\partial T}\Big|_V.$$

13.4 Fluktuationen*

Wir untersuchen die Fluktuationen in der Energie E im kanonischen Ensemble und die Fluktuationen in der Teilchenzahl N im grosskanonischen Ensemble. Wir zeigen, dass die Fluktuationen in den extensiven Grössen E und N klein sind, von der Ordnung \sqrt{N} ,

$$\langle H^2 \rangle - \langle H \rangle^2 = k_{\rm B} T^2 C_V, \quad \langle H \rangle \sim N, C_V \sim N,$$

 $\langle N^2 \rangle - \langle N \rangle^2 = k_{\rm B} T \frac{N^2}{V} \kappa_T, \quad \kappa_T = -\frac{1}{V} \frac{\partial V}{\partial p} \Big|_T.$ (13.56)

13.4.1 Energiefluktuationen im kanonischen Ensemble

Aus

$$U = \langle H \rangle = \frac{1}{Z_N} \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} H e^{-\beta H}$$

folgt mit $Z_N = e^{-\beta F}$

$$\int \frac{d^{3N}p \, d^{3N}q}{h^{3N} \, N!} [U - H] e^{-\beta(H - F)} = 0$$

und die Ableitung nach β ergibt

$$\frac{\partial U}{\partial \beta} + \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} \, N!} [U - H] \left[\underbrace{F + \beta \partial_{\beta} F}_{=\langle H \rangle = U} - H \right] e^{-\beta(H - F)} = 0,$$

woraus wir die gewünschte Fluktuationsgrösse bekommen,

$$\langle (U-H)^2 \rangle = -\frac{\partial U}{\partial \beta}.$$
 (13.57)

Die Umformung

$$\frac{\partial U}{\partial \beta} = -k_{\rm B} T^2 \frac{\partial U}{\partial T} = -k_{\rm B} T^2 C_V$$

ergibt sofort das Resultat (13.56a). Mit $\langle H \rangle \sim N$, $C_V \sim N$ verschwinden die relativen Fluktuationen wie $1/\sqrt{N}$ für grosse Teilchenzahlen N,

$$\frac{\Delta H}{H} \equiv \frac{(\langle H^2 \rangle - \langle H \rangle^2)^{1/2}}{\langle H \rangle} \sim \frac{1}{\sqrt{N}} \stackrel{N \to \infty}{\to} 0.$$
 (13.58)

Wir geben noch eine alternative Herleitung dieses Resultates: Wir fassen alle Zustände mit Energie E zusammen, wobei diese mit dem Gewicht der mikrokanonischen Zustandsdichte $\omega(E)$ zur kanonischen Zustandssumme Z_N beitragen; entsprechend schreiben wir die Zustandssumme Z_N in der Form

$$Z_{N} = \int \frac{d^{3N} p \, d^{3N} q}{h^{3N} N!} e^{-\beta H} = \int_{0}^{\infty} dE \, \omega(E) e^{-\beta E}$$

$$= \int_{0}^{\infty} dE \, e^{-\beta E + \log \omega(E)}$$

$$= \int_{0}^{\infty} dE \, \exp\left[\beta \left(E - TS(E)\right)\right], \qquad (13.59)$$

wobei H=E in der Schale mit Energie E ist. Ausgedrückt durch die freien Energien F und $\mathcal{F}(E)$ erhalten wir

$$e^{-\beta F} = \int_0^\infty dE \, e^{-\beta \mathcal{F}(E)}.$$

Das Integral in (13.59) ist dominiert durch das Minimum des Exponenten

 $\mathcal{F}(E) = E - TS$. Wir entwickeln dann um das Minimum,

$$\mathcal{F}(E) \simeq \mathcal{F}(\bar{E}) + \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial E^2} \Big|_{\bar{E}} (E - \bar{E})^2,$$

$$\frac{\partial \mathcal{F}}{\partial E} \Big|_{\bar{E}} = 1 - T \frac{\partial S}{\partial E} \Big|_{\bar{E}} = 0 \quad \rightarrow \partial_E S |_{E = \bar{E}} = \frac{1}{T},$$
wir schreiben $\partial_E S = \tilde{T}(E)^{-1}, \quad \tilde{T}(\bar{E}) = T,$

$$\frac{\partial^2 \mathcal{F}}{\partial E^2} \Big|_{\bar{E}} = -T \frac{\partial^2 S}{\partial E^2} \Big|_{\bar{E}} \qquad (13.60)$$

$$= -T \frac{\partial}{\partial E} \frac{\partial S}{\partial E} = \frac{1}{T} \frac{\partial \tilde{T}}{\partial E} = \frac{1}{TC_V}.$$

$$\rightarrow \mathcal{F}(E) \stackrel{\bar{E}=U}{\simeq} [U - TS(U)] + \frac{1}{2TC_V} (E - U)^2. \quad (13.61)$$

Die Zustandsfunktion \mathbb{Z}_N ist somit gegeben durch ein Gauss Integral

$$Z_{N} \approx \exp\left[-\beta(\underbrace{U - TS(U)}_{\bar{F}})\right] \underbrace{\int_{0}^{\infty} dE \, \exp\left[-\frac{(E - U)^{2}}{2k_{\rm B}T^{2}C_{V}}\right]}_{\sqrt{2\pi k_{\rm B}T^{2}C_{V}} \, (\sim \Delta H)}$$

$$\approx \sqrt{2\pi k_{\rm B}T^{2}C_{V}} \, e^{-\beta(U - TS)} = e^{-\beta F};$$
(13.62)

entsprechend ist die Verteilung der inneren Energie U im kanonischen Ensemble gegeben durch eine gausssche Verteilungsfunktion der Breite $\Delta H = \sqrt{2\pi k_{\rm B} T^2 C_V}$, vgl. Abb. 13.2. Im Vergleich der Entropien im kanonischen

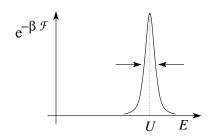


Abb. 13.2: Fluktuationen ΔU der Energie E um U. Die Breite der Verteilung misst $\sqrt{2\pi k_{\mathrm{B}}T^{2}C_{V}}$.

und im mikrokanonischen Ensemble finden wir Übereinstimmung bis auf eine (irrelevante) logarithmische Korrektur,

$$F = U - TS_{\text{mikrok}} - \frac{1}{2}k_{\text{B}}T\log C_{V},$$

$$\rightarrow S_{\text{kan}} = S_{\text{mikrok}} + \frac{1}{2}\underbrace{\log C_{V}}_{\mathcal{O}(\log N)}.$$
(13.63)

Entsprechend erzeugen die beiden Ensembles die gleiche Thermodynamik. Auch illustriert diese Rechnung die Aussage, dass von allen Energien E_1 =

 $E-E_{\mathrm{Reservoir}}$ nur ein bestimmter Wert $\bar{E}_1=U=\langle H \rangle$ relevant sei — (13.58) und (13.62) zeigen, dass die Fluktuationen um diese Energie herum klein sind. Verantwortlich dafür ist die Tatsache, dass der Integrand in Z_N ein Produkt der Zustandsdichte

$$e^{\log \omega(E)} \sim e^{\alpha E}$$

mit dem Boltzmannfaktor

$$e^{-\beta H} \sim e^{-\beta E}$$

ist; mit $E \propto N \to \infty$ ergibt sich eine scharf zentrierte Funktion, vgl. Abb. 13.62.

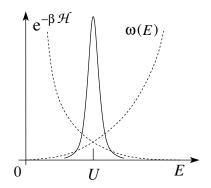


Abb. 13.3: Scharf lokalisierter Integrand in (13.62).

13.4.2 Dichtefluktuationen im grosskanonischen Ensemble

Die Teilchenzahlfluktuationen ΔN ergeben sich aus (13.51) (siehe auch (13.54)) zu

$$\langle N^{2} \rangle - \langle N \rangle^{2} = z \frac{\partial}{\partial z} z \frac{\partial}{\partial z} \underbrace{\log \mathcal{Z}(T, V, z)}_{pV/kT}$$

$$\stackrel{\frac{\partial}{\partial z} = \frac{1}{\beta z} \frac{\partial}{\partial \mu}}{=} \frac{V}{k_{\rm B}T} \frac{1}{\beta^{2}} \frac{\partial^{2} p}{\partial \mu^{2}} = V k_{\rm B} T \frac{\partial^{2} p}{\partial \mu^{2}}.$$
(13.64)

Wir formen $\partial_{\mu}^2 p$ um, indem wir die Homogenitätseigenschaften von F benutzen,

$$F(T, V, N) = Nf(T, v = V/N).$$
 (13.65)

Mit

$$\begin{array}{rcl} p & = & -\frac{\partial F}{\partial V} = -\frac{\partial f}{\partial v}, \\ \\ \mu & = & \frac{\partial F}{\partial N} = f - v \frac{\partial f}{\partial v}, \end{array}$$

finden wir für die zweite Ableitung $\partial_{\mu}^{2}p$ den Ausdruck⁶

$$\frac{\partial^2 p}{\partial \mu^2} = \frac{\partial}{\partial \mu} \frac{\partial p}{\partial \mu}$$
$$= -\frac{1}{v^2} \frac{\partial v}{\partial \mu} = \frac{1}{v^3} \frac{1}{\partial_v^2 f} = -\frac{1}{v^3 \partial_v p} = \frac{\kappa_T}{v^2}$$

und wir erhalten das Resultat (13.56b)

$$(\Delta N)^2 = \langle N^2 \rangle - \langle N \rangle^2 = k_{\rm B} T \frac{N^2}{V} \kappa_T.$$
 (13.66)

Beachte, dass beide Fluktuationsgrössen ΔE und ΔN durch ihre jeweiligen linearen Antwortkoeffizienten⁷ C_V und κ_T gegeben sind; dieser Sachverhalt steht im Zusammenhang mit dem *Fluktuations – Dissipationstheorem*, vgl. Landau-Lifshitz.

Wiederum können wir aufgrund der kleinen Fluktuationen in N den Term mit $N=\langle N\rangle=\bar{N}$ in (13.51) als den dominanten Term identifizieren und erhalten

$$\mathcal{Z} \approx z^{\bar{N}} Z_{\bar{N}} = e^{-\beta(F - \mu \bar{N})} \tag{13.67}$$

mit der kanonischen freien Energie $F(T, V, \bar{N})$ im Exponenten. Das Resultat (13.67) gibt uns einen nützlichen Zusammenhang zwischen der grosskanonischen Zustandssumme \mathcal{Z} und der freien Energie,⁸

$$F(T, V, \bar{N}) = k_{\mathrm{B}} T[\bar{N} \log z - \log \mathcal{Z}(T, V, z)], \tag{13.68}$$

wobei z aus $\bar{N}=z\partial_z\log\mathcal{Z}(T,V,z)$ zu berechnen ist. Beachte auch, dass wir \bar{N} analog zur Diskussion zu den Energiefluktuationen im kanonischen Ensemble finden können,

$$Z_N = \int_0^\infty dE \, e^{-\beta[E-TS(E)]} = \int_0^\infty dE \, e^{-\beta \mathcal{F}(E)}$$

 $\to \bar{E} = U \text{ aus } \min \mathcal{F}(E) \to \frac{\partial \mathcal{F}}{\partial E}\Big|_{\bar{E}} = 0.$

grosskanonisch

$$\mathcal{Z}_{N} = \sum_{N} z^{N} Z_{N} = \sum_{N} e^{-\beta [F(T,V,N) - \mu N]}$$

$$\rightarrow \bar{N} \quad \text{aus } \min[F - \mu N] \rightarrow \frac{\partial F}{\partial N} \Big|_{\bar{N}} - \mu = 0. \quad (13.69)$$

$$\begin{array}{lcl} \partial_v p & = & -\partial_v^2 f, & \partial_\mu v = (\partial_v f - \partial_v f - v \partial_v^2 f)^{-1} = -1/v \partial_v^2 f, \\ \partial_\mu p & = & \partial_v p \partial_\mu v = 1/v. \end{array}$$

 $^{^6\}mathrm{Wir}$ nutzen die Relationen

⁷lineare Antwort: $\delta U = C_V \delta T$, $\delta N = -(V/v^2) \delta v = N \kappa_T \delta p = (N^2/V) \kappa_T \delta \mu$. ⁸ $-k_{\rm B} T \log \mathcal{Z} + k_{\rm B} T \bar{N} \log z = pV + k_{\rm B} T \bar{N} \mu \beta = \mu \bar{N} + pV = G + pV = F$.

Die Rolle des chemischen Potentials im grosskanonischen Ensemble ist die eines Lagrange Multiplikators, $H \to H - \mu N$, der die Erhaltung der Teilchenzahl berücksichtigt. Können in einem System Teilchen spontan entstehen, so ist üblicherweise die *Differenz* von Teilchen- und Antiteilchenzahl erhalten, $N_T - N_{AT} = \text{const.}$ Entsprechend tritt anstelle von μN der Ausdruck $\mu(N_T - N_{AT})$ in der Formel für die grosskanonische Zustandssumme,

$$\mathcal{Z} = \sum_{N_T, N_{AT}} Z_{N_T} Z_{N_{AT}} e^{\beta \mu (N_T - N_{AT})}.$$
 (13.70)

Die Definition (13.70) ist relevant im Kontext der Baryon-A-Baryon- (QCD), Elektron-Positron- (QED), Elektron-Loch- (Halbleiter), Vortex-Antivortex- (Supraleiter, XY-Spinsystem in 2D), etc. Erzeugung durch thermische Fluktuationen (siehe Übungen).

Schliesslich bemerken wir noch, dass gemäss (13.56) die Fluktuation in Energie und Dichte gross werden, wenn $C_V, \kappa_T \to \infty$. Insbesondere ist $\partial_v p = 0, \kappa_T = \infty$ am 1. Ordnung Phasenübergang des Gas-Flüssigkeit-Systems, siehe Kapitel 7. Die Divergenz in κ_T zeigt grosse Dichtefluktuationen im Gas-Flüssigkeit-Phasenübergang an. Man kann zeigen, dass in der grosskanonischen Zustandssumme \mathcal{Z} ein ganzer Bereich von Teilchenzahlen relevant wird: Mit $v_g = V_{\rm gas}/N, v_{\rm fl} = V_{\rm fl}/N$ findet man für die Terme $W(N) = z^N Z_N$ in \mathcal{Z} ein Verhalten wie in Abb. 13.4 skizziert.

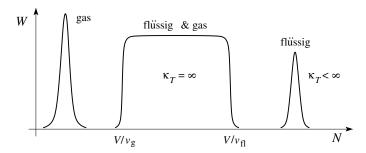


Abb. 13.4: Relevante Bereiche der Teilchenzahl N in der grosskanonischen Zustandssumme am flüssig—gas Übergang.

Kapitel 14

Quanten statistische Mechanik

Wir betrachten ein System charakterisiert durch den Hilbertraum \mathcal{H} und den Hamiltonian H. Es sei $\{\Phi_n\}$ eine Basis in \mathcal{H} ,

$$\langle \Phi_n | \Phi_m \rangle = \delta_{mn}$$
 (orthonormiert),
 $\sum_n |\Phi_n\rangle\langle\Phi_n| = 1$ (vollständig). (14.1)

Oft wählt man für $\{\Phi_n\}$ die Eigenvektoren zu H,

$$H\Phi_n = E_n\Phi_n. (14.2)$$

Ein beliebiger Zustandsvektor Ψ des Systems lässt sich schreiben als

$$\Psi = \sum_{n} c_n \Phi_n. \tag{14.3}$$

14.1 Erwartungswerte in der Quantenstatistik

Mit $q = q_1, \ldots, q_{3N}$ dem Positionsvektor eines N-Teilchensystems ist $\Psi(q) = \langle q | \Psi \rangle$ gerade die komplexe Wellenfunktion in Ortsdarstellung. Erwartungswerte von Observablen sind gegeben durch

$$\langle \mathcal{M} \rangle = \frac{\langle \Psi | \mathcal{M} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\sum_{n,m} c_n^* c_m \langle \Phi_n | \mathcal{M} | \Phi_m \rangle}{\sum_n |c_n|^2}.$$
 (14.4)

Wie üblich unterteilen wir unser System in ein Subsystem und ein Reservoir,

$$\Psi = \sum_{n} c_n \Phi_n \tag{14.5}$$

mit c_n der Amplitude des Reservoirs, Φ_n dem Zustand des Subsystems, jetzt das System. Die Koeffizienten $c_n^*c_m$ sind jetzt durch Erwartungswerte $\langle c_n, c_m \rangle_{\mathrm{Res}}$ zu ersetzen, ebenso geht $|c_n|^2$ über in $\langle c_n, c_n \rangle_{\mathrm{Res}}$. Im Experiment wird das Zeitmittel von \mathcal{M} gemessen. Mit $\langle \Psi | \Psi \rangle = \sum_n \langle c_n | c_n \rangle_{\mathrm{Res}}$ zeitunabhängig im abgeschlossenen Gesamtsystem = System + Reservoir ist

$$\overline{\langle \mathcal{M} \rangle}^{T} = \frac{\sum_{n} \overline{\langle c_{n}, c_{m} \rangle_{\text{Res}}}^{T} \langle \Phi_{n} | \mathcal{M} | \Phi_{m} \rangle}{\langle \Psi | \Psi \rangle}$$
(14.6)

(beachte, dass $\{\Phi_n\}$ eine zeitunabhängige Basis des Systems ist). Wie zuvor in der kinetischen Gastheorie und in der klassischen statistischen Mechanik müssen wir eine statistische Annahme über das System im Gleichgewicht machen. Die a priori Wahrscheinlichkeit für das mikrokanonische Ensemble gibt allen Zuständen Φ_n , die mit den Bedingungen E, V, N verträglich sind, gleiches Gewicht,

$$\frac{1}{\langle c_n, c_n \rangle_{\text{Res}}} = \begin{cases} 1, & \text{falls } E < E_n < E + \Delta, \\ 0, & \text{sonst.} \end{cases}$$
(14.7)

Dazu kommt die Annahme, dass die Amplituden c_n zufällige Phasen haben, so dass

$$\overline{\langle c_n, c_m \rangle_{\text{Res}}}^T = 0 \quad \text{falls } n \neq m.$$
 (14.8)

Beachte, dass inelastische Stösse genügen, um die Phasen zufällige Werte annehmen zu lassen. Für das experimentell gemessene Zeitmittel findet man sofort den Ausdruck

$$\overline{\langle \mathcal{M} \rangle}^T = \frac{\sum_n w_n \langle \Phi_n | \mathcal{M} | \Phi_n \rangle}{\sum_n w_n}, \tag{14.9}$$

$$w_n = \begin{cases} 1, & E < E_n < E + \Delta, \\ 0, & \text{sonst.} \end{cases}$$
 (14.10)

14.1.1 Dichtematrix

Ein dem Problem angepasster Formalismus ist aus der Quantenmechanik bekannt: Die Quantenmechanik eines Systems, dessen Zustand sich durch eine *inkohärente* Superposition von Basiszuständen beschreiben lässt, wird durch die *Dichtematrix*

$$\rho = \sum_{n} w_n |\Phi_n\rangle \langle \Phi_n| \tag{14.11}$$

gegeben. Üblicherweise sind die Gewichte w_n gemäss $\sum_n w_n = 1$ normiert¹. Hier berücksichtigen wir die Normierung explizit und schreiben für die Er-

¹Falls $w_n = \delta_{n0} \rightarrow \rho$ liegt ein reiner Zustand vor.

wartungswerte

$$\overline{\langle \mathcal{M} \rangle}^T = \frac{\operatorname{Sp}(\rho \mathcal{M})}{\operatorname{Sp}\rho}, \quad \operatorname{Sp}(A) = \operatorname{Spur}(A) = \sum_i \langle \Phi_i | A | \Phi_i \rangle.$$
 (14.12)

Die Äquivalenz von (14.10) und (14.12) ist trivial. Die Zeitentwicklung von ρ ist durch das Liouville-Theorem gegeben (quantenmechanische Version)

$$i\hbar\partial_t \rho = [H, \rho].$$
 (14.13)

Mit $\rho = \rho(H)$ ist

$$[H, \rho] = 0,$$
 (14.14)

und die Dichtematrix ist zeitunabhängig. Eine praktische und oft gebrauchte Beziehung ist

$$Sp(AB) = Sp(BA). \tag{14.15}$$

Damit ist Sp unabhängig von der Darstellung.

$$\operatorname{Sp}(UAU^{-1}) = \operatorname{Sp}(A). \tag{14.16}$$

14.2 Ensembles in der Quantenstatistik

Wir resümieren die drei Ensembles für die Quantenstatistik:

mikrokanonisches Ensemble: Dichtematrix:

$$\rho = \sum_{n} w_{n} |\Phi_{n}\rangle \langle \Phi_{n}|,$$

$$H\Phi_{n} = E_{n}\Phi_{n},$$

$$w_{n} = \begin{cases} 1, & E < E_{n} < E + \Delta, \\ 0, & \text{sonst.} \end{cases}$$

$$\Gamma(E) = \operatorname{Sp}(\rho) = \omega(E) \cdot \Delta. \tag{14.17}$$

Zustandsdichte: $\omega(E) = (\text{spektrale Dichte von } H) = \sum_{n} \delta(E - E_n),$ thermodynamisches Potential: $S(E, V, N) = k_{\text{B}} \log \Gamma(E).$

kanonisches Ensemble: Dichtematrix:

$$\rho = \sum_{i} w_{i} |\Phi_{n}\rangle \langle \Phi_{n}| = e^{-\beta H},$$

$$H_{n}\Phi_{n} = E_{n}\Phi_{n},$$

$$w_{n} = e^{-\beta E_{n}},$$

$$\beta = \frac{1}{k_{\rm B}T}.$$
(14.18)

Zustandssumme: $Z_N = \operatorname{Sp}(e^{-\beta H}),$ thermodynamisches Potential: $F(T, V, N) = -k_{\text{B}}T \ln Z_N.$ grosskanonisches Ensemble: Dichtematrix:

$$\rho = e^{-pV/k_{\rm B}T}e^{-\beta(H-\mu N)}$$

Zustandssumme:

$$\mathcal{Z} = \sum_{N=0}^{\infty} z^N Z_N
= \operatorname{Sp}(e^{-\beta(H-\mu N)})
= \sum_{N,n} \langle \Phi_n^N | e^{-\beta(H-\mu N)} | \Phi_n^N \rangle$$
(14.19)

mit der Spur im Fockraum.

thermodynamisches Potential: $\Omega = -pV = -k_{\rm B}T\log\mathcal{Z}(T,V,z)$ oder

$$\begin{cases} F(T, V, N) &= N \log z - k_{\rm B} T \log \mathcal{Z}, \\ N &= z \partial_z \log \mathcal{Z}. \end{cases}$$

In der modernen Festkörperphysik stösst man oft in Gebiete vor, wo die traditionelle Quanten Statistische Mechanik zusammenbricht: Zum Beispiel werden Ströme in kleinen metallischen/halbleitenden Ringen (Dauerströme) durch das kanonische Ensemble beschrieben (N ist fixiert). Als weiteres Beispiel erwähnen wir Kohärenzeffekte in kleinen (mesoskopischen) Strukturen; hier existiert kein Reservoir welches zufällige Phasen erzeugt und damit (14.8) garantiert.

14.3 Zum 3. Hauptsatz

Mit $S=k_{\rm B}\log\Gamma$ zählt die Entropie die zur Verfügung stehenden Zustände. Gemäss $\rho\sim e^{-H/T}$ steht bei T=0 nur der Grundzustand des Systems zur Verfügung $\to S=0$. Ist der Grundzustand $g\sim N$ -fach entartet, so gilt immer noch $s=S/N\sim(\log N)/N\to 0$, die Entropie pro Teilchen verschwindet. Ein relevanteres Problem ist die Kontinuität des Spektrums—das obige Argument ist zwar korrekt, jedoch eher akademisch, da der Grundzustand nur für $T<\Delta E\sim\hbar^2/mL^2\sim 5\cdot 10^{-15}\,{\rm K}$ $(m=m_{\rm Nukleon},\,L=1\,{\rm cm})$ realisiert wird. Relevant ist daher die Zustandsdichte $\omega(E)$ in der Tieftemperaturphase des Stoffes. Alle Stoffe transformieren bei $T\to 0$ in eine der folgenden Phasen: Kristalle (fast alle), Gläser (vgl. Diskussion in Kapitel 6.5), Superfluida ($^3{\rm He},^4{\rm He}$ bei Normaldruck). Die Zustandsdichte in diesen Systemen verschwindet gemäss $\omega(E)\sim E^{d-1}$ für $E\to 0$ (Ausnahme: Gläser) und entsprechend geht $S\to 0$ für $T\to 0$.

Index

Ableitung	chemische Reaktion, 79
substantielle, 124	chemisches Potential, 157
Abwärme, 23, 24	Clausius-Clapeyron, 43, 58, 81
Additionstheorem, 118	
Adiabate, 21, 24	Dalton, 77
Adiabatengleichung, 21, 125	Dampf, 70
adiabatische Strömung, 125	Dampfdruck
Analytizität, 135	Erniedrigung, 81
Antiteilchen, 157	Dampfdruckkurve, 70
Anwendungen	Dampfmaschinen, 20
Hydrodynamik, 123	de Broglie
Approximation	Wellenlänge, 106
Relaxationszeit, 116, 122	Dichte
Äquipartitionsprinzip, 147	grosskanonisch, 150, 151
Arbeit, 10, 17	kanonisch, 148
Ausdehnungskoeffizient, 12, 15, 51	mikrokanonisch, 142
reales Gas, 68	Dichtefunktion
Avogadro, 15	im Phasenraum, 92
0 /	Dichtematrix, 160
Barion, 157	Dichteoperator, 94
barometrische Formel, 130	Differential, 6
Basis, 159	Pfaffsches, 7
Bernoulli Gesetz, 132, 134	vollständiges, 6
Boltzmann	Diffusion, 79
H-Theorem, 104	Konstante, 86
Boltzmanngleichung, 98, 103	Diffusionsgleichung, 127
Bosonen, 108	Dipol, 136
Boyle-Mariotte, 15	dissipative Systeme, 94
,	Drossel, 19
Carnot, 23	Druck, 3
Carnotmaschine	osmotischer, 80
Medium, 27	Partial-, 78
reversible, 25	Dynamik
Cauchy-Riemann, 135	Langevin, 94
Chaos	
molekulares, 94, 100, 110	Edwards-Anderson, 54

Effekt	Siedetemperatur, 82
Peltier, 88, 89	erhaltene Dichte, 103
thermoelektrischer, 87, 89	Erhaltungsgrösse, 113
Eigenwertproblem, 113	Energie, 99, 102
Einheiten	Impuls, 102
Druck, 11	Teilchenzahl, 102
Mol, 11	Erhaltungsgrössen, 121
Stoffmenge, 11	Erhaltungssätze, 102
Temperatur, 10, 27	Erniedrigung
Wärme, 11	Dampfdruck, 81
Einteilchenphasenraum, 97	Eulergleichung, 122, 124, 126
Eis, 70	Eulersches Theorem, 45
Eis-Wasser-Dampf, 70	Expansion, 20
Endpunkt	freie, 30
kritischer, 56	isotherme, 30
Energie	reversibel, 8, 30
freie, 4, 42, 149	Explosionsgefahr, 69
innere, 4, 17	• ,
minimale, 38	Faktor
Energieerhaltung, 99	'desintegrierend', 10
Ensemble	integrierend, 7
grosskanonisch, 94, 162	Fermionen, 108
kanonisch, 94, 148, 161	Fernordnung, 55
mikrokanonisch, 93, 94, 142, 161	Festkörper, 55
Mittelwert, 92	Fläche
Enthalpie, 4, 19, 114	Gibbssche, 57
Entmagnetisierung, 53	Flüssigkeit, 55
Entropie, 4, 107	überhitzt, 61
Bilanz, 86	Fluidum
Definition, 27	inkompressibel, 129, 132
einer Mischung, 77	kompressibles, 130
flächen, 63	reales, 127
ideales Gas, 22	Fluktuationen, 3, 76
Kontinuitätsgleichung, 88	Dichte, 155
maximale, 35	Energie, 152
mikrokanonisch, 142	Teilchenzahl, 152, 155
mikroskopische, 104	Fluktuations – Dissipationstheorem,
Quelle, 86	156
Sackur-Tetrode, 146	Formel
Entwicklung	barometrische, 130
historische, 13	Sackur-Tetrode, 146
Ergodenhypothese, 93	Stirling, 109, 146
Ergodizität, 141	Fourieransatz, 85, 116
Erhöhung	Fouriersches Gesetz, 114

freie Energie, 149	Parameter, 4
Freiheitsgrad, 147	thermodynamisches, 3
kinetischer, 18	Gleichgewichtsparameter, 144
potentieller, 18	chemisches Potential, 56
Fugazität, 151	lokale, 85
Funktion	Gleichung
homogen, erste Ordnung, 45	Adiabaten-, 125
homogen, nullte Ordnung, 46	Boltzmann, 95, 98, 103
	Diffusions-, 127
Galilei-Invarianz, 105	Euler, 122, 124, 126
Gas	kalorische, 107
Bosonen, 52	kinetische, 95
Fermionen, 52	Kontinuitäts-, 97
ideales, 52	Navier-Stokes, 122, 127
kompressibles, 130	Transport, 95, 98, 103
Quanten-, 108	Wellen-, 138
reales, 64, 127	Grössen
unterkühlt, 61	konvektive, 123
Gasgesetz	thermische, 123
universelles, 65	Gravitation, 129
Gaskonstante, 4, 15	
Gasparameter, 106	Hauptsatz
Gastemperatur, 69	der Thermodynamik, 12
Gastheorie	dritter, 49, 51
kinetische, 3	erster, 17
Gasverflüssigung, 68	zweiter, 23
Gay-Lussac, 15, 17	Helmholtz-Kelvin Theorem, 132
Gemisch, 77	Hemmparameter, 73
Geschichte, 13	Hemmung, 34, 143
Geschwindigkeit	Herleitung
im Gas, 106	mikroskopische, 91
Gesetz	Hierarchie
Bernoulli, 132, 134	BBGKY, 100
Fourier, 85, 114	Hilbertraum, 159
Massenwirkungs-, 79	Historik, 13
Ohm, 89	Hydrodynamik
Gibbs-Duhem, 45	Anwendungen, 123
Gibbssche Fläche, 57	Hydrostatik, 129
Gibbssche Phasenregel, 56	T. C
Gibbssches Paradoxon, 82, 142	Information, 41
Glas, 53, 93	Integrabilität, 7, 31, 43
Gleichgewicht	Invarianten, 120
lokales, 111, 123	Invarianz
Nicht-, 3	Zeitumkehr-, 110

Inversion, 7	Langevin Dynamik, 94
Inversionskurve, 69	latente Wärme, 58
involutiv, 41	Legendre Transformation, 41
Isotherme, 24	Leitfähigkeit
van der Waals, 64	Drude, 87
,	Linearisierung
Joule-Kelvin, 19	in der BTG, 112
Joule-Thomson, 19	Liouville Theorem, 92, 161
Kühlung, 53	lokales Gleichgewicht, 111
kalorische Zustandsgleichung, 146, 152	,
Kettenregel, 7, 8	Magnetfeld, 3, 90
kinetische Theorie, 94	Magnetisierung, 3
Knallgas, 79	Maschine
Knick, 42	Carnot, 23
Koeffizient	Massenwirkungs Gesetz, 79
Viskosität, 127	maximale Entropie, 35
Wärmeleitung, 115, 127	Maxwell
Koexistenzgebiet, 67	Konstruktion, 65
Kollisionszeit, 76	Maxwell Konstruktion, 61
Komponenten, 38	Maxwell Relation, 43, 45
Kompressibilität, 61	Maxwell-Boltzmann
adiabatische, 12	essentiell, 110
thermische, 12, 15	Maxwell-Boltzmann Verteilung, 106
Kompression, 20	Maxwell-Moleküle, 113
konkav, 43	Mechanik
Konstruktion Maxwell, 61	statistische, 3
Kontinuitätsgleichung, 86, 97	Membran
Konvektion, 131	elastische, 76
konvex, 41, 43	semipermeable, 80
Korrelationen, 95	Messgrösse, 91
Vielteilchen, 100	mikroskopische Herleitung, 91
Korrelationslänge, 94	minimale innere Energie, 38
Korrelationszeit, 94	Mischentropie, 81
korrespondierende Zustände, 65	Gibbssches Paradoxon, 82
Kraft	in Helium, 82
thermodynamische, 90	Mischungen, 77
Kraftmaschine, 25	Mittelwert
Kreisprozess, 17	Ensemble-, 92, 141
Carnot, 24	Selbst-, 93
kritischer Endpunkt, 56	Zeit-, 91
kritischer Punkt, 59	Mol, 11, 38
,	volumen, 15
Ladungserhaltung, 87	Moleküle
Lagrangeparameter, 109	Maxwell, 113

molekularen Chaos, 94	Gibbssche, 56
molekulares Chaos, 100, 110	Postulat
	Clausius, 23
Navier-Stokes Gleichung, 122, 127	Kelvin, 23
Nebelgrenze, 67	Potential
Nebenbedingung, 109	chemisches, 3, 39, 157
Nichtgleichgewichtsphysik, 94	Enthalpie, 43
Normierung, 105	Entropie, 30
grosskanonische Dichte, 151	freie Energie, 42
Nukleation, 74	Gibbs, 44
Nukleus	Graphik, 46
kritischer, 74	grosses, 44
Nullpunkt	innere Energie, 31, 37
absoluter, 52	konvex, 67
01	thermodynamisches, 4, 30
Oberflächenspannung, 74	
Observable, 159	Prinzip
Ohmsches Gesetz, 89	Aquipartition, 147
Onsager-Casimir, 89	maximaler Entropie, 35
Ordnung	minimaler innerer Energie, 38
langreichweitige, 55	Prozess
osmotischer Druck, 80	adiabatisch, 9, 19
Danadarran	Carnot, 24
Paradoxon	irreversibel, 8, 28, 85
Gibbssches, 82, 142	Diffusion, 79
Parameter	Gay-Lussac, 17
Gas-, 106	Joule-Kelvin, 19
hydrodynamische, 121	isentrop, 29
Lagrange, 109	isobar, 9
Stosszeit-, 116	isochor, 9
Partialdruck, 78	isoenthalpisch, 68
Pauliblockade, 100	isotherm, 9
Peltiereffekt, 89	Joule-Kelvin, 19, 68
Phasen, 38	reversibel, 8, 25
Phasenübergang, 55	stationär, 19
gas-flüssig, 157	stochastischer, 3, 94
n-ter Ordnung, 58	Punkt
Phasendiagramm, 56, 59	kritischer, 59
Phasengleichgewicht, 55	,
Phasenkoexistenz, 56	Quantengas, 108
Phasenlinie, 60	Quantenmechanik, 94
retrogradierte, 71	•
Phasenraum, 141	Reaktion
Einteilchen, 97	chemische, 79
Phasenregel	Regelflächen, 62

Reibung	nicht rotierende, 132
innere, 25	Potential-, 134, 135
Relation	Typen, 128
Maxwell, 43, 45	Unstetigkeit, 133
Relaxation, 112	Strömungslinie, 128
Relaxationszeit, 118	Streurate, 98
Relaxationszeitapproximation, 116, 12	2 Symmetrien, 100
Replica Theorie, 54	Stromlinie, 125
Reservoir, 9, 94, 159	substantielle Ableitung, 124
Reziprozitätsbeziehungen	Superposition
Onsager-Casimir, 89	inkohärent, 160
	Symmetrien
Salz, 81	der Streurate, 100
Schall, 138	
Schermodul, 55	Teilchenzahl, 3
Selbstmittelung, 93	Temperatur, 3
Separationsansatz, 113	absolute, 26
Sherrington-Kirkpatrick, 54	Gas-, 15
Siedegrenze, 67	Grad Celsius, 15
Siedetemperatur	Theorem
Erhöhung, 82	Additions-, 118
Siedeverzug, 67	Boltzmann H -Theorem, 104
Simplex, 63	Euler, 45
Skalarprodukt, 113	Fluktuations – Dissipations-, 156
Spannungskoeffizient, 12, 15, 51	Helmholtz-Kelvin, 132
Spektrum, 116	Liouville, 92
spezifische Wärme, 146	Nernst, 51
Spinglas, 54	Virial-, 148
Spinodale, 61	Theorie
Stabilität, 36, 39	kinetische, 94
Stammfunktion, 7	thermische Zustandsgleichung, 152
Stern, 130	Thermokraft, 88
Stirlingformel, 109, 146	Thomson-Effekt, 89
Stossintegral	Tröpfchenbildung, 74
Erhaltungssätze, 102	Trajektorie
für Fermionen, 100	im Phasenraum, 91
Teilchen-Defekt, 99	von H , 111
Teilchen-Moden, 101	Transformation
Teilchen-Teilchen, 99	Legendre, 41
Stossterm, 98	Transport, 3, 4, 85, 94, 112
Stosszeit, 116	Koeffizienten, 90
im Gas, 107	Wärme-, 114
Strömung	Transportgleichung, 98, 103
isentropische, 133	Transportzeit, 118

Trippelpunkt, 56, 62, 71	Wärmepumpe, 24
	Wärmetransport, 114
Ubersättigung, 67	Wahrscheinlichkeit, 92
Umwandlung	a priori, 93, 160
chemische, 79	Wasser, 70
Unstetigkeitsfläche, 133	Weglänge
von der Weels	freie, 86
van der Waals	Wellengleichung, 138
Gas, 64	Wellenlänge
Potential, 55	de Broglie, 106
Variable	Wiedemann-Franz Gesetz, 127
extensive, $4, 31$	Wirkungsgrad, 24
intensive, 4	wirkungsgrau, 24
konjugierte, 42	Zeitmittel, 91
natürliche, 43	Zeitrichtung, 29
Varianz, 109	Zeitumkehrinvarianz, 90, 110
Variationsprinzip, 115	Zuckerlösung, 81
Verteilung	Zusammenhang
lokale Maxwell-Boltzmann, 121	9
Verteilungsfunktion	spezifische Wärmen, 33
Einteilchen-, 94, 97	thermisch-kalorisch, 32
lokal Maxwell-Boltzmann, 111	Zustände
Maxwell-Boltzmann, 106	korrespondierende, 65
Normierung, 97	Zustandsgleichung
Zweiteilchen, 100	ideales Gas, 16
Virialtheorem, 148	kalorische, 4, 18, 31, 146, 152
Viskositätskoeffizient, 127	thermische, 4, 31, 146, 152
Volumen, 3	van der Waals, 64
	Zustandsgrösse, 3–5
Vortex, 157	Zustandsraum, 5, 91, 142
Wärme, 10, 17	Zustandssumme
Fluss, 85	grosskanonische, 152
latente, 58	kanonische, 149
Leitfähigkeit, 86	Zustandsvariablen, 6
Leitung, 85	Zustandsvektor, 159
spezifische, 10, 52, 146	Zyklus
konstanter Druck, 18	der Carnotmaschine, 24
konstantes Volumen, 18	,
,	
Strom, 86	
Thomson, 89	
Wärmeleitung	
anisotrope Medien, 90	
Wärmeleitungskoeffizient, 115, 127	
ideales Gas, 117	
Wärmemaschine, 24	