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Aufgabe 11.1 Most probable distribution method

In the lecture we derived the Maxwell-Boltzmann distribution from a kinetic point of view.
We saw that fMB does not depend on the particular form of the molecular interactions. Being
interested only in the distribution of a gas at equilibrium, we suspect that its law of distribution
can be derived without consideration of its kinematics. We perform here the derivation of fMB

from a statistical point of view.
We start with the idea of the Gibbs ensemble by considering a gas of N particles confined in
a volume V . In chapter 10 we saw that any state of the system can be represented by a point
(p, q) = (p1, p2, ..., p3N , q1, ..., q3N ) in its phase space Γ. The ensemble of points corresponding
to the same macroscopical conditions is called the representative volume of the system. At
equilibrium, we assume that the system can be found in all the states corresponding to the same
macroscopic conditions with equal probability. In other words, the density function defined in
(10.5) is a constant on the representative volume of the system. If we fix the energy of the system
between E and E + ∆ with ∆� E, the representative volume is a compact ensemble of points
bounded by the energy surfaces E and E + ∆. This is the so called microcanonical ensemble
(10.8).
We now proceed as follows: We define the one-particle phase space µ, in which each particle
occupies one point (p, q) corresponding to its state. Thus the distribution of points in µ defines
the state of the whole system. Let us divide µ into K boxes each of volume ω = ∆3p∆3q. The
discrete distribution function fi is given by the number of particles Ni inside the ith box:

fi =
Ni

ω
.

Averaging over the microcanonical ensemble, we have the equilibrium distribution function

f0i =
〈Ni〉
ω

,

which satisfies the following conditions:

K∑
i

Ni = N ,

K∑
i

Ni
p2
i

2m
= E . (1)

It is clear that there exists an ensemble of points (p, q) ∈ ΓE,V,N which define the same dis-
tribution function fi, e.g. exchanging two particles, one from the ith box and the other from
the jth box, leaves Ni and Nj unchanged. The idea now is to find the distribution function
which corresponds to the largest volume in ΓE,V,N . This gives us the most probable distribution
function of the system. We make the assumption that this is nothing but the equilibrium distri-
bution function f0i. Practically we are looking for the set {Ni}K1 which gives the largest volume
Ω{Ni} ∈ ΓE,V,N such that the conditions (1) are satisfied.

1. Show that Ω{Ni} ∝ N !/N1!N2!...NK !.

2. In the following we set

Ω{Ni} ∝
N !

N1!N2!...NK !
gN1
1 gN2

2 ...gNK
K ,

where g1, g2, ..., gK are numbers that we put equal to unity at the end the calculation.
Show that f0i is nothing but the Maxwell-Boltzmann distribution.

Hint: Maximize log Ω{Ni} (why log?) with respect to Ni taking into account the conditions
(1). Calculate f0i.



3. The average of Ni over the microcanonical ensemble is given by

〈Nj〉 =

∑
Ni
NjΩ{Ni}∑

Ni
Ω{Ni}

.

Taking 〈Nj〉 ≈ N0j , show that the mean square fluctuation is given by

(∆Nj)2 ≡ 〈N2
j 〉 − 〈Nj〉2 = N0j .

Hint: Show that for gi → 1 one has

〈Nj〉 = gi
∂

∂gi

∑
Ni

Ω{Ni}.

4. The probability of any set {Nj} to be realized is given by

P{Nj} =
Ω{Nj}∑
Ni

Ω{Ni}
.

Give the schematic plot of P{Nj} as a function of Nj/N and show that the assumption
〈Nj〉 ≈ N0j is reasonable.

Hint: Express ∆(Nj/N), what happens for large N ?

Aufgabe 11.2 Ideal paramagnet

Consider a system of N magnetic moments µ (classical and non-interacting moments). We apply
a magnetic field H = Hẑ in which the moments can only be parallel or anti-parallel to it. The
energy for each moment is then given by Eσ = −µH = −σµH with σ = ±1.

1. Calculate the total average energy and the specific heat of the system.

Hint: Express the Maxwell-Boltzmann distribution of the system in which β−1 = kBT and
calculate the average energy for one moment 〈Eσ〉. The average value of a quantity A over
the microcanonical ensemble is given by 〈A〉 =

∑
iAif0i/

∑
i f0i where we sum over all the

degrees of freedom.

2. Calculate the avarage projection along the z-axis of the magnetic moment µ and the
magnetisation M of the system. For the limit βµH � 1 (Curie-law), show that both
the magnetization M and the magnetic susceptibility χ = (∂M/∂H) are proportional to
the inverse temperature: M(T ), χ(T ) ∝ β ∝ T−1. Furthermore you should show that the
magnetization M saturates in the opposite limit.

3. Plot the specific heat and the magnetic susceptibility in dimensionless values (for example
with Mathematica) and show that they decrease exponentially at low temperature. What
does this mean in terms of degrees of freedom?


