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Chapter 1

Laws of Thermodynamics

Thermodynamics is a phenomenological, empirically derived, macroscopic description of the
equilibrium properties of physical systems with enormously many particles or degrees of freedom.
These systems are usually considered big enough such that the boundary effects do not play an
important role (we call this the ”thermodynamic limit”). The macroscopic states of such systems
can be characterized by several macroscopically measurable quantities whose mutual relation can
be cast into equations and represent the theory of thermodynamics.

Much of the body of thermodynamics has been developed already in the 19th century before
the microscopic nature of matter, in particular, the atomic picture has been accepted. Thus,
the principles of thermodynamics do not rely on the input of such specific microscopic details.
The three laws of thermodynamics constitute the essence of thermodynamics.

1.1 State variables and equations of state

Equilibrium states described by thermodynamics are states which a system reaches after a long
waiting (relaxation) time. Macroscopically systems in equilibrium to not show an evolution in
time. Therefore time is not a variable generally used in thermodynamics. Most of processes
discussed are considered to be quasistatic, i.e. the system is during a change practically always
in a state of equilibrium (variations occur on time scales much longer than relaxation times to
the equilibrium).

1.1.1 State variables

In thermodynamics equilibrium states of a system are uniquely characterized by measurable
macroscopic quantities, generally called state variables (or state functions). We distinguish
intensive and extensive state variables.

• intensive state variable: homogeneous of degree 0, i.e. independent of system size

• extensive state variable: homogeneous of degree 1, i.e. proportional to the system size

Examples of often used state variables are:

intensive extensive
T temperature S entropy
p pressure V volume
H magnetic field M magnetization
E electric field P dielectric polarization
µ chemical potential N particle number

5



Intensive and extensive variables form pairs of conjugate variables, e.g. temperature and entropy
or pressure and volume, etc.. Their product lead to energies which are extensive quantities (in
the above list each line gives a pair of conjugate variables). Intensive state variables can often
be used as equilibrium variable. Two systems are equilibrium with each other, if all their
equilibrium variable are identical.
The state variables determines uniquely the equilibrium state, independent of the way this state
was reached. Starting from a state A the state variable Z of state B is obtained by

Z(B) = Z(A) +
∫

γ1

dZ = Z(A) +
∫

γ2

dZ , (1.1)

where γ1 and γ2 represent different paths in space of states (Fig. 1.1).

B

1

γ2

Z

Y

X

A

γ

Fig.1.1: Space of states: A and B are equilibrium states connected by paths γ1 or γ2. The
coordinates X , Y and Z are state variables of the system.

From this follows for the closed path γ = γ1 − γ2:∮
γ
dZ = 0 . (1.2)

This is equivalent to the statement that Z is an exact differential, i.e. it is single-valued in the
space of states. If we can write Z as a function of two independent state variables X and Y (see
Fig.1.1) then we obtain

dZ =
(
∂Z

∂X

)
Y

dX +
(
∂Z

∂Y

)
X

dY with
[
∂

∂Y

(
∂Z

∂X

)
Y

]
X

=
[
∂

∂X

(
∂Z

∂Y

)
X

]
Y

. (1.3)

The variable at the side of the brackets indicates the variables to be fixed for the partial deriva-
tive. This can be generalized to many, say n, variables Xi (i = 1, ..., n). Then n(n − 1)/2
conditions are necessary to ensure that Z is an exact differential:

dZ =
n∑

i=1

(
∂Z

∂Xi

)
Xj 6=i

dXi with

[
∂

∂Xk

(
∂Z

∂Xi

)
Xj 6=i

]
Xj 6=k

=

[
∂

∂Xi

(
∂Z

∂Xk

)
Xj 6=k

]
Xj 6=i

.

(1.4)
As we will see later not every measurable quantity of interest is an exact differential. Examples
of such quantities are the different forms of work and the heat as a form of energy.
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1.1.2 Temperature as an equilibrium variable

Temperature is used as an equilibrium variable which is so essential to thermodynamics that the
definition of temperature is sometimes called ”0th law of thermodynamics”. Every macroscopic
thermodynamic system has a temperature T which characterizes its equilibrium state. The
following statements apply:

• In a system which is in its equilibrium the temperature is everywhere the same. A system
with an inhomogeneous temperature distribution, T (~r) is not in its equilibrium (a heat
current proportional to ~∇T (~r) flows in order to equilibrate the system; in such a system
state variables evolve in time).

• For two systems, A and B, which are each independently in thermal equilibrium, we can
always find the relations: TA < TB, TA > TB or TA = TB.

• The order of systems according to their temperature is transitive. We find for systems A,
B and C, that TA > TB and TB > TC leads to TA > TC .

• The equilibrium state of two systems (A and B) in thermal contact is characterized by
TA = TB = TA∪B. If before equilibration T ′A > T ′B, then the equilibrium temperature has
to lie between the two temperatures: T ′A > TA∪B > T ′B.

Analogous statements can be made about other intensive state variables such as pressure and
the chemical potential which are equilibrium variables.

1.1.3 Equation of state

The equilibrium state of a thermodynamic system is described completely by a set of indepen-
dent state variables (Z1, Z2, . . . , Zn) which span the space of all possible states. Within this
space we find a subspace which represents the equilibrium states and can be determined by the
thermodynamic equation of state

f(Z1, . . . , Zn) = 0 . (1.5)

The equation of state can be determined from experiments or from microscopic models through
statistical physics, as we will see later.
Ideal gas: As one of the simplest examples of a thermodynamic system is the ideal gas, microscop-
ically, a collection of independent identical atoms or molecules. In real gases the atoms/molecules
interact with each other such that at low enough temperature (T < TB boiling temperature)
the gas turns into a liquid. The ideal gas conditions is satisfied for real gases at temperatures
T � TB.1

The equation of state is given through the Boyle-Mariotte-law (∼ 1660 - 1675) und the Gay-
Lussac-law (1802). The relevant space of states consists of the variables pressure p, volume V
and temperature T and the equation of state is

pV = nRT = NkBT (1.6)

where n is the number of moles of the gas. One mole contains NA = 6.022 ·1023 particles (atoms
or molecules).2 N is the number of gas particles. The gas constant R and the Boltzmann
constant kB are then related and given by

R = 8.314
J

KMol
oder kB =

R

NA
= 1.381 · 10−23 J

K
. (1.7)

The temperature T entering the equation of state of the ideal gas defines the absolute temper-
ature in Kelvin scale with T = 0K at −273.15◦C.

1Ideal gases at very low temperatures are subject to quantum effects and become ideal quantum gases which
deviate from the classical ideal gas drastically.

2At a pressure of 1 atm = 760 Torr = 1.01 bar = 1.01 · 105 Pa (Nm−2) the volume of one mole of gas is
V = 22.4 · 10−3m3.
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T

p

V

Fig.1.2: Equilibrium states of the ideal gas in the p− V − T -space.

1.1.4 Response function

There are various measurable quantities which are based on the reaction of a system to the
change of external parameters. We call them response functions. Using the equation of state
for the ideal gas we can define the following two response functions:

isobar thermal expansion coefficient α =
1
V

(
∂V

∂T

)
p

=
1
T

isothermal compressibility κT = − 1
V

(
∂V

∂p

)
T

=
1
p

i.e. the change of volume (a state variable) is measured in response to change in temperature T
and pressure p respectively.3 As we consider a small change of these external parameters only,
the change of volume is linear: ∆V ∝ ∆T,∆p, i.e. linear response.

1.2 First Law of Thermodynamics

The first law of thermodynamics declares heat as a form of energy, like work, potential or
electromagnetic energy. The law has been formulated around 1850 by the three scientists Julius
Robert Mayer, James Prescott Joule and Hermann von Helmholtz.

1.2.1 Heat and work

In order to change the temperature of a system while fixing state variables such as pressure,
volume and so on, we can transfer a certain amount of heat δQ from or to the systems by putting
it into contact with a heat reservoir of certain temperature. In this context we can define the
specific heat Cp (CV ) for fixed pressure (fixed volume),

δQ = CpdT (1.8)

Note that Cp and CV are response functions. Heat Q is not a state variable, indicated in the
differential by δQ instead of dQ.

3”Isobar”: fixed pressure; ”isothermal”: fixed temperature.
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The workW is defined analogous to the classical mechanics, introducing a generalized coordinate
q and the generalized conjugate force F ,

δW = Fdq . (1.9)

Analogous to the heat, work is not a state variable. By definition δW < 0 means, that work is
extracted from the system, it ”does” work. A form of δW is the mechanical work for a gas,

δW = −pdV , (1.10)

or magnetic work
δW = HdM . (1.11)

The total amount of work is the sum of all contributions

δW =
∑

i

Fidqi . (1.12)

The first law of thermodynamics may now be formulated in the following way: Each thermo-
dynamic system possesses an internal energy U which consists of the absorbed heat and the
work,

dU = δQ+ δW = δQ+
∑

i

Fidqi (1.13)

In contrast to Q and W , U is a state variable and is conserved in an isolated system. Alternative
formulation: There is no perpetuum mobile of the first kind, i.e.; there is no machine which
produces work without any energy supply.

Ideal gas: The Gay-Lussac-experiment (1807)4 leads to the conclusion that the internal energy U
is only a function of temperature, but not of the volume or pressure, for an ideal gas: U = U(T ).
Empirically or in derivation from microscopic models we find

U(T ) =


3
2
NkBT + U0 single-atomic gas

5
2
NkBT + U0 diatomic molecules ,

(1.14)

Here U0 is a reference energy which can be set zero. The difference for different molecules
originates from different internal degrees of freedom. Generally, U = f

2NkBT with f as the
number of degrees of freedom. This is the equipartition law.5 The equation U = U(T, V, ...)
is called caloric equation of state in contrast to the thermodynamic equation of state discussed
above.

1.2.2 Thermodynamic transformations

In the context of heat and work transfer which correspond to transformations of a thermody-
namic system, we introduce the following terminology to characterize such transformations:

• quasistatic: the external parameters are changed slowly such that the system is always
approximatively in an equilibrium state.

4Consider an isolated vessel with two chambers separated by a wall. In chamber 1 we have a gas and chamber
2 is empty. After the wall is removed the gas expands (uncontrolled) in the whole vessel. In this process the
temperature of the gas does not change. In this experiment neither heat nor work has been transfered.

5A single-atomic molecule has only the three translational degrees of freedom, while a diatomic molecule has
additionally two independent rotational degrees of freedom with axis perpendicular to the molecule axis connecting
to two atoms.
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• reversible: a transformation can be completely undone, if the external parameters are
changed back to the starting point in the reversed time sequence. A reversible transfor-
mation is always quasistatic. But not every quasistatic process is reversible (e.g. plastic
deformation).

• isothermal: the temperature is kept constant. Isothermal transformations are generally
performed by connecting the thermodynamic system to an ”infinite” heat reservoir of given
temperature T , which provides a source or sink of heat in order to fix the temperature.

• adiabatic: no heat is transfered into or out of the system, δQ = 0. Adiabatic transforma-
tions are performed by decoupling the system from any heat reservoir. Such a system is
thermally isolated.

• cyclic: start and endpoint of the transformation are identical, but generally the path in
the space of state variables does not involve retracing.

1.2.3 Applications of the first law

The specific heat of a system is determined via the heat transfer δQ necessary for a given
temperature change. For a gas this is expressed by

δQ = dU − δW = dU + pdV =
(
∂U

∂T

)
V

dT +
(
∂U

∂V

)
T

dV + pdV . (1.15)

The specific heat at constant volume (dV = 0) is then

CV =
(
δQ

dT

)
V

=
(
∂U

∂T

)
V

. (1.16)

On the other hand, the specific heat at constant pressure (isobar) is expressed as

Cp =
(
δQ

dT

)
p

=
(
∂U

∂T

)
V

+
[(

∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

. (1.17)

which leads to

Cp − CV =
{(

∂U

∂V

)
T

+ p

}(
∂V

∂T

)
p

=
{(

∂U

∂V

)
T

+ p

}
V α . (1.18)

Here α is the isobar thermal expansion coefficient. For the ideal gas we know that U does not
depend on V . With the equation of state we obtain(

∂U

∂V

)
T

= 0 und
(
∂V

∂T

)
p

=
nR

p
⇒ Cp − CV = nR = NkB . (1.19)

As a consequence it is more efficient to change the temperature of a gas by heat transfer at con-
stant volume, because for constant pressure some of the heat transfer is turned into mechanical
work δW = −p dV .

1.3 Second law of thermodynamics

While the energy conservation stated in the first law is quite compatible with the concepts of
classical mechanics, the second law of thermodynamics is much less intuitive. It is a statement
about the energy transformation. There are two completely compatible formulations of this law:

• Rudolf Clausius: There is no cyclic process, whose only effect is to transfer heat from a
reservoir of lower temperature to one with higher temperature.

• William Thomson (Lord Kelvin): There is no cyclic process, whose effect is to take heat
from a reservoir and transform it completely into work. ”There is no perpetuum mobile
of the second kind.”
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1.3.1 Carnot engine

A Carnot engine performs cyclic transformations transferring heat between reservoirs of different
temperature absorbing or delivering work. This type of engine is a convenient theoretical tool
to understand the implications of the second law of thermodynamics. The most simple example
is an engine between two reservoirs.

reservoir 2

1

T
2

Q
1

Q
2

W = Q  − Q
21

~

reservoir 1 T

This machine extracts the heat Q1 from reservoir 1 at temperature T1 and passes the heat Q2

on to reservoir 2 at temperature 2, while the difference of the two energies is emitted as work:
W = Q1−Q2 assuming T1 > T2. Note, that also the reversed cyclic process is possible whereby
the heat flow is reversed and the engine absorbs work. We define the efficiency η, which is the
ratio between the work output W and the heat input Q1:

η =
W

Q1
=
Q1 −Q2

Q1
< 1 . (1.20)

Theorem by Carnot: (a) For reversible cyclic processes of engines between two reservoirs the
ratio

Q1

Q2
=
T1

T2
> 0 (1.21)

is universal. This can be considered as a definition of the absolute temperature scale and is
compatible with the definition of T via the equation of state of the ideal gas.
(b) For an arbitrary engine performing a cyclic process, it follows that

Q1

Q2
≤ T1

T2
(1.22)

Proof: Consider two engines, A and B, between the same two reservoirs

W’

1

Q
2

Q’
1

Q’
2

T
1

T
2

reservoir 1

reservoir 2

A B
W

Q

The engine B is a reversible engine (= Carnot engine) while A is an arbitrary cyclic engine. The
cycles of both engines are chosen so that Q2 = Q′

2 leaving reservoir 2 unchanged. Thus,

W = Q1 −Q2

W ′ = Q′
1 −Q′

2

 ⇒ W −W ′ = Q1 −Q′
1 (1.23)
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According to the second law (Kelvin) we get into a conflict, if we assume W > W ′, as we would
extract work from the total engine while only taking heat from reservoir 1. Thus, the statement
compatible with the second law is W ≤W ′ and Q1 ≤ Q′

1 such that,

Q1

Q2
≤ Q′

1

Q′
2

=
T1

T2
. (1.24)

The equal sign is obtained when we assume that both engines are reversible, as we can apply
the given argument in both directions so that W ≤ W ′ and W ≥ W ′ leads to the conclusion
W = W ′. This proves also the universality. From this we can also conclude that a reversible
engine has the maximal efficiency.

1.3.2 Entropy

Heat is not a state variable. Looking at the cycle of a Carnot engine immediately shows this∮
δQ 6= 0 , (1.25)

so δQ is not an exact differential. We can introduce an integrating factor to arrive at a state
variable:

dS =
δQ

T
with

∮
dS = 0 (1.26)

which works for the simple cyclic Carnot process:∮
dS =

Q1

T1
+
Q2

T2
= 0 (1.27)

and may be extended straightforwardly to any reversible cyclic process. S is the entropy.

Clausius’ theorem: For any cyclic transformation the following inequality holds:∮
dS ≤ 0 (1.28)

and the equality is valid for a reversible transformation.
The proof is simply an extension of Carnot’s theorem. The entropy as a state variable satisfies
the following relation for a path of a reversible transformation from state A to B:∫ B

A
dS = S(B)− S(A) . (1.29)

In the case of an arbitrary transformation we find∫ B

A

δQ

T
≤ S(B)− S(A) . (1.30)

Ideal gas: We first look at a reversible expansion of an ideal gas from volume V1 to V2 while
keeping contact to a heat reservoir of temperature T . Thus the expansion is isothermal, and the
internal energy U of the gas does not change as it does only depend on temperature. During
the expansion process the ideal gas draws the heat Q which then is transformed into work:

∆U = 0 ⇒ Q = −W =
∫ V2

V1

pdV = NkBT ln
(
V2

V1

)
. (1.31)

where we have used the equation of state. The change of entropy during this change is then
easily obtained as

(∆Srev)gas =
∫ 2

1

δQrev

T
=
Q

T
= NkBln

(
V2

V1

)
. (1.32)
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Analogously the entropy of the reservoir changes,

(∆Srev)res = −Q
T

= − (∆Srev)gas (1.33)

such that the entropy of the complete system (ideal gas + reservoir) stays unchanged, ∆Stotal =
∆Sres + ∆Sgas = 0. In turn the gained work could be stored, e.g. as potential energy.
Turning now to an irreversible transformation between the same initial and final state as before,
we consider the free expansion of the gas as in the Gay-Lussac experiment. Thus there is no
work gained in the expansion. The entropy change is the same, as S is a state variable. Since
the system is isolated the temperature and the internal energy have not changed. No heat was
received from a reservoir, (∆S)res = 0. Thus the total entropy has increased

∆Stotal = ∆Sgas > 0 (1.34)

This increase of entropy amounts to a waste of work stored in the initial state. The free expansion
does not extract any work from the increase of volume.

1.3.3 Applications of the first and second law

The existence of the entropy S as a state variable is the most important result of the second law
of thermodynamics. We consider now some consequences for a gas, such that work is simply
δW = −pdV . For a reversible process we find

TdS = δQ = dU − δW = dU + pdV . (1.35)

Both dS and dU are exact differentials. We rewrite

dS =
1
T
dU +

p

T
dV =

(
∂S

∂U

)
V

dU +
(
∂S

∂V

)
U

dV . (1.36)

From these we derive the caloric equation of state(
∂S

∂U

)
V

=
1
T

⇒ T = T (U, V ) ⇒ U = U(T, V ) , (1.37)

and the thermodynamic equation of state(
∂S

∂V

)
U

=
p

T
⇒ p = Tf(T, V ) . (1.38)

Taking S = S(T, V ) and U = U(T, V ) leads us to

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV =
1
T
dU +

p

T
dV . (1.39)

Using

dU =
(
∂U

∂T

)
V

dT +
(
∂U

∂V

)
T

dV (1.40)

we obtain

dS =
1
T

(
∂U

∂T

)
V

dT +
1
T

{(
∂U

∂V

)
T

+ p

}
dV . (1.41)

The comparison of expressions shows that

T

(
∂S

∂T

)
V

=
(
∂U

∂T

)
V

= CV . (1.42)
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Since dS und dU are exact differentials it follows that

1
T

[
∂

∂V

(
∂U

∂T

)
V

]
T

= − 1
T 2

[(
∂U

∂V

)
T

+ p

]
+

1
T

{[
∂

∂T

(
∂U

∂V

)
T

]
V

+
(
∂p

∂T

)
V

}
. (1.43)

leading eventually to (
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p = T 2

(
∂

∂T

p

T

)
V

. (1.44)

Knowing the thermodynamic equation of state, p = p(T, V, ...) allows us to calculate the volume
dependence of the internal energy. Interestingly for the ideal gas we find from this,(

∂U

∂V

)
T

= 0 ⇔ p = Tf(V ) (1.45)

This result was previously derived based on the outcome of the Gay-Lussac experiment. Now it
appears as a consequence of the second law of thermodynamics.

1.4 Thermodynamic potentials

Generally we encounter the question of the suitable state variables to describe a given thermo-
dynamic system. We introduce here several thermodynamic potentials for the different sets of
variables, which have convenient properties.
In order to understand the issue here we consider first the internal energy U :

dU = TdS +
∑

i

Fidqi +
∑

j

µjdNj (1.46)

where we use again generalized forces Fi and coordinates qi in order to describe the work.
Additionally we consider the possible change of the amount of matter in the system, i.e. the
change of the particle number Ni. The corresponding conjugate variable of N is the chemical
potential µi, the energy to add a particle to the system.
This differential provides immediately the relations(

∂U

∂S

)
qi,Nj

= T ,

(
∂U

∂qi

)
S,Nj ,qi′ 6=i

= Fi ,

(
∂U

∂Nj

)
S,qi,Nj′ 6=j

= µj . (1.47)

These simple forms qualify the set S, qi and Nj as the natural variables for U . Note that the
relations would more complicated for the variables (T, qi, µi) for example.
In these variables it is now also easy to obtain response functions. The specific heat results from(

∂2U

∂S2

)
qi,Nj

=
(
∂T

∂S

)
qi,Nj

=
T

Cqi,Nj

⇒ Cqi,Nj = T

[(
∂2U

∂S2

)
qi,Nj

]−1

. (1.48)

or for a gas (δW = −pdV ) we find(
∂2U

∂V 2

)
S,Nj

= −
(
∂p

∂V

)
S,Nj

=
1

V κS
⇒ κS =

1
V

[(
∂2U

∂V 2

)
S,Nj

]−1

, (1.49)

providing the adiabatic compressibility (dS = 0 no heat transfer).
There are also important differential relations between different variables based on the fact that
dU is an exact differential. These are called Maxwell relations. For simple one-atomic gas they
are expressed as[

∂

∂V

(
∂U

∂S

)
V,N

]
S,N

=

[
∂

∂S

(
∂U

∂V

)
S,N

]
V,N

⇒
(
∂T

∂V

)
S,N

= −
(
∂p

∂S

)
V,N

. (1.50)
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Analogously we obtain(
∂T

∂N

)
S,V

=
(
∂µ

∂S

)
V,N

,

(
∂p

∂N

)
S,V

= −
(
∂µ

∂V

)
S,N

. (1.51)

The internal energy as U(S, qi, Ni) yields simple and convenient relations, and is in this form
called a thermodynamical potential.
Note that also the entropy can act as a thermodynamic potential, if we use U = U(S, V,N) and
solve for S:

S = S(U, V,N) ⇒ dS =
1
T
dU −

∑
i

Fi

T
dqi −

∑
i

µi

T
dNi . (1.52)

1.4.1 Legendre transformation to other thermodynamical potentials

By means of the Legendre transformation we can derive other thermodynamical potentials of
different variables starting from U(S, qi, Ni).6 The thermodynamic system is again a gas so that

U = U(S, V,N) ⇒ dU = T dS − p dV + µ dN (1.56)

Helmholtz free energy: We replace the entropy S by the temperature T :

F = F (T, V,N) = inf
S

{
U − S

(
∂U

∂S

)
V,N

}
= inf

S
{U − ST} (1.57)

leading to the differential

dF = −SdT − pdV + µdN ⇒ S = −
(
∂F

∂T

)
V,N

, p = −
(
∂F

∂V

)
T,N

, µ =
(
∂F

∂N

)
T,V

.

(1.58)
The resulting response functions are

CV = −T
(
∂2F

∂T 2

)
V,N

, κT =
1
V

[(
∂2F

∂V 2

)
T,N

]−1

. (1.59)

Moreover, following Maxwell relations apply:(
∂p

∂T

)
V,N

=
(
∂S

∂V

)
T,N

,

(
∂S

∂N

)
T,V

= −
(
∂µ

∂T

)
V,N

,

(
∂p

∂N

)
T,V

= −
(
∂µ

∂V

)
T,N

. (1.60)

Enthalpy: We obtain the enthalpy by replacing the variable V by pressure p:

H = H(S, p,N) = inf
V

{
U − V

(
∂U

∂V

)
S,N

}
= inf

V
{U + pV } (1.61)

6Legendre transformation: We consider a function L of independent variables x, y, z, ... with the exact differ-
ential

dL = Xdx+ Y dy + Zdz + · · · . (1.53)

with X,Y, Z, ... being functions of x, y, z, .... We perform a variable transformation

L → L̄ = inf
x
{L−Xx} = inf

x

(
L− x

„
∂L

∂x

«
y,z,...

)
x, y, z, . . . → X, y, z, . . .

(1.54)

from which we obtain
dL̄ = −xdX + Y dy + Zdz + · · · . (1.55)

The variable x is replaced by its conjugate variable X.
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with the exact differential

dH = TdS + V dp+ µdN → T =
(
∂H

∂S

)
p,N

, V =
(
∂H

∂p

)
S,N

, µ =
(
∂H

∂N

)
S,p

. (1.62)

An example of a response function we show the adiabatic compressibility

κS = − 1
V

(
∂2H

∂p2

)
S,N

. (1.63)

The Maxwell relations read(
∂T

∂p

)
S,N

=
(
∂V

∂S

)
p,N

,

(
∂T

∂N

)
S,p

=
(
∂µ

∂S

)
p,N

,

(
∂V

∂N

)
S,p

=
(
∂µ

∂p

)
S,N

. (1.64)

Gibbs free energy (free enthalpy): A further potential is reached by the choice of variables T, p,N :

G = G(T, p,N) = inf
V

{
F − V

(
∂F

∂V

)
T,N

}
= inf

V
{F + pV } = inf

V,S
{U − TS + pV } = µN (1.65)

with

dG = −SdT + V dp+ µdN → −S =
(
∂G

∂T

)
p,N

, V =
(
∂G

∂p

)
T,N

, µ =
(
∂G

∂N

)
T,p

,

(1.66)
In this case simple response functions are

Cp = −T
(
∂2G

∂T 2

)
p,N

, κT = − 1
V

(
∂2G

∂p2

)
T,N

. (1.67)

and the Maxwell relations have the form,(
∂S

∂p

)
T,N

= −
(
∂V

∂T

)
p,N

,

(
∂S

∂N

)
T,p

= −
(
∂µ

∂T

)
p,N

,

(
∂V

∂N

)
T,p

=
(
∂µ

∂p

)
T,N

. (1.68)

This concludes the four most important thermodynamic potentials defining different sets of
natural state variable which can be used as they are needed. We neglect here the replacement
of N by µ.

1.4.2 Homogeneity of the potentials

All thermodynamic potentials are extensive. This is obvious for the internal energy . If a system
with a homogeneous phase is scaled by a factor λ, then also U would scale by the same factor: S → λS

V → λV
N → λN

 ⇒ U → λU(S, V,N) = U(λS, λV, λN) (1.69)

Note that all variables of U are extensive and scale with the system size. Since the conjugate
variable to each extensive variable is intensive, it is easy to see that all other thermodynamic
potential are extensive too. For example the free energy

F → λF : S = −
(
∂F

∂T

)
V,N

→ λS = −
(
∂λF

∂T

)
V,N

(1.70)
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Note that all state variables which are used as equilibrium parameters (T, p, µ, ..) are intensive
and do not scale with the system size.

Gibbs-Duhem relation: We examine the scaling properties of the Gibbs free energy for a homo-
geneous system:

G(T, p,N) =
d

dλ
λG(T, p,N)|λ=1 =

d

dλ
G(T, p, λN)|λ=1 = N

(
∂G

∂N

)
T,p

= µN (1.71)

This defines the chemical Potential µ as the Gibbs free energy per particle. This leads to the
important Gibbs-Duhem relation

dG = −SdT + V dp+ µdN = µdN +Ndµ ⇒ SdT − V dp+Ndµ = 0 . (1.72)

which states that the equilibrium parameters T, p and µ cannot be varied independently.

1.4.3 Conditions of the equilibrium states

Depending on the external conditions of a system one of the thermodynamic potential is most
appropriate to describe the equilibrium state. In order to determine the conditions for the
equilibrium state of the system, it is also useful to see ”how the equilibrium is reached”. Here
Clausius’ inequality turns out to be very useful:

TdS ≥ δQ . (1.73)

Let us now consider a single-atomic gas under various conditions:

Closed system: This means dU = 0, dV = 0 and dN = 0. These are the variables of the potential
’entropy’. Thus, we find

dS ≥ 0 general

dS = 0 in equilibrium
(1.74)

The equilibrium state has a maximal entropy under given conditions. Consider now two subsys-
tems, 1 and 2, which are connected such that internal energy and particles may be exchanged
and the volume of the two may be changed, under the condition

U = U1 + U2 = const. ⇒ dU1 = −dU2

V = V1 + V2 = const. ⇒ dV1 = −dV2

N = N1 +N2 = const. ⇒ dN1 = −dN2

(1.75)

The entropy is additive,

S = S(U, V,N) = S(U1, V1, N1) + S(U2, V2, N2) = S1 + S2 with dS = dS1 + dS2 (1.76)

We can therefore consider the equilibrium state

0 = dS = dS1 + dS2

=

{(
∂S1

∂U1

)
V1,N1

−
(
∂S2

∂U2

)
V2,N2

}
dU1 +

{(
∂S1

∂V1

)
U1,N1

−
(
∂S2

∂V2

)
U2,N2

}
dV1

+

{(
∂S1

∂N1

)
U1,V1

−
(
∂S2

∂N2

)
U2,V2

}
dN1

=
(

1
T1
− 1
T2

)
dU1 +

(
p1

T1
− p2

T2

)
dV1 +

(
−µ1

T1
+
µ2

T2

)
dN1 .

(1.77)
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Since the differentials dU1, dV1 and dN1 can be arbitrary, all the coefficients should be zero,
leading the equilibrium condition:

T = T1 = T2 , p = p1 = p2 and µ = µ1 = µ2 . (1.78)

These three variables are the free equilibrium parameters of this system. As the system can be
divided up arbitrarily, these parameters are constant throughout the system in equilibrium.

Analogous statements can be made for other conditions.
Isentropic, isochor transformation of closed system: dN = dS = dV = 0 implies

dU ≤ TdS = 0 ⇒
{
dU ≤ 0 general
dU = 0 in equilibrium

(1.79)

with (T, p, µ) as free equilibrium parameters.

Systems with various conditions

fixed process equilibrium free equilibrium
variables direction condition parameters

U, V,N S increasing S maximal T, p, µ

T, V,N F decreasing F minimal p, µ

T, p,N G decreasing G minimal µ

S, V,N U decreasing U minimal T, p, µ

S, p,N H decreasing H minimal T, µ

1.5 Third law of thermodynamics

Nernst formulated 1905 based on empirical results for reversible electrical cells the law

lim
T→0

S(T, qi, Nj) = S0 (1.80)

where S0 does depend neither on qi nor on Nj , i.e.

lim
T→0

(
∂S

∂qi′

)
qi6=i′ ,Nj ;T

= 0 and lim
T→0

(
∂S

∂Nj′

)
qi,Nj 6=j′ ;T

= 0 . (1.81)

Planck extended the statement by introducing an absolute scale for the entropy, S0 = 0, the
normalization of the entropy. This statement should be true for all thermodynamic systems.7

From this we obtain for the entropy as a function of U and V , that the curve for S = 0 defines
the ground state energy U and the slop in S-direction is infinite (1/T →∞ for T → 0).

7Note, that there are exceptions for systems with a residual entropy, as we will see later.
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0

V

S

U (V,S=0)

We consider now some consequences for some quantities in the zero-temperature limit for a gas.
For the specific heat we find

CV = T

(
∂S

∂T

)
V

⇒ S(T, V ) =
∫ T

0

CV (T ′)
T ′

dT ′ , (1.82)

which yields for T = 0 the condition,

lim
T→0

CV (T ) = 0 , (1.83)

in order to keep CV /T integrable at T = 0, i.e. CV (T ) ≤ aT ε with ε > 0 for T → 0. Note
that in a solid the lattice vibrations lead to CV ∝ T 3 and the electrons of metal to CV ∝ T .
Analogously we conclude for Cp:

S(T, p) =
∫ T

0

Cp(T ′)
T ′

dT ′ ⇒ lim
T→0

Cp(T ) = 0 (1.84)

Moreover,

lim
T→0

Cp − CV

T
= 0 . (1.85)

holds, since
Cp − CV

T
=
(
∂p

∂T

)
V

(
∂V

∂T

)
p

. (1.86)

When we use the Maxwell relation (
∂p

∂T

)
V

=
(
∂S

∂V

)
T

(1.87)

we arrive at the result (1.85). Further examples can be found among the response functions
such as the thermal expansion coefficient

α =
1
V

(
∂V

∂T

)
p

= − 1
V

(
∂S

∂p

)
T

, (1.88)

which obviously leads to limT→0 α = 0. Similar results can be found for other response functions.
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Chapter 2

Kinetic approach and Boltzmann
transport theory

As we mentioned in the last chapter, thermodynamics deals with the behavior and relation of
quantities of thermodynamic macroscopic systems which are in equilibrium. Thus time evolution
does not enter the discussions in thermodynamics. Considering, however, a macroscopic system
as built up from microscopic entities, many degrees of freedom, such as moving atoms in a gas
or magnetic moments of a magnet etc, it is very natural to take time evolution into account. In
this way time evolution of a macroscopic system can be analyzed providing great insight into
some of the basic ideas behind the statistical treatment of macroscopic systems.
In this chapter we will first consider some idealized version of a many-body system to understand
how one can view non-equilibrium behavior and how equilibrium is reached and eventually
characterized. Entropy will play an essential role to give us the connection to thermodynamics
of the equilibrium state. This discussion will also make clear how the enormous magnitude of
number of degrees of freedom, N , is essential for the statistical approach and that small systems
would not display the laws of thermodynamics in the given way. The latter part of the chapter we
will turn to Boltzmann’s kinetic gas theory which is one of the best known and useful examples
of kinetic theories.

2.1 Time evolution and Master equation

We start by considering a model with N units (atoms, ...) which can be in z different micro-
states:

{sν
i } with i = 1, . . . , N ; ν = 1, . . . , z . (2.1)

For simplicity these degrees of freedom are considered to be independent and their z micro-states
have the same energy. For the purpose of a simple simulation of the time evolution we introduce
discrete time steps tn with tn+1 − tn = ∆t. During each time step the micro-state of each unit
can change from ν to ν ′ with a probability pνν′ which is connected to the transition rate Γνν′ by

pνν′ = Γνν′∆t . (2.2)

We require that the reverse processes have equal probability due to time reversal symmetry:
pνν′ = pν′ν and, thus, Γνν′ = Γν′ν .
Among the N units we find at a given time step tn that Nν units are in the micro-state ν. Thus,
picking at random a unit i we would find it in the micro-state ν with the probability,

wν =
Nν

N
with

z∑
ν=1

wν = 1 . (2.3)

Let us now discuss the budget of each micro-state ν: (1) the number Nν is reduced, because some
units will have a transition to another micro-state with the rate

∑
ν′ Γνν′Nν ; (2) the number
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Nν increases, since some units in another micro-state undergo a transition to the micro-state
ν with the rate

∑
ν′ Γν′νNν′ . Note that these rates are proportional to the number of units

in the micro-state which is transformed into another micro-state, because each unit changes
independently with the rate Γνν′ . The corresponding budget equation is given by

Nν(tn+1) = Nν(tn)−∆t
∑
ν′ 6=ν

Γνν′Nν(tn) + ∆t
∑
ν′ 6=ν

Γν′νNν′(tn) . (2.4)

This set of z iterative equations describes the evolution of the N units in a statistical way,
whereby we do not keep track of the state of each individual unit, but only of the number of
units in each state. Starting from an arbitrary initial configuration {Nν} of the units at t1 = 0,
this iteration moves generally towards a fixed point, Nν(tn+1) = Nν(tn) which requires that

0 =
∑
ν′ 6=ν

Γνν′Nν(tn)−
∑
ν′ 6=ν

Γν′νNν′(tn) . (2.5)

There is not any time evolution anymore for Nν(t), although the states of the units are naturally
changing in time. As this equation is true for all ν we find that independently

0 = Γνν′Nν(tn)− Γν′νNν′(tn) , (2.6)

which means that for any pair of micro-states ν and ν ′ the mutual transitions compensate each
other. Equation (2.6) is known as the condition of detailed balance. Due to Γνν′ = Γν′ν we find
the fixed point condition Nν = Nν′ = N/z, i.e all micro-states are equally occupied.
We now slightly reformulate the problem taking the limit of ∆t→ 0 and dividing (2.4) by N :

dwν

dt
= −wν

∑
ν′ 6=ν

Γνν′ +
∑
ν′ 6=ν

Γν′νwν′ . (2.7)

This is the so-called master equation of the system. Also here it is obvious that the detailed
balance condition leads to a solution where all probabilities wν(t) are constant:

wνΓνν′ = wν′Γν′ν ⇒ wν

wν′
=

Γν′ν

Γνν′
= 1 , wν =

1
z
. (2.8)

We can now define a mean value of a property associated with each micro-state ν, which we call
αν :

〈α〉 =
∑

ν

ανwν . (2.9)

The time evolution of this quantity is easily derived,

d

dt
〈α〉 =

∑
ν

αν
dwν

dt
=
∑

ν

αν

−wν

∑
ν′ 6=ν

Γνν′ +
∑
ν′ 6=ν

Γν′νwν′


= −1

2

∑
ν,ν′

{αν − αν′}(wν − wν′)Γνν′ ,

(2.10)

where the last equality is obtained by symmetrization using the symmetry of Γνν′ . Obviously
the time evolution stops when detailed balance is reached.

2.1.1 H-function and information

Next we introduce the function H(t) which has the following form

H(t) = −
∑

ν

wν lnwν = −〈lnw〉 . (2.11)
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This function is a measure for the uncertainty of our knowledge about the system. Concretely,
if at the time t we pick one atom at random, we may ask how certain we are about finding the
atom in a given micro-state. Assume that w1 = 1 and wν = 0 for ν = 2, . . . , z. Then we can be
sure to find the micro-state 1. In this case H(t) = 0. For generic distributions of probabilities
H(t) > 0. The larger H(t) the less certain the outcome of our picking experiment is, i.e. the
less information is available about the system.
The time dependence of H(t) is interesting to see:

dH(t)
dt

= − d

dt
〈lnw〉 =

1
2

∑
ν,ν′

(lnwν − lnwν′)(wν − wν′)Γνν′ ≥ 0 . (2.12)

Note that (x − y)(lnx − ln y) ≥ 0. This implies that H(t) evolves in a specific direction in
time, despite the assumption of time reversal symmetry. The condition dH/dt = 0 then implies
wν = wν′ (detailed balance). The inequality (2.12) implies that detailed balance corresponds to
the macroscopic state of the system with the least certainty and simultaneously maximal H.
Let us consider this from a different view point. For given wν = Nν/N in a system of N units,
there are

N !
N1!N2! · · ·Nz!

= W (Nν) (2.13)

realizations among zN possible configurations. In the large-N limit we may apply Stirlings
formula (lnn! ≈ n lnn− n+ 1

2 ln 2πn) which then leads to

HW = lnW (Nν) ≈ N lnN −N −
∑

ν

[Nν lnNν −Nν ]

= −N
∑

ν

wν lnwν = NH(t) .
(2.14)

where we have ignored terms of the order lnN . Maximizing H as a functional of wν we introduce
the following extended form of H

H ′ = −
∑

ν

wν lnwν + λ

{∑
ν

wν − 1

}
, (2.15)

where we introduced the constraint of normalization of the probability distribution using a
Lagrange multiplier. Thus we get to the equation

dH ′

dwν
= − lnwν − 1 + λ = 0 and

∑
ν

wν = 1 , (2.16)

which can only be solved by wν = 1/z which is again the condition of detailed balance.
The conclusion of this discussion is that the detailed balance describes the distribution wν with
the highest probability, i.e. the largest number of different possible realizations yield the same
{N1, . . . , Nz}. In its time evolution the system moves towards the fixed point with this property
and H(t) grows monotonously until it reaches its maximal value.

2.1.2 Simulation of a two-state system

The master equation (2.7) which we have introduced above deals with our system of independent
units in a statistical way. It is a rate equation. We would like now to consider the system in a
”concrete” realization by investigating a time series of transition events to see how it evolves in
time. This will be most illustrative in view of the apparent problem we encounter by the fact
that our model is formulated on foundations conserving time reversal symmetry. Nevertheless
there seems to be a preferred direction of evolution.
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We consider a system of N units with two different micro-states (z = 2) and perform a compu-
tational simulation. We describe the micro-state of unit i by the quantity

si =


+1 ν = 1

−1 ν = 2 .
(2.17)

Thus, the transition corresponds simply to a sign change of si, which happens with equal proba-
bility in both directions. The algorithm works in the following way. After a time step each unit
experiences a transition with a probability p (0 < p < 1), whereby the probabilistic behavior is
realized by a random number generator. This means generate a uniformly distributed random
number R ∈ [0, 1] and then do the following process for all units:

si(tn+1) =


si(tn) if p < R < 1

−si(tn) if 0 ≤ R ≤ p .
(2.18)

This time series corresponds to a so-called Markov chain which means that the transition at
each step is completely independent from previous steps.
After each time step we determine the quantities

M(t) =
1
N

N∑
i=1

si(t) and H(t) = −
2∑

ν=1

wν(t) lnwν(t) (2.19)

where
w1(t) =

1
2
{1 +M(t)} and w2(t) =

1
2
{1−M(t)} . (2.20)

The results of the simulations for both quantities are shown in Fig. 2.1. In the starting config-
uration all units have the micro-state si = +1. There is only one such configuration, while the
fixed point distribution is characterized by w1 = w2 with a large number of realizations

W =
N !

{(N/2)!}2
≈
√

2
πN

2N for large N . (2.21)

The closer the system is to the fixed point distribution the more realizations are available. We
may estimate this by

W (M) =
N !

N1!N2!
=

N !
{N/2(1 +M)}!{N/2(1−M)}!

⇒ lnW (M) ≈ N ln 2− N

2
{(1 +M) ln(1 +M) + (1−M) ln(1−M)} − 1

2
ln

2
πN

≈ N ln 2− 1
2

ln
2
πN

− M2N

2

⇒W (M) ≈ 2N

√
πN

2
e−M2N/2 ,

(2.22)

where we have used the Stirling formula for large N and the expansion for M � 1 (ln(1 + x) =
x− x2

2 + · · ·). The number of realizations drop quickly from the maximal value at M = 0 with a
width ∆M =

√
2/N . The larger N the larger the fraction of realizations of the system belonging

to the macroscopic state with M ≈ 0.
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Fig. 2.1: Simulation of a two-state system for different numbers of units N : 1st column,
N = 100; 2nd column, N = 1000; 3rd column, N = 10000. Note that for sufficiently large t

(� δ/p), M(t) → 0 and H(t) → ln 2 .

This explains the trend seen in the simulations. The ”measured” quantities approach the fixed
point but show fluctuations. These fluctuations shrink with increasing system size N . States
deviating from the fixed point occupy less and less of the available configuration space for
increasing N . However, it becomes obvious from the small systems that the relation found from
(2.12) is not strictly true when we consider a specific time series of a finite system. The master
equations leading to (2.12) are statistical and consider an averaged situation.
The master equations of our two-state system are

dw1

dt
= Γ(w2 − w1) and

dw2

dt
= Γ(w1 − w2) , (2.23)

where Γ = Γ12 = Γ21. This leads to the equations

d

dt
(w1 + w2) = 0 and

d

dt
(w1 − w2) = −2Γ(w1 − w2) . (2.24)

The first equation states the conservation of the probability w1 + w2 = 1. The second leads to
the exponential approach of M(t) to 0,

M(t) = M0e
−2tΓ , (2.25)

from which we also obtain

H(t) ≈ ln 2− M2
0

2
e−tΓ . (2.26)

We see that the relaxation times for M and H differ by a factor two

τM =
1
2Γ

and τH =
1
Γ

(2.27)

which can be observed by eye in the results of our simulation (Fig. 2.1.).
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2.1.3 Equilibrium of a system

The statistical discussion using the master equation and our simulation of a system with many
degrees of freedom shows that the system relaxes towards a fixed point of the probability distri-
bution wν which describes its macroscopic state. This probability distribution of the micro-states
accounts for some averaged properties, and we may calculate average values of certain quantities.
This fixed point is equivalent to the equilibrium of the system. Deviations from this equilibrium
yield non-equilibrium states of the system, which then decay towards the equilibrium, if we allow
the system to do so. The equilibrium state is characterized in a statistical sense as the state
with the maximal number of realizations in terms of configurations of micro-states of the units.

2.2 Analysis of a closed system

We turn now to a system of N units which are not independent anymore. The states have
different energy, εν . Again we describe the macro-state of the system by means of the probability
distribution wν = Nν/N . The system shall be closed so that no matter and no energy is
exchanged with the environment. Thus, the total energy and the number of units is conserved.

〈ε〉 =
z∑

ν=1

wνεν and 1 =
z∑

ν=1

wν (2.28)

This defines the internal energy U = N〈ε〉 which is unchanged in a closed system and the
normalization of the probability distribution.

2.2.1 H and the equilibrium thermodynamics

As before we define the function H(t), an increasing function of time, saturating at a maximal
value, which we consider as the condition for ”equilibrium”. The details of the time evolution
will be addressed later. Rather we search now for the maximum of H with respect to wν under
the condition of energy conservation. Thus, we introduce again Lagrange multipliers for these
constraints

H(wν) = −
∑

ν

wν lnwν + λ{
∑

ν

wν − 1} − 1
θ
{
∑

ν

wνεν − 〈ε〉} (2.29)

and obtain the equation

0 =
dH

dwν
= − lnwν − 1 + λ− εν

θ
. (2.30)

This equation leads to

wν = eλ−1−εν/θ with e1−λ =
∑

ν

e−εν/θ = Z (2.31)

which satisfies the normalization condition for wν .
Our aim is it now to give the different quantities a thermodynamic meaning. We begin by
multiplying Eq.(2.30) by wν and sum then over ν. This leads to

0 = −
∑

ν

{
wν lnwν + wν(1− λ) + wν

εν
θ

}
= H − 1 + λ− 〈ε〉

θ
(2.32)

which we use to replace 1− λ in (2.30) and obtain

〈ε〉 = θ(lnwν +H) + εν . (2.33)

The differential reads

d〈ε〉 = (H + lnwν)dθ + θ

(
dH +

dwν

wν

)
+ dεν . (2.34)
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After multiplying by wν and a ν-summation the first term on the right hand side drops out and
we obtain

d〈ε〉 = θdH +
∑

ν

wνdεν . (2.35)

Now we view 〈ε〉 = u as the internal energy per unit and dεν =
∑

i
∂εν
∂qi
dqi where qi is a generalized

coordinate, such as a volume, a magnetization etc. Thus ∂εν
∂qi

= −Fiwν is a generalized force,
such as pressure, magnetic field etc. Therefore we write (2.35) as

du = θdH −
∑
ν,i

wνFiνdqi = θdH −
∑

i

〈Fi〉dqi ⇒ dH =
du

θ
+

1
θ

∑
i

〈Fi〉dqi ; . (2.36)

This suggests now to make the following identifications:

θ = kBT and H =
s

kB
, (2.37)

i.e. θ is the temperature and H the entropy density. We may then rewrite (2.33)

lnwν =
Ψ− εν
kBT

. (2.38)

Here we now take the derivative with respect to T :

∂wν

∂T
=

wν

kBT 2

{
T
∂Ψ
∂T

−Ψ + εν

}
(2.39)

Under the sum over ν the left hand side vanishes and using (2.38) we can express the entropy
density as

s = −∂Ψ
∂T

. (2.40)

Analogously we derive

〈Fi〉 = −∂Ψ
∂qi

. (2.41)

Thus we can identify Ψ = Ψ(T, qi) as the Helmholtz free energy density f(T, qi), a thermody-
namic potential.1

2.2.2 Master equation

Because the micro-states have different energies, the time evolution as we have discussed by the
master equation for completely independent units has to be modified in a way that the energy
in each time step is conserved. This can be guaranteed only by involving two micro-states of
different units to be transformed together conserving the energy. A master equation doing this
job has the form

dwν

dt
=

∑
ν1,ν2,ν3

{Γνν1;ν2ν3wν2wν3 − Γν2ν3;νν1wνwν1} . (2.44)

For this purpose we assume that there is no correlation between the states of different units.
Here Γνν1;ν2ν3 denotes the rate for the transition of the pair of states (ν2, ν3) to (ν, ν1) under the

1Time dependence of Ψ: From Eq.(2.38) we obtain

Ψ = kBT
X

ν

wν lnwν + 〈ε〉 = −kBTH + 〈ε〉 . (2.42)

The time derivative is then
dΨ

dt
= −kBT

dH

dt
≤ 0 , (2.43)

which means that free energy tends towards a minimum, as we have seen in the previous chapter.
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condition that εν2 + εν3 = εν + εν1 . Time reversal symmetry and the freedom to exchange two
states give rise to the following relations:

Γνν1;ν2ν3 = Γν2ν3;νν1 = Γν1ν;ν2ν3 = Γνν1;ν3ν2 . (2.45)

This can be used in order to show that the H-function is only increasing with time,

dH

dt
= −

∑
ν

dwν

dt
{lnwν + 1}

=
1
4

∑
ν,ν1,ν2,ν3

Γν,ν1;ν2ν3 (wνwν1 − wν2wν3) {ln(wνwν1)− ln(wν2wν3)} ≥ 0 .

(2.46)

The equilibrium is reached when dH/dt = 0 and using (2.31) leads to,

wνwν1 =
e−εν/kBT e−εν1/kBT

Z2
=
e−εν2/kBT e−εν3/kBT

Z2
= wν2wν3 . (2.47)

We now revisit the condition of detailed balance under these new circumstances. On the one
hand, we may just set each term in the sum of the right hand side of (2.44) to zero to obtain a
detailed balance statement:

0 = Γνν1;ν2ν3wν2wν3 − Γν2ν3;νν1wνwν1 = Γνν1;ν2ν3{wν2wν3 − wνwν1} , (2.48)

which is a consequence of time reversal. On the other hand, we may compress the transition
rates in order to reach at a similar form as we had it earlier in (2.6),

Γ′νν′wν = Γ′ν′νwν′ . (2.49)

where we define

Γ′νν′ =
∑
ν1,ν2

Γνν1;ν′ν2wν1 and Γ′ν′ν =
∑
ν1,ν2

Γνν1;ν′ν2wν2 . (2.50)

It is important now to notice that time reversal does not invoke Γ′νν′ = Γ′ν′ν , but we find that
at equilibrium

Γ′ν′ν =
∑
ν1,ν2

Γνν1;ν′ν2

e−εν2/kBT

Z
= e−(εν−εν′ )/kBT

∑
ν1,ν2

Γνν1;ν′ν2

e−εν1/kBT

Z
= e−(εν−εν′ )/kBT Γ′νν′ .

(2.51)
Thus detailed balance implies here different transition rates for the two directions of processes
depending on the energy difference between the two micro-states, εν − εν′ , and the temperature
T ,

wν

wν′
=

Γ′ν′ν
Γ′νν′

= e−(εν−εν′ )/kBT . (2.52)

The degrees of freedom of each unit fluctuate in the environment (heat reservoir) of all the other
units which can interact with it.

2.2.3 Irreversible effect and increase of entropy

Although thermodynamics shows its strength in the description of reversible processes, it pro-
vides also important insights into the irreversible changes. An example is the Gay-Lussac ex-
periment. However, the nature of the irreversible process and in particular its time evolution is
not part of thermodynamics usually. A process which considers the evolution of a system from
a non-equilibrium to its equilibrium state is irreversible generally.
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Here we examine briefly some aspects of this evolution by analyzing a closed system consisting
of two subsystems, 1 and 2, which are initially independent (inhibited equilibrium) but then
at t = 0 become very weakly coupled. Both systems shall have the same type of units with
their micro-states which they occupy with probabilities w(1)

ν = N
(1)
ν /N1 and w

(2)
ν = N

(2)
ν /N2,

respectively (Ni is the number of units in system i). Each subsystem is assumed to be in its
equilibrium internally which can be sustained approximatively as long as the coupling between
them is weak.
The number of configurations for the combined system is given by the product of the number
of configurations of the subsystems:

W = W1W2 with Wi =
Ni!

N
(i)
1 !N (i)

2 ! · · ·N (i)
z !

(2.53)

which then leads to the entropy

S = −kB lnW = −kB lnW1 − kB lnW2 = S1 + S2

= −N1kB

∑
ν

w(1)
ν lnw(1)

ν −N2kB

∑
ν

w(2)
ν lnw(2)

ν .
(2.54)

In the complete system the internal energy is conserved, U = U1 + U2. We define U01 and U02

as the internal energy of the two subsystems, if they are in equilibrium with each other. The
non-equilibrium situation is then parametrized for the energy by the deviation Ũ : U1 = U01 + Ũ
and U2 = U02 − Ũ . The entropy satisfies at equilibrium

S(Ũ) = S1(U01 + Ũ) + S2(U02 − Ũ)

with 0 =
∂S

∂Ũ
=
∂S1

∂U1
− ∂S2

∂U2
=

1
T1
− 1
T2

⇒ T1 = T2 = T0 ,

(2.55)

for Ũ = 0. Thus, we find for small Ũ ,

1
T1

=
∂S1

∂U1

∣∣∣∣
U1=U01+Ũ

=
1
T0

+ Ũ
∂2S1

∂U2
1

∣∣∣∣
U1=U01

,

1
T2

=
∂S2

∂U2

∣∣∣∣
U2=U02−Ũ

=
1
T0
− Ũ

∂2S2

∂U2
2

∣∣∣∣
U2=U02

.

(2.56)

Using (2.55) we then expand

S(Ũ) = S1(U01) + S2(U02) +
Ũ2

2

(
∂2S1

∂U2
1

∣∣∣∣
U01

+
∂2S2

∂U2
2

∣∣∣∣
U02

)
+O(Ũ3) . (2.57)

so that the time evolution of the entropy is given by

dS

dt
= Ũ

dŨ

dt

(
∂2S1

∂U2
1

∣∣∣∣
U01

+
∂2S2

∂U2
2

∣∣∣∣
U02

)
=
dŨ

dt

(
1
T1
− 1
T2

)
. (2.58)

The derivative dŨ/dt corresponds to the energy flow from one subsystem to the other. We
express dŨ/dt in terms of the distribution functions of one of the subsystems, say system 1.

dŨ

dt
= N1

∑
ν

εν
dw

(1)
ν

dt
= N1

∑
ν

εν
∂w

(1)
ν

∂T1

dT1

dt
≈ N1

dT1

dt

∑
ν

εν
∂

∂T1

e−εν/kBT1

Z1
. (2.59)
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The derivative yields

dŨ

dt
≈ N1

dT1

dt

∑
ν

ε2νw
(1)
ν −

{∑
ν

ενw
(1)
ν

}2
 1
kBT 2

1

=
N1

kBT 2
1

dT1

dt

{
〈ε2〉 − 〈ε〉2

}
1

= C1
dT1

dt
,

(2.60)
where C1 denotes the specific heat of subsystem 1, since

dŨ

dt
=
dT1

dt

∂Ũ

∂T1
= C1

dT1

dt
, (2.61)

and we have derived the relation

kBT
2
1C1 = N1

{
〈ε2〉 − 〈ε〉2

}
1

; . (2.62)

which connects the specific heat with the fluctuations of the energy value. Note that the internal
energy of subsystem 1 is not conserved due to the coupling to subsystem 2.

T
1

T
2

U
~ 21

Fig. 2.2: A closed system consisting of two weakly coupled subsystems, 1 and 2, with initial
temperatures T1 and T2 respectively, evolves towards equilibrium through energy transfer from

the warmer to the colder subsystem.

In which direction does the energy flow? Because we know that dS/dt ≥ 0, from (2.58) follows

0 ≤ dS

dt
= C1

dT1

dt

T2 − T1

T1T2
, (2.63)

which yields for T1 > T2 that
dT1

dt
< 0 ⇒ dŨ

dt
< 0 . (2.64)

This means that the energy flow goes from the warmer to the colder subsystem, reducing the
temperature of the warmer system and increasing that of the colder subsystem as can be seen
by the analogous argument. The flow stops when T1 = T2 = T0.
Let us now consider the situation again by means of the master equation. We may approximate
the equation of w(a)

ν by (a, b = 1, 2),

dw
(a)
ν1

dt
≈

∑
ν′1,ν2,ν′2

∑
b

[
Γ(ab)

ν1,ν2;ν′1ν′2
w

(a)
ν′1
w

(b)
ν′2
− Γ(ab)

ν′1,ν′2;ν1ν2
w(a)

ν1
w(b)

ν2

]
(2.65)

which describes the evolution of the probability distribution transferring in general energy be-
tween the two subsystems, as only the overall energy is conserved but not in each subsystem
separately,

εν1 + εν2 = εν′1 + εν′2 . (2.66)
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All processes inside each subsystem are considered at equilibrium and give by the condition of
detailed balance no contribution. This remains true as long as the subsystems are very large
and the coupling between them weak. For symmetry reasons

Γ(12)
ν1ν2;ν′1ν′2

= Γ(12)
ν′1ν′2;ν1ν2

= Γ(12)
ν2ν1;ν′1ν′2

= Γ(12)
ν1ν2;ν′2ν′1

> 0 . (2.67)

We use now this equation and estimate dŨ/dt

dŨ

dt
=

∑
ν1,ν′1,ν2,ν′2

εν1

[
Γ(12)

ν1,ν2;ν′1ν′2
w

(1)
ν′1
w

(2)
ν′2
− Γ(12)

ν′1,ν′2;ν1ν2
w(1)

ν1
w(2)

ν2

]

=
1
2

∑
ν1,ν′1,ν2,ν′2

(εν1 − εν′1)Γ
(12)
ν1ν2;ν′1ν′2

e
−εν′1

/kBT1−εν′2
/kBT2 − e−εν1/kBT1−εν2/kBT2

Z1Z2
.

(2.68)

Using (2.66) and assuming that T1 and T2 are close to each other, we obtain

dŨ

dt
≈ 1

2Z2

∑
ν1,ν′1,ν2,ν′2

Γ(12)
ν1ν2;ν′1ν′2

e−(εν1+εν2 )/kBT2(εν1 − εν′1)
2

(
1
T1
− 1
T2

)
≈ K(T2 − T1) (2.69)

withK > 0. The energy flow is proportional to the difference of the temperatures and stops when
the two subsystems have the same temperature. It is also here obvious that the spontaneous
energy transfer goes from the warmer to the colder reservoir. This corresponds to Fick’s law as
dŨ/dt can be considered as a heat current (energy current). The described heat transport is
an irreversible process during which the entropy increases, leading from the less likely system
configuration of an inhibited equilibrium to the most likely of complete equilibrium with the
entropy

S = N
∑

ν

wν lnwν with wν =
Nν

N
, (2.70)

i.e. the probability distribution is uniform for the whole system with N = N1 +N2 units.

2.3 Boltzmann’s transport theory

We now consider one of the most well-known concrete examples of a kinetic theory a system
of particles which can collide with each other. This system is used to study the problem of
an atomic gas within a statistical framework and is also very useful to treat various transport
properties.

2.3.1 Statistical formulation

For the purpose of a statistical description we introduce here the distribution function f(~r, ~p, t)
whose argument is a position (~r, ~p) in the particle phase space Υ and time t. This is analogous
to the previously discussed wν . This distribution function is defined in the following way:

f(~r, ~p, t)d3r d3p = number of particles in the small (infinitesimal) phase space
volume d3rd3p around the position (~r, ~p) at time t,

(2.71)

where it is important that d3rd3p is large enough to contain many particles, but very small
compared to the total phase space volume (smaller than the characteristic length scales on
which the distribution function changes). An alternative and equivalent definition for large N
is

f(~r, ~p, t)d3r d3p = N× probability that a particle is found in the
volume d3rd3p around the position (~r, ~p) at the time t.

(2.72)
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Based on this definition the following relations hold:

N =
∫

Υ
f(~r, ~p, t) d3r d3p , nr(~r, t) =

∫
Υ
f(~r, ~p, t) d3p , np(~p, t) =

∫
Υ
f(~r, ~p, t) d3r , (2.73)

where nr(~r, t) and np(~p, t) are the particle density at the point ~r and the density of particles
with momentum ~p, respectively, at time t.
Now we consider the temporal evolution of f(~r, ~p, t). The volume d3rd3p at (~r, ~p) in Υ-space
moves after the infinitesimal time step δt to d3r′d3p′ at (~r ′, ~p′) = (~r+ δ~r, ~p+ δ~p) where δ~r = ~vδt
and δ~p = ~Fδt. Here, ~v = ~p/m is the particle velocity (m: particle mass) and ~F = ~F (~r) is the
force acting on the particles at ~r.
If there is no scattering of the particles, then the number of particles in the time-evolving volume
is conserved:

f(~r + ~vδt, ~p+ ~Fδt, t+ δt) d3r′ d3p′ = f(~r, ~p, t) d3r d3p (2.74)

Since the phase space volume is conserved during the temporal evolution (d3r d3p = d3r′ d3p′),
the distribution function remains unchanged,

f(~r + ~vδt, ~p+ ~Fδt, t+ δt) = f(~r, ~p, t) (2.75)

If we now include collisions of the particles among each other, then the number of particles is not
conserved anymore. A particle in the small volume d3r d3p scattering with any other particle
during the time step δt will be removed from this volume. On the other hand, other particles
may be placed into this volume through scattering processes. Thus, the more general equation
is given by

f(~r + ~vδt, ~p+ ~Fδt, t+ δt) = f(~r, ~p, t) +
(
∂f

∂t

)
coll

δt (2.76)

which can be expanded leading to(
∂

∂t
+ ~v · ~∇~r + ~F · ~∇~p

)
f(~r, ~p, t) = Df(~r, ~p, t) =

(
∂f

∂t

)
coll

. (2.77)

dp’ dq’

q

p

δt

dp dq

Fig. 2.3: Temporal evolution of the phase space volume d3p d3q.

The derivative D considers the change of f with the ”flow” in the motion in phase space.
The right-hand-side is the ”collision integral” taking the effect of collisions on the evolution of
f into account. Here many-body aspects appear.
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2.3.2 Collision integral

In a two-particle collision, (~p1, ~p2) → (~p′1, ~p
′
2) we find the total momentum and energy as con-

served quantities (elastic collision),

~p1 + ~p2 = ~p′1 + ~p′2 and E1 + E2 = E′
1 + E′

2 , (2.78)

with E = ~p2/2m. Of course, also the number of particles is conserved.
As indicated above there are two types of collision processes to consider, the ones which decrease
and those which increase the number of particles inside the volume d3r d3p at (~r, ~p). We
introduce the transition probability in a collision as

W (~p1, ~p2; ~p′1, ~p
′
2) =

dσ

dΩ
(~p1, ~p2; ~p′1, ~p

′
2)δ(~p1 + ~p2 − ~p′1 − ~p′2)δ(E1 + E2 − E′

1 − E′
2) . (2.79)

2

p
1

p’

2
p’

2
p

1 1
p

2
p

1
p’

p’

σ σ

Fig. 2.4: Collision work in both time directions and the matrix elements satisfy a number of
symmetry relations.

The following symmetries apply to W . The collisions are symmetric under spatial inversion

W (~p1, ~p2; ~p′1, ~p
′
2) = W (−~p1,−~p2;−~p′1,−~p′2) (2.80)

and time reversal invariant,

W (~p1, ~p2; ~p′1, ~p
′
2) = W (−~p′1,−~p′2;−~p1,−~p2) . (2.81)

Moreover, the exchange of particles does not change W :

W (~p1, ~p2; ~p′1, ~p
′
2) = W (~p2, ~p1; ~p′2, ~p

′
1) . (2.82)

Now we identify ~p1 with ~p in the volume d3rd3p and write the collision integral as(
∂f

∂t

)
coll

=
∫

Υ
d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2)
{
F (~r, t; ~p′1, ~p

′
2)− F (~r, t; (~p, ~p2)

}
, (2.83)

where F (~r, t; ~p1, ~p2) is a two-particle correlation function giving the probability to find at the
time t two particles with momenta ~p1 and ~p2, in the volume d3r around point ~r. The first term
describes the scattering of a particle into the volume d3r d3p from two particles with momenta
~p′1 and ~p′2 outside of d3r d3p. The second term stands for the opposite collision event.
Generally, the correlation functions F (~r, t; ~p1, ~p2) are difficult to handle. Therefore we follow
Boltzmann and assume ”molecular chaos”, i.e. the momenta of the particles are completely
uncorrelated. This leads to

F (~r, t; ~p1, ~p2) ≈ f(~r, ~p1, t)f(~r, ~p2, t) , (2.84)

from which follows the well-known Boltzmann form of the collision integral(
∂f

∂t

)
coll

=
∫

Υ
d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2)
{
f(~r, ~p′1, t)f(~r, ~p′2, t)− f(~r, ~p, t)f(~r, ~p2, t)

}
.

(2.85)
This equation (2.85) is known as the Boltzmann equation and is the analog to the previously
discussed master equation for a closed system.
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2.3.3 Collision conserved quantities

As mentioned above there are various quantities which are conserved in a two-particle colli-
sion: particle number, momentum and energy. We denote these quantities as ϕ(~p) and the
corresponding density as

ρϕ(~r, t) =
∫

Υ
d3p ϕ(~p)f(~r, ~p, t) (2.86)

with
ϕ(~p) = 1 particle number

ϕ(~p) = ~a · ~p momentum

ϕ(~p) =
~p2

2m
+ V (~r) energy ,

(2.87)

where ~a is an arbitrary constant vector. We now claim that for any collision-invariant quantity
ϕ(~p) the following relation holds:(

∂ρϕ

∂t

)
coll

=
∫

Υ
d3p ϕ(~p)

(
∂f

∂t

)
coll

= 0 . (2.88)

For the proof of this statement we use the symmetries of W (~p, ~p2; ~p′1, ~p
′
2). We can then write(

∂ρϕ

∂t

)
coll

=
∫

Υ
d3p d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2)

×1
4



ϕ(~p) {f(~r, ~p′1, t)f(~r, ~p′2, t)− f(~r, ~p, t)f(~r, ~p2, t)}+

ϕ(~p2) {f(~r, ~p′2, t)f(~r, ~p′1, t)− f(~r, ~p2, t)f(~r, ~p, t)}+

ϕ(~p′1) {f(~r, ~p, t)f(~r, ~p2, t)− f(~r, ~p′1, t)f(~r, ~p′2, t)}+

ϕ(~p′2) {f(~r, ~p2, t)f(~r, ~p, t)− f(~r, ~p′2, t)f(~r, ~p′1, t)}

=
∫

Υ
d3p d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2)

×1
4
{
ϕ(~p) + ϕ(~p2)− ϕ(~p′1)− ϕ(~p′2)

}︸ ︷︷ ︸
= 0

{
f(~r, ~p′1, t)f(~r, ~p′2, t)− f(~r, ~p, t)f(~r, ~p2, t)

}

= 0 .
(2.89)

2.3.4 Boltzmann’s H-theorem

For simplicity we now consider a homogeneous system without external forces. Then the dis-
tribution function does not depend on ~r. Thus, the Boltzmann equation is reduced to the
form,

∂f(~p, t)
∂t

=
(
∂f

∂t

)
coll

. (2.90)

We define the functional
H(t) = −

∫
Υ
d3p f(~p, t) ln f(~p, t) , (2.91)

33



whose time derivative is

dH(t)
dt

= −
∫
d3p

∂f(~p, t)
∂t

[1 + ln f(~p, t)] . (2.92)

The following theorem applies for H(t).

Boltzmann’s H-theorem: For f(~p, t) satisfying Boltzmann’s equation, generally the inequality

dH

dt
≥ 0 (2.93)

holds and the equal-sign applies, if the system is in equilibrium.
This theorem can be proven in an analogous way as in section 2.2.2 taking (2.90) and (2.92) to
write (under the assumption of molecular chaos).

dH

dt
= −

∫
Υ
d3p d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2)
{
f(~p′1, t)f(~p′2, t)− f(~p, t)f(~p2, t)

}
[1 + ln f(~p, t)] .

(2.94)
We introduce the short notation for f(~p1, t) = f1 etc.. Using the same trick as in (2.89) we can
rewrite this equation as

dH

dt
= −

∫
Υ
d3p d3p2 d

3p′1 d
3p′2 W (~p, ~p2; ~p′1, ~p

′
2) (f ′1f

′
2 − ff2)

[
ln(ff2)− ln(f ′1f

′
2)
]︸ ︷︷ ︸

≤0

≥ 0 . (2.95)

This statement is true under all choices of f . Moreover, dH/dt = 0 is only realized, if the
integrand is identical zero:

dH

dt
= 0 ⇔ f(~p, t)f(~p2, t) = f(~p′1, t)f(~p′2, t) (2.96)

where the collision process is (~p, ~p1) ↔ (~p′1, ~p
′
2). Under this condition f is not time-dependent

anymore and corresponds to the equilibrium situation. Any solution of the Boltzmann equation
describing the evolution of a system towards equilibrium satisfies the H-theorem.
Thus, as in the previous discussions based on the master equations, the Boltzmann equation
also describes a system with an apparently ”preferred” time direction. This seems again at
odds with the time reversal symmetry incorporated in the theory. This behavior relies again
on the trend of the system to spend most of the time in the macroscopic state with the largest
number of possible microscopic realizations. This discrimination of macroscopic states is better
the larger the system. From this point of view also Poincaré’s recurrence theorem, which states
that any mechanical system would after a certain time approach any phase space configuration
arbitrarily close to an initial configuration, would not be a real objection. However, in reality
for a macroscopically large number of particles the recurrence time is long and would in practice
exceed the age of the universe. Therefore, the H-theorem is not rigorously true for the real
system, as there are fluctuations. But a spectacular violation would in practice be highly unlikely.

2.4 Maxwell-Boltzmann-Distribution

2.4.1 Equilibrium distribution function

In section 2.2.1 we have derived the equilibrium distribution by searching the maximum of
the H-function under constraints such as conserved energy and number of degrees of freedom.
Here, we use the concept of collision-invariants. Since the equilibrium is indicated by the time-
invariance of H, we identify with a density ρϕ(t) in (2.86), such that ln f(~p) would correspond
to a collision-invariant quantity leading to dH/dt = 0. Thus we express ln f(~p) by collision-
invariants:

ln f0(~p) = A+ ~B · ~p− 1
θ
E . (2.97)
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Consider the situation without potential V (~r), where E = ~p2/2m. We rewrite

A+ ~B · ~p− 1
θ

~p2

2m
= A′ − 1

θ

(~p− ~p0)2

2m
= ln a− 1

θ

(~p− ~p0)2

2m
= ln f0(~p) . (2.98)

Thus we obtain
f0(~p) = ae−(~p−~p0)2/2mθ . (2.99)

The prefactor is determined by the condition

n =
N

V
=
∫
d3p f0(~p) = a

∫
d3p e−(~p−~p0)2/2mθ = a

∫
d3p′ e−~p′2/2mθ = a (2πmθ)3/2

⇒ a =
n

(2πmθ)3/2
,

(2.100)

where we assume that C < 0, since otherwise the integral would not converge. The mean
momentum 〈~p〉 can be determined as the average

〈~p〉 =
∫
d3p ~pf0(~p) = a

∫
d3p′(~p′ + ~p0)e−~p′2/2mθ = n~p0 . (2.101)

Thus, ~p0 represents a net drift of the particles which we can set to zero by a proper choice of
the reference frame. The energy is given by

〈E〉 =
〈
~p2

2m

〉
= a

∫
d3p

~p2

2m
e−~p2/2mθ =

3
2
nθ . (2.102)

We will see below that θ = kBT = 1/β identifying 〈E〉 as the internal energy of a dilute gas of
structureless particles: U

V = 〈E〉 = 3
2nkBT and

f0(~p) = n

(
β

2πm

)3/2

e−β~p2/2m . (2.103)

rms
p

ρ

p / p
m 

Fig. 2.5: Momentum distribution of an ideal gas in equilibrium. Maximal (pm) and
root-mean-square momentum (prms) are not identical.

Some quantities of interest are the most probable momentum p̄ and the mean square momentum.
In three-dimensional space the effective momentum distribution can be defined

ρ(p) = a~p2e−β~p2/2m ⇒ dρ(p)
dp

∣∣∣∣
p=pm

= 0 ⇒ pm =
√

2m
β

, (2.104)

if we write
〈g(p)〉 =

∫
dpρ(p)g(p) =

∫
d3pf0(~p)g(p) . (2.105)

On the other hand, the root mean square of the momentum, prms is defined by

p2
rms =

1
n

∫
d3p p2f0(p) =

3m
β

. (2.106)

Note that prms 6= pm.
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2.4.2 Relation to equilibrium thermodynamics - dilute gas

Let us find the connection to thermodynamics. First we define the pressure which is given by
the average force per area transfered to a wall. Let the z-axis be the normal direction on a
wall with specular reflection. A particle reflected at this wall reverses its momentum component
pz, loosing the momentum 2pz to the wall. The density of electrons being reflected with this
momentum per time unit is given by

pz

m
f0(~p)d3p , pz > 0 . (2.107)

Using 〈~p2〉 = 〈p2
z〉/3, we define the pressure as

P =
∫

pz>0
d3p 2pz

pz

m
f0(~p) =

∫
d3p pz

pz

m
f0(~p) =

2a
3

∫
d3p

p2

2m
e−

p2

2mθ =
2
3
〈E〉 = nθ , (2.108)

which is consistent with the dilute (ideal) gas, P = nkBT , if θ = kBT = 1/β. We now consider
the functional H at equilibrium,

H[f0] = −
∫
d3p f0(~p)

[
ln a− p2

2m
β

]
= β〈E〉 − n ln

[
n

(
β

2πm

)3/2
]
. (2.109)

A further step towards thermodynamics is now to identify H with the entropy, which is also
suggested by the H-theorem, reminding to Clausius’ inequality. The connection is given by

S = kBV H . (2.110)

We would like first to look at the variation of S for fixed N and V . Thus, we use the relation

β〈E〉 = β
U

V
=

3
2
N

V
and β =

3N
2U

. (2.111)

From this we obtain

S =
3
2
kBN lnU − kBN

[
ln
N

V
+

3
2

lnN − 3
2

]
+ const. . (2.112)

This expression is used to obtain,

1
T

=
(
∂S

∂U

)
V,N

=
3
2
kBN

U
⇒



β =
1

kBT

〈E〉 =
U

V
=

3
2
nkBT

P =
N

V
kBT .

(2.113)

Another relation is obtained by fixing N and U :

P

T
=
(
∂S

∂V

)
U,V

= kB
N

V
⇒ PV = NkBT , (2.114)

as already given above through the relation (2.108). This corresponds to the thermodynamic
equation of state of an ideal gas.
As mentioned the second law formulated as dS ≥ 0 is here equivalent to Boltzmann’s H-theorem:
dH/dt ≥ 0.
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2.4.3 Local equilibrium state

So far we have concentrated on the homogeneous situation. We extend our discussion to the case
where a conservative force ~F (~r) = −~∇V (~r) is present, originating from the potential V (~r). In
equilibrium the distribution function is not explicitly time-dependent and the collision integral
vanishes, leaving a reduced Boltzmann equation:

∂f

∂t
= 0 =

(
∂f

∂t

)
coll

⇒
(
~p

m
· ~∇r + ~F · ~∇p

)
f(~r, ~p) = 0 . (2.115)

This equation is easy to solve with a separation ansatz restricting all space dependence to the
particle density n(~r),

f0(~r, ~p) =
n(~r)

(2πmkBT )3/2
e
− p2

2mkBT with n(~r) = n0e
− V (~r)

kBT . (2.116)

Gas trapped in a harmonic potential: We assume that the potential has the form V (~r) = a|~r|2.
Hence the distribution function for the gas at given temperature T is given by

f0(~r, ~p) =
n0

(2πmkBT )3/2
e
− p2

2mkBT e
− ar2

kBT , (2.117)

with n0 the gas density at r = 0. For the density and the pressure we find,

n(r) = n0e
− ar2

kBT and P (r) = n(r)kBT = kBTn0e
− ar2

kBT . (2.118)

The total number of particles is given by

N =
∫
d3r n(r) = n0

(
πkBT

a

)3/2

⇒ n0(T ) = N

(
a

πkBT

)3/2

(2.119)

Interesting is also the internal energy

U = 〈E〉 = 〈 p
2

2m
+ ar2〉 =

∫
d3r

{
3
2
n(r)kBT + n(r)ar2

}
=

3
2
NkBT +

3
2
NkBT = 3NkBT

(2.120)
and the specific heat is given by C = dU/dT = 3NkB. The volume may be defined as

V =
〈

4π
3
r3
〉

=
4N
3
√
π

(
kBT

a

)3/2

, (2.121)

which yields a thermal expansion coefficient

α =
1
V

∂V

∂T
=

3
2T

. (2.122)

Obviously, C(T ) and α(T ) do not follow the third law of thermodynamics. The reason is that
we consider the gas within the framework of classical physics. To account for the third law we
need quantum mechanics.

2.5 Fermions and Bosons

So far we have restricted our view to classical particles following classical mechanics. If we
extend our discussion to quantum systems, gases of identical quantum particles, we have to deal
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with Fermions and Bosons. Also in this case it is possible to formulate the Boltzmann equation,
where the collision integral has to be modified in the following way:(

∂f

∂t

)
coll

=
∫
d3p1 d

3p′1d
3p′2 W

{
f(~r, ~p′1, t)f(~r, ~p′2, t)[1− f(~r, ~p, t)][1− f(~r, ~p1, t)]

− f(~r, ~p, t)f(~r, ~p1, t)[1− f(~r, ~p′1, t)][1− f(~r, ~p′2, t)]
} (2.123)

for Fermions where we have to include the probability that the target states after the collisions
are not occupied. For Bosons, in contrast ,we have the collision integral,(

∂f

∂t

)
coll

=
∫
d3p1 d

3p′1d
3p′2 W

{
f(~r, ~p′1, t)f(~r, ~p′2, t)[1 + f(~r, ~p, t)][1 + f(~r, ~p1, t)]

− f(~r, ~p, t)f(~r, ~p1, t)[1 + f(~r, ~p′1, t)][1 + f(~r, ~p′2, t)]
}
.

(2.124)

This form is often interpreted in the way that Bosons like to go where other Bosons are. The
H-function is also modified

H = −
∫
d3p {f(~r, ~p, t) ln f(~r, ~p, t) + (1− f(~r, ~p, t)) ln(1− f(~r, ~p, t))} Fermions

H = −
∫
d3p {f(~r, ~p, t) ln f(~r, ~p, t)− (1 + f(~r, ~p, t)) ln(1 + f(~r, ~p, t))} Bosons

(2.125)
Analogous to the classical case the equilibrium condition corresponds to dH/dt = 0. The H-
function takes again a maximum for the equilibrium distribution. We tackle this problem as we
did previously taking the conservation laws a conditions into account,

H[f ] → H[f ] + λ

{
N −

∫
d3rd3qf(~r, ~q)

}
+

1
θ

{
E −

∫
d3rd3pε~pf(~r, ~p)

}
(2.126)

We now maximize this functional with respect to f which we assume to be independent of ~r.
δH

δf(~p)
= ln

f(~p)
1∓ f(~p)

− λ−
ε~p
θ

= 0 (2.127)

This equation is quickly solved and leads for both the Fermions (upper sign) and the Bosons
(lower sign) to the well known distribution functions, if we identify θ = kBT and λ = −µ/kBT :

f(~p) =
1

e(ε~p−µ)/kBT + 1
Fermi-Dirac distribution

f(~p) =
1

e(ε~p−µ)/kBT − 1
Bose-Einstein distribution .

(2.128)

Note that for large energy E � µ both distributions approach the Maxwell-Boltzmann distri-
bution.

Boson

Fermion 
f

E / µ

Fig. 2.6: Bose-Einstein- and Fermi-Dirac-distribution at finite temperature.
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2.6 Transport properties

Although we have so far mainly concentrated on the equilibrium situation, the Boltzmann
equations have actually been formulated to discuss systems away from equilibrium. Such non-
equilibrium physics is particularly important in problems considering transport of matter, energy
or other quantities, where irreversible behavior is involved.

2.6.1 Relaxation time approximation

Boltzmann’s equation is complicated to solve in general as it represents a complex integro-
differential equation. Here we will consider one of the most simple and useful approximations
for the collision integral which leads to an easily tractable Boltzmann equation - the relaxation
time approximation.
First we analyze the average time between collisions. For this purpose we consider the rate for
a particle to suffer a collision,

Z =
2
n0

∫
d3p1 d

3p2 d
3p1

′ d3p2
′ W (~p1, ~p2; ~p′1, ~p

′
2)f(~r, ~p1, t)f(~r, ~p2, t)

=
2
n0

∫
d3p1 d

3p2 σ |~v1 − ~v2| f(~r, ~p1, t)f(~r, ~p2, t)

(2.129)

where σ is total cross section. To estimate Z we use the equilibrium distribution function,

f(~r, ~p1, t)f(~r, ~p2, t) = n2
0

(
β

2πm

)3

e−βm(~V 2+~u2/4) (2.130)

with ~V = 1
2(~v1 + ~v2) as center of mass velocity and ~u = ~v1 − ~v2 as relative velocity (d3v1d

3v2 =
d3V d3u). In this way we obtain

Z = 4n0σ

√
kBT

πm
=

2
√

2√
π
n0σv̄ =

1
τ

(2.131)

where we assumed that the cross section σ does not depend on the momenta and mv̄ = p̄ =√
2mkBT (2.104), corresponds to the most probable momentum. We may then define the mean

free path, the average distance for a particle between two collisions:

` = v̄τ =
√
π

8
1
n0σ

(2.132)

This discussion is valid if the system is not too far from equilibrium. Otherwise it is not
acceptable to use the Maxwell-Boltzmann distribution to estimate τ .

We now look at the collision integral assuming that the system deviates only slightly from
equilibrium. Thus the distribution function can be written as

f = f0 + g = f0(1 + φ) with φ� 1 . (2.133)

Inserting this into the Boltzmann equation leads to

D

Dt
f(~r, ~p, t) = f0

Dφ

Dt

= −f0(~r, ~p)
∫
d3p1 d

3p′1 d
3p′2W (~p, ~p1; ~p′1, ~p

′
2)f0(~r, ~p1)

×
{
φ(~r, ~p, t) + φ(~r, ~p1, t)− φ(~r, ~p′1, t)− φ(~r, ~p′2, t)

}︸ ︷︷ ︸
= ∆φ

(2.134)
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where we used the equilibrium condition f0(~r, ~p, t)f0(~r, ~p1, t) = f0(~r, ~p′1, t)f0(~r, ~p′2, t). This de-
fines a linear problem of the general form:

∂φ

∂t
= Lφ (2.135)

with the operator L defined through (2.134), where we assume moreover homogeneity and the
absence of external forces for simplicity. Taking now a separation ansatz: φ(~p, t) = a(t)b(~p) we
find the equations:

da

dt
= λa and Lb = λb ⇒ φ(~p, t) = eλtgλ(~p) . (2.136)

We introduce a scalar product,

(b1, b2) =
∫
d3pf0(~p)b1(~p)b2(~p) = (b2, b1) with (b, b) ≥ 0 . (2.137)

Using like earlier the symmetries of W (~p, ~p1; ~p′1, ~p
′
2) we find that

(b1,Lb2) = (Lb1, b2) ⇒ L : ”Hermitian” (2.138)

such that λ is real. In the same way we can show that for arbitrary b(~p),

(b,Lb) ≤ 0 , (2.139)

i.e. the eigenvalues λ are non-positive, such that the deviations from equilibrium generally decay
in time.
Still the linearized problem is a complicated problem. A dramatic simplification occurs with the
so-called relaxation time approximation:(

∂f

∂t

)
coll

= −f(~r, ~p, t)− f0(~r, ~p)
τ

= −g(~r, ~p, t)
τ

. (2.140)

In order to be appropriate for a collision integral we require∫
d3pϕ(~p)g(~r, ~p, t) = 0 (2.141)

for any collision invariant ϕ(~p). The resulting Boltzmann equation has then the form

Df0

Dt
≈ −g

τ
(2.142)

to linear order in τ which we consider as a small parameter to expand in,

g = τg1 + τ2g2 + · · · (2.143)

where we only will keep the lowest order.

2.7 Electrical conductivity of an electron gas

We address now a topic of solid state, the electrical conductivity of electrons in the presence of a
voltage, i.e. an electrical field ~E. For this purpose we consider the steady state of electron motion
driven by a uniform electrical field, using the relaxation time approximation. The corresponding
Boltzmann equation reads,

− e ~E · ~∇pf(~p) = −f(~p)− f0(~p)
τ

= −g(~p)
τ

. (2.144)
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This equation is easily solved to lowest order in τ :

g(~p) = τe ~E · ~∇pf0(~p) , (2.145)

and allows us to calculate the (uniform) electrical current

~j = −e
∫
d3p ~vf(~p) = −e

∫
d3p ~vg(~p) = −e2

∫
d3p τ~v

(
~E · ~∇pf0(~p)

)
. (2.146)

Note that we use
∫
d3p ~p f0 = 0. Now we use the relation

~∇pf0 = ~∇pε(~p)
∂f0

∂ε
= ~v

∂f0

∂ε
. (2.147)

where we use for the clarity of the notation for the energy ε(~p) = ~p2/2m. If the system is
isotropic, ~j ‖ ~E such that

j = −e2τE
∫
d3p

v2

3
∂f0(ε)
∂ε

= σE . (2.148)

Electrons as classical particles: We take for f0 the Maxwell-Boltzmann-distribution

f0(ε) = n

(
β

2πm

)3/2

e−βε ⇒ ∂f0

∂ε
= −βf0(ε) . (2.149)

Thus we find

σ =
2e2τ

3mkBT

∫
d3p

~p2

2m
f0(ε)︸ ︷︷ ︸

=〈E〉= 3
2
nkBT

=
ne2τ

m
. (2.150)

This corresponds to the famous Drude conductivity. We used here the approximation that τ is
not momentum or energy dependent. This assumption does not generally hold.

Electrons as Fermions: In reality electrons are Fermion and we should use the Fermi-Dirac dis-
tribution for the equilibrium:

f0(ε) =
2
h3

1
eβ(ε−µ) + 1

⇒ ∂f0(ε)
∂ε

=
1

2h3kBT cosh2[β(ε− µ)/2]
(2.151)

where h is the Planck constant.2 Note that this function is concentrated around the Fermi
2Integrals for the Fermi-Dirac distribution: Free electrons are described by plane wave functions

ψ~k(~r) =
1√
V
ei~k·~r with ~p = ~~k and ε =

~p2

2m
=

~2~k2

2m
(2.152)

Via periodic boundary conditions in a cube of edge length L we quantize the wavevector ~k:

ψ~k(x, y, z) = ψ~k(x+ L, y, z) = ψ~k(x, y + L, z) = ψ~k(x, y, z + L) ⇒ ~k =
2π

L
(nx, ny, nz) =

2π

L
~n (2.153)

with nx,y,z = 0,±1,±2, . . .. Summing up the states to the Fermi energy means then summing over all occupied
states with quantum numbers ~n. The total number of particles is given by

N =

occ.X
~n

2 = 2
L3

(2π)3

Z
|~k|≤kF

d3k =
2V

(2π)3
4π

3
k3

F ⇒ kF = {3π2n}1/3 (2.154)

with n = N/V = N/L3 and the factor 2 is due to the two spin states of the electrons. From this point of view
the normalization of the Fermi-Dirac distribution is given by the condition

f0(ε) = 2
1

h3

1

eβ(ε−µ) + 1
⇒ n =

Z
d3pf0(ε(~p)) = 4π

Z
dp p2f0(ε) = 4π

√
2m3

Z
dεε1/2 f0(ε) (2.155)

with h = 2π~. It is usual to introduce here the density of states g(ε),

n =

Z
dε g(ε)f0(ε) with g(ε) =

1

4π2

„
2m

~2

«3/2

ε1/2 . (2.156)
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energy (chemical potential) at low temperatures (kBT � µ). Then we calculate the current

j = −e2τE
∫
d3p

2
3m

ε
∂f0

∂ε
= −e2τE 2

3m
4π
√

2m3

∫
dε ε3/2∂f0

∂ε
=
ne2τ

m
E . (2.157)

This yields the same expression for the conductivity as in the classical case: the Drude conduc-
tivity. The condition on τ is less stringent. τ essentially needs to be constant around the Fermi
energy, since the first integrand in (2.157) is concentrated on the Fermi surface (Fig. 2.7).
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Fig. 2.7: Schematic picture of the changed momentum distribution functions in the steady
state of electrons in an electric field. Left panel: equilibrium Fermi sea f0(~p); middle panel:
change of the distribution g(~p); right panel: sum f = f0 + g leads to a Fermi distribution

shifted by a momentum ~q ∝ ~E .
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Chapter 3

Classical statistical mechanics

Statistical physics deals with the equilibrium properties of matter and provides the microscopic
understanding and basis for thermodynamics. Unlike the kinetic Boltzmann theory of the pre-
vious chapter the present chapter does not consider non-equilibrium situations and develops a
new practical approach to equilibrium state of macroscopic systems. Time is not a variable
anymore and measurements which may be considered as time averages of certain quantities, are
translated as averages over a large ensemble of identical systems in different possible microscopic
states under the same external parameters.

3.1 Gibbsian concept of ensembles

We consider the state of a gas of N classical particles, given by 3N canonical coordinates
q1, . . . , q3N and by the corresponding 3N conjugate momenta p1, . . . , p3N . These define a 6N -
dimensional space Γ, where each point in Γ represents a state of the microscopic system. Con-
sidering the whole system of N particles under certain macroscopic conditions, given external
parameter such as temperature, pressure, volume, internal energy, .... , we find that an infi-
nite number of states in Γ are compatible with the same external condition, and would not be
distinguishable by macroscopic measurements.

ensemble

[p]

[q]
Γ

t=0

t>0

time evolution

Fig. 3.1: Time averages are replaced by averages over an ensemble of systems in different
microscopic states, but with the same macroscopic conditions.

If we would like to calculate a certain macroscopic quantity we could perform temporal average
of the microscopic variables over a very long evolution time. Based on the states in Γ this
is, however, not a practical method as it involves the discussion of the temporal evolution.
Gibbs introduced the concept of ensembles to circumvent this problem. Taking a large (infinite)
number of systems under identical macroscopic conditions, we can find macroscopic quantities
by averaging over an ensemble of states. That this scheme is equivalent to a temporal average
is a hypothesis, as it is assumed that the time evolution of the system would lead to all possible
states also represented in the ensemble. This is the so-called ergodicity hypothesis.1 The set of

1Ergodicity hypothesis: We consider the supspace defined by H(p, q) = E in Γ. Due to energy conservation a
point in this subspace, evolving in time, does not leave this subspace. The ergodicity hypothesis states, that a
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states for given macroscopic parameters is then represented by a distribution of points in the
space Γ. This distribution is generally continuous for a gas of particles.
For the calculation of averages we introduce the density function ρ(p, q) providing the measure
of the density of points in Γ-space ((p, q) stands for the whole state (p1, . . . , p3N ; q1, . . . q3N ).
Then

ρ(p, q)d3Npd3Nq (3.1)

gives the number of representative points contained in the small volume d3Npd3Nq in Γ, very
analogous to the distribution function in Boltzmann theory. This can now be used to calculate
averages of any desired quantity which can be expressed in the variable (p, q), A(p, q):

〈A〉 =
∫
dpdqA(p, q)ρ(p.q)∫

dpdqρ(p.q)
. (3.2)

We will use from now on the short notation dpdq for d3Npd3Nq where it is not misleading.

3.1.1 The Liouville Theorem

The dynamics of the system of N particles shall be described by a Hamiltonian H(p, q) which
yields the equation of motion in the Hamiltonian formulation of classical mechanics.

ṗi = −∂H
∂qi

and q̇i =
∂H
∂pi

(i = 1, . . . , 3N) . (3.3)

This equation describes the motion of the points in Γ. If H does not depend on time derivatives
of pi and/or qi, then the equations of motion are time reversal invariant. They determine the
evolution of any point in Γ uniquely.
Now let us consider the points in the Γ space and note that their number does not change in
time, as if they form a fluid. Thus, they satisfy the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 . (3.4)

where ~v = (ṗ1, . . . , ṗ3N ; q̇1, . . . , q̇3N ) and ~∇ = (∂/∂p1, . . . , ∂/∂p3N ; ∂/∂q1, . . . , ∂/∂q3N ). Intro-
ducing the generalized substantial derivative we can rewrite this equation as

Dρ

Dt
+ ρ~∇ · ~v = 0 . (3.5)

The divergence of the ”velocity” ~v is

~∇ · ~v =
3N∑
i=1

{
∂q̇i
∂qi

+
∂ṗi

∂pi

}
=

3N∑
i=1

{
∂

∂qi

∂H
∂pi

− ∂

∂pi

∂H
∂qi

}
︸ ︷︷ ︸

= 0

= 0 (3.6)

This means that the points in Γ space evolve like an incompressible fluid. This property is
known as Liouville’s theorem. We may write this also in the form

0 =
Dρ

Dt
=
∂ρ

∂t
+

3N∑
i=1

{
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

}
=
∂ρ

∂t
+

3N∑
i=1

{
∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi

}
. (3.7)

point on H = E can reach in its temporal evolution every point of this subspace (Boltzmann, 1887). This is not
rigorously valid, however. Ehrenfest’s version of this hypothesis (1911) states: The trajectory of a point comes
any other point in the same subspace arbitrarily close in the course of time. Of course, it is possible to find
(singular) counter examples, for which only a tiny fraction of the subspace is accessed.
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Using Poisson brackets2 this equation reads,

∂ρ

∂t
= {H, ρ} . (3.9)

3.1.2 Equilibrium system

A satisfactory representation of a system in equilibrium requires for an ensemble that the density
function does not depend on time t, i.e. ∂ρ/∂t = 0. From Liouville’s theorem we get the
condition that

0 =
3N∑
i=1

{
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

}
= ~v · ~∇ρ = {H, ρ} . (3.10)

A general way to satisfy this is to take a density function which depends only on quantities
conserved during the motion, such as energy or particle number. Then the system would evolve
within a subspace where ρ is constant.
We may use this feature of ρ now to consider averages of certain quantities, based on the above
mentioned equivalence between the temporal and ensemble averages. Defining the temporal
average of A(p, q) as

〈A〉 = lim
T→∞

1
T

∫ T

0
A(p(t), q(t))dt (3.11)

for any starting point ((p(t = 0), q(t = 0)) in the space Γ and (p(t), q(t)) obeying the equation
of motion (3.3). The hypothesis of ergodicity, even in its restricted sense, implies that this
average can be taken as an average of an ensemble of an infinite number of different microscopic
states (points in Γ-space). As the evolution of (p, q) conserves the energy, this leads naturally
to consider an ensemble of states of a fixed energy (internal energy). We call such ensembles
microcanonical. Although the microcanonical ensemble is not so frequently used in practice
than other ensembles which we will consider later, it is very useful for illustrative purposes. It
describes an isolated closed system with no energy exchange with the environment.
We postulate that in equilibrium any state of a macroscopic system satisfying the the external
conditions appears with equal probability. This is in line with our experience of detailed balance
in the previous chapter. In our microcanonical description with fixed energy, number of particles
N and volume V , we postulate

ρ(p, q) =


const. E ≤ H(p, q) ≤ E + δE

0 otherwise
(3.12)

where δE is small. The average value of A is then given by (3.2). The validity of this approach
is based on the assumption of small mean square fluctuations (standard deviations)

〈{A− 〈A〉}2〉
〈A〉2

� 1 . (3.13)

Such fluctuations should be suppressed by the order N−1 as we will see below.
2The Poisson bracket is defined as

{u, v} =
X

i


∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

ff
= −{v, u} . (3.8)
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3.2 Microcanonical ensemble

We consider a macroscopic system of N particles in a volume V which is isolated and closed.
The microcanonical ensemble for a given energy E consists of all systems of this kind, whose
energy lies in the range [E,E + δE]. First we define the phase volume

Φ(E) =
∫
H(p,q)≤E

dpdq , (3.14)

which contains all point in Γ space with energy lower than or equal to E. From this we obtain
the volume of the microcanonical ensemble as

ω(E) = Φ(E + δE)− Φ(E) =
dΦ(E)
dE

δE . (3.15)

Thus we now can renormalize ρ(p, q) with the condition,

1 =
∫
dp dq ρ(p, q) =

1
ω(E)

∫
E≤H(p,q)≤E+δE

dp dq (3.16)

such that

ρ(p, q) =


1

ω(E)
E ≤ H(p, q) ≤ E + δE

0 otherwise

. (3.17)

As postulated ρ(p, q) is constant in the energy range [E,E + δE].

3.2.1 Entropy

We use ω(E) to define the entropy

S(E, V,N) = kB lnω(E) (3.18)

This agrees very well with our earlier definition based on the H-function in Eq.(2.14), S =
kB lnW where W is the number of configurations for given macroscopic distributions of mi-
crostates. Analogously this definition satisfies the general properties of the entropy as we intro-
duced them earlier. As earlier we can consider ω(E) or S as a measure of the imprecision of our
knowledge of the state of the system. The more states are available in microcanonical ensemble,
the less we know in which state the system is at a given time and the larger is the volume ω and
the entropy.
We consider a composite system consisting of two subsystems

H(p, q) = H1(p1, q1) +H2(p2, q2) , (3.19)

with (N1, V1) and (N2, V2), resp., for the corresponding particle number and volume. Each of
the two systems is characterized by ω1(E1) and ω2(E2), respectively. The volume ω(E) of the
microcanonical ensemble is the product of the subsystems under the conditions

E = E1 + E2 , N = N1 +N2 and V = V1 + V2; . (3.20)

As the individual values (E1, N1, V1), (E2, N2, V2) can fluctuate, we find

ω(E) =
∑

0≤E′≤E

ω1(E′) ω2(E − E′) (3.21)
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where we assume a ”discrete” mesh of equally spaced E′-values of mesh spacing δE (� E). We
claim that this sum is approximated well by a single value E′

0 giving rise to a sharp maximum
among the summands; (E1 = E′

0 and E2 = E − E′
0).

3 The largest term is obtained by

∂ω1(E′) ω2(E − E′)
∂E′

∣∣∣∣
E′=E′

0

= 0 (3.24)

such that

0 =
{

1
ω1(E′)

∂ω1(E′)
∂E′ +

1
ω2(E − E′)

∂ω2(E − E′)
∂E′

}
E′=E′

0

=
∂ lnω1(E1)

∂E1

∣∣∣∣
E1=E′

0

− ∂ lnω2(E2)
∂E2

∣∣∣∣
E2=E−E′

0

.

(3.25)

From this we obtain with Ē1 = E′
0 and Ē2 = E − E′

0

∂S1(E1)
∂E1

∣∣∣∣
E1=Ē1

=
∂S2(E2)
∂E1

∣∣∣∣
E2=Ē2

(3.26)

which can be considered as the equilibrium condition. Note that this is equivalent to the state-
ment that the equilibrium state corresponds to the macrostate with the largest number of mi-
croscopic realizations.

Identifying E as the internal energy U we define the temperature

∂S

∂U
=

1
T

⇒ 1
T1

=
1
T2

, (3.27)

leading to T as an equilibrium state variable. We have ignored the other variables V,N which
we will consider later.
Let us assume that there is some impediment which forces the two subsystems to specific vari-
ables such that each subsystem independently is at equilibrium, but not the total system. For
example, a big vessel of gas may be separated by a wall into two subvessels. Then we find for
the corresponding ω of the combined system,

ω̃(E, V,N) = ω1(E1, V1, N1)ω2(E2, V2, N2) with


E = E1 + E2

V = V1 + V2

N = N1 +N2

(3.28)

such that the entropy

S̃(E, V,N) = S1(E1, V1, N1) + S2(E2, V2, N2) ≤ S(E, V,N) , (3.29)

i.e. the entropy is concave. This means also the equilibrium is obtained by the maximal entropy,
which is a consequence of the second law of thermodynamics. In terms of the volume of the
microcanonical volume ω the equilibrium state assumes among all volumes the maximal one,
the most likely one in terms of probability.

3Note that lnωi ∝ Ni and Ei ∝ Ni (i = 1, 2) as both quantities are extensive. We then find quickly the
following bounds:

ω1(E
′
0)ω2(E − E′

0) ≤ ω(E) ≤ E

δE
ω1(E

′
0)ω2(E − E′

0) . (3.22)

Note that E/δE is the number of summands. Thus, we obtain for the entropy

kB lnω1(E
′
0)ω2(E − E′

0) ≤ S(E) ≤ kB lnω1(E
′
0)ω2(E − E′

0) + kB ln
E

δE
. (3.23)

It is important to see that the last term only scales with system size as lnN (keeping δE fixed), while the first
term scales with N . Therefore in the very large-N limit the last term is irrelevant. Which proves that S(E) is
given by the maximal term in the sum (3.21).
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3.2.2 Relation to thermodynamics

We have with (3.18) a definition of the entropy analogous to the expression of H in (2.109,2.110)
which for the variables E(= U), V andN is a thermodynamic potential and allows us to calculate
a variety of state variables and relations,

dS =
(
∂S

∂E

)
V,N

dE +
(
∂S

∂V

)
E,N

dV +
(
∂S

∂N

)
E,V

dN =
1
T
dE +

p

T
dV − µ

T
dN . (3.30)

This allows also to calculate the equation of state,

p = T

(
∂S

∂V

)
E,N

(3.31)

and to determine other thermodynamic potentials.
The derivative with respect to N yields finally the chemical potential

µ = −T
(
∂S

∂N

)
E,V

, (3.32)

the energy to add a particle to the system.

3.3 Discussion of ideal systems

3.3.1 Classical ideal gas

We consider a classical gas of N independent mono-atomic particles in the fixed volume V ,
which is closed and isolated. The Hamiltonian is simply given by

H(p, q) = H(p) =
N∑

i=1

~p2
i

2m
. (3.33)

Hence we obtain the volume

Φ(E) =
∫
H(p)≤E

dpdq = V N

∫
H(p)≤E

dp (3.34)

This p-integral corresponds to the volume of a sphere of Radius R in 3N -dimensional space.4

The integral is straightforward,

Φ(E) = V NC3N (2mE)3N/2 with Cn =
πn/2

Γ
(

n
2 + 1

) (3.37)

4Volume of sphere in ν-dimensional space: V(R) = CRν . The volume enclosed in a thin shell of width δR at
the Radius R is given by

vshell = V(R)− V(R− δR) = CRν

»
1−

„
1− δR

R

«ν–
(3.35)

with δR� R. In the limit ν very large, νδR� R, we find

vshell ≈ V(R) . (3.36)

Thus, the main part of the volume in the sphere is concentrated at the outermost shell.
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where C3N is the proper prefactor for the volume of an 3N -dimensional sphere.5 This leads to

ω(E) =
∂Φ(E)
∂E

δE = C3NV
N 3N

2
(2mE)3N/2−1 δE . (3.40)

Remarkably, for very large N (∼ 1023) we find that the following definitions for the entropy are
identical up to terms of order lnN and constants:

Sω = kB lnω(E, V,N) and SΦ = kB lnΦ(E, V,N) (3.41)

leading to

Sω = kB ln(V NC3N ) + kB

(
3N
2
− 1
)

ln(2mE) + kB ln
(

3N
2
δE

)

= kB ln(V NC3N ) + kB
3N
2

ln(2mE) +O(lnN) ≈ SΦ +O(lnN) .

(3.42)

Since we can drop terms of order lnN for the extensive entropy, we will continue, for convenience,
using SΦ instead of Sω,

S(E, V,N) = NkB ln
{
V (2mπE)3/2

}
− 3N

2
kB ln

3N
2

+
3N
2
kB (3.43)

where we used Stirling’s formula

lnn! ≈ n lnn− n+
1
2

ln(2πn) for n→∞ , (3.44)

and neglected all terms of order lnN . We then rewrite

S(E, V,N) = NkB ln

{
V

(
4πmE

3N

)3/2
}

+
3
2
NkB . (3.45)

This equation may now be solved for E so that we obtain the internal energy as a thermodynamic
potential

U(S, V,N) = E =
3N

4πmV 2/3
exp

{
2S

3NkB
− 1
}
. (3.46)

The thermodynamic quantities are obtained by derivation: the temperature

T =
(
∂U

∂S

)
V,N

=
2U

3NkB
⇒ U =

3
2
NkBT , (3.47)

the pressure

p = −
(
∂U

∂V

)
S,N

=
2
3
U

V
=
NkBT

V
⇒ pV = NkBT (3.48)

and the chemical potential

µ = −
(
∂U

∂N

)
S,V

= −U
N

(
1− 2

3
S

NkB

)
= kBT ln

{
V (2πmkBT )3/2

}
. (3.49)

Through further derivatives it is possible to obtain various response functions, as previously
discussed in chapter 1. The ideal gas is readily described by means of the microcanonical
ensemble.

5Prefactor Cn: Use the n-dimensional Gaussian integral in Cartesian coordinates

I =

Z +∞

−∞
dx1 · · ·

Z +∞

−∞
dxne

−(x2
1+···+x2

n) =

„Z +∞

−∞
dxe−x2

«n

= πn/2 . (3.38)

The same integral in spherical coordinates is given by

I = nCn

Z ∞

0

drrn−1e−r2
=
n

2
Cn

Z ∞

0

dt t
n
2 −1e−t =

n

2
CnΓ

“n
2

”
= CnΓ

“n
2

+ 1
”

(3.39)

such that we obtain Cn given in (3.37). Note, Γ(n+ 1) = n! for n ≥ 0 as an integer.
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3.3.2 Ideal paramagnet

Consider a system of N independent magnetic moments. Each moment has only two directions
+m and −m (Ising moments: two-state units). Now apply a magnetic field H in which these
moments are either parallel or antiparallel, as described by the Hamiltonian

H(mi) = −
N∑

i=1

Hmi with mi = ±m , (3.50)

so that the two states have different energy. In contrast to the gas these degrees of freedom are
discrete. We determine now the volume ω(E) in the space of (m1, . . . ,mN ). For this purpose
we define the magnetization of the systems as

M =
∑

i

mi = nm ⇒ H(mi) = −HM = −Hnm . (3.51)

Fixed energy means a fixed number n, i.e. 1
2(N + n) moments are positively and 1

2(N − n)
negatively oriented (H > 0). The number of configuration with fixed n are then given by

ω(M) =
N ![

1
2(N + n)

]
!
[

1
2(N − n)

]
!
. (3.52)

We can define the probability for the magnetization M by dividing ω(M) with the total number
of configurations, 2N . Let us now evaluate lnω using Stirling’s formula,

lnω(M) = N lnN −N +
1
2

ln(2πN)− N

2

(
1 +

n

N

)
ln
N

2

(
1 +

n

N

)
−N

2

(
1− n

N

)
ln
N

2

(
1− n

N

)
+
N

2

(
1 +

n

N

)
+
N

2

(
1− n

N

)
−1

2
ln
{
π2N2

(
1− n2

N2

)}
.

(3.53)

Neglecting terms of order lnN we obtain

lnω(M) = −N
2

{(
1 +

n

N

)
ln
(
1 +

n

N

)
+
(
1− n

N

)
ln
(
1− n

N

)}
+N ln 2 , (3.54)

which can be used to express the entropy,

S(E,H) = kB lnω(E,H)

= NkB ln 2− NkB

2

{(
1 +

E

HmN

)
ln
(

1 +
E

HmN

)
+
(

1− E

HmN

)
ln
(

1− E

HmN

)}
(3.55)

with E = −nHm and introducing H as external parameter (state variable). From this we obtain

1
T

=
(
∂S

∂E

)
H

= − kB

2Hm
ln
(
HmN + E

HmN − E

)

⇒ E(T,H) = U(T,H) = −NHm tanh
(
Hm

kBT

)
.

(3.56)

Using the following differential we determine the magnetization

dS =
1
T
dU +

M

T
dH − µ

T
dN

⇒ M = T

(
∂S

∂H

)
E

=
kBTE

H2m
ln
(
HmN + E

HmN − E

)
= −E

H
= Nm tanh

(
Hm

kBT

)
.

(3.57)
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This is the thermodynamic equation of state of this system. In the limit Hm � kBT we find
the so-called Curie-type behavior of independent magnetic moments,

M = N
Hm2

kBT
(3.58)

and in the opposite limit the magnetization tends to saturate,

M = Nm
(
1− 2e−2Hm/kBT

)
. (3.59)

The specific heat is given by

CN =
(
∂E

∂T

)
H,N

=
N(Hm)2

kBT 2
cosh−2

(
Hm

kBT

)
. (3.60)

A further response function is the differential magnetic susceptibility at finite magnetic field H,

χ′(T ) =
(
∂M

∂H

)
=
Nm2

kBT
cosh−2

(
Hm

kBT

)
(3.61)

which corresponds to the ”linear response”. For the limit of H → 0 we obtain,

χ(T ) =
Nm2

kBT
, (3.62)

corresponding to the famous Curie-susceptibility of independent magnetic moments.

χ’

k  T / Hm

NC

B

Fig. 3.2: Specific heat and differential susceptibility (magnitude in arbitrary units): Both
quantities show a maximum around mH ∼ kBT . At low temperature both are exponentially
suppressed ∼ T−αe−2Hm/kBT , which is indicating a freezing of the degrees of freedom, i.e. at

T = 0 all magnetic moments are pointing in the same direction.

3.4 Canonical ensemble

We change to a macroscopic system for which we control the temperature by connecting it to a
very large heat reservoir. The system together with the reservoir forms a closed system of given
total energy. Therefore we consider two subsystems, system 1 describing our system and system
2 being the heat reservoir:

H(p, q) = H1(p1, q1) +H2(p2, q2) . (3.63)
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The heat reservoir is much larger than system 1: N2 � N1, such that energy transfer between
the two subsystems would be too small to change the temperature of the reservoir. Within
the microcanonical scheme we determine the phase space of the combined system in the energy
range

E ≤ E1 + E2 ≤ E + δE . (3.64)

E  , S   , T

11

2 2

E  , S   , T

Fig. 3.3: The two systems 1 and 2 are coupled thermally. System 2 acts as a huge reservoir
fixing the temperature of the system 1 which we want to investigate.

Therefore the volume of the microcanonical ensemble of the total system is

ω(E) =
∑

0≤E1≤E

ω1(E1)ω2(E − E1) (3.65)

Analogous to our previous discussion in section 3.2.1, there is one value Ē1 = E′
0 (Ē2 = E−E′

0)
which provides the by far dominant contribution. In addition here Ē2 � Ē1 is valid. The
corresponding volumes in Γ-space are ω1(Ē1) and ω2(Ē2) and ω(E) ≈ ω1(Ē1)ω2(E − Ē1). Due
to this simple product form we can determine the density function ρ(p1, q1) of the system 1 by
the integral (integrating over the degrees of freedom of system 2),

ρ(p1, q1) =
∫

Ē2≤H2(p2,q2)≤Ē2+δE
dp2dq2ρ(p, q) ∝ ω2(E − Ē1) (3.66)

where we take advantage of the fact the ρ(p, q) is constant within the energy range E ≤ E1+E2 ≤
E + δE, such that the integral is indeed proportional to the volume of the microcanonical
ensemble of the subsystem 2 (reservoir). Using the assumption that Ē2 ≈ E � Ē1 we may
expand in Ē1:

kB lnω2(E − Ē1) = S2(E − Ē1) = S2(E)− Ē1
∂S2(Ē2)
∂E2

∣∣∣∣
Ē2=E

+ · · · = S2(E)− Ē1

T
+ · · · (3.67)

from which we derive
ω2(E − Ē1) = eS2(E)/kBe−Ē1/kBT . (3.68)

Here T is the temperature of both systems which are in equilibrium. Therefore we identify the
probability ρ(p1, q1) for the small subsystem as

ρ(p1, q1) =
1
Z
e−H1(p1,q1)/kBT . (3.69)

where we introduced the partition function Z

Z =
∫
dp1 dq1e

−βH1(p1,q1) with β =
1

kBT
, (3.70)

which, up to prefactors, corresponds to the volume of the ensemble of system 1, called canonical
ensemble.6

6Note that there is, rigorously speaking, the constraint E1 < E. However, in the approximation ignoring this
constraint is good enough, as the main contribution is from the valid range.
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3.4.1 Thermodynamics

The connection to thermodynamics is given by the relation

Z = e−βF (T,V,N) , (3.71)

where F (T, V,N) is the Helmholtz free energy, a thermodynamical potential. Note, F is an
extensive quantity, because obviously scaling the system by a factor λ would yield Zλ. Moreover,

F = U − TS (3.72)

with

U = 〈H〉 and S = −
(
∂F

∂T

)
V,N

. (3.73)

This can be proven using the equation,

1 =
∫
dp dqeβ(F−H) , (3.74)

which through differentiation with respect to β on both sides gives,

0 =
∫
dp dqeβ(F−H)

{
F + β

(
∂F

∂β

)
V,N

−H

}

⇒ F (T, V,N)− U(T, V,N)− T

(
∂F

∂T

)
V,N

= 0 .

(3.75)

Using this formulation for the free energy we obtain for the pressure

p = −
(
∂F

∂V

)
T,N

. (3.76)

which in the case of a gas leads to the thermodynamic equation of state.
The internal energy is obtained easily from the partition function in the following way:

U(T, V,N) = 〈H〉 =
1
Z

∫
dp dq He−βH = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ . (3.77)

This is the caloric equation of state.

3.4.2 Equipartition law

We now consider a set of special average values which will lead us to the so-called equipartition
law, the equal distribution of energy on equivalent degrees of freedom. We examine the mean
value, 〈

qi
∂H
∂qj

〉
=

1
Z

∫
dp dqqi

∂H
∂qj

e−βH = − 1
Zβ

∫
dp dqqi

∂

∂qj
e−βH

= − 1
Zβ

∫ ′
dp d′q qie

−βH︸ ︷︷ ︸
= 0

+
δij
Zβ

∫
dpdqe−βH = δijkBT ,

(3.78)

where we used integration by parts leading to the boundary terms in the qj-coordinate (expressed
by
∫ ′
d′q...), which we assume to vanish. Analogously we find for the momentum〈

pi
∂H
∂pj

〉
= δijkBT . (3.79)
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If the Hamiltonian is separable into a p-dependent kinetic energy and a q-dependent potential
energy part and, moreover, if the following scaling behavior is valid

H(p, q) = Ekin(p) + V (q) with Ekin(λp) = λ2Ekin(p) and V (λq) = λαV (q) (3.80)

then we can use the above relations and find for mono-atomic particles

〈Ekin〉 =
3N
2
kBT and 〈V 〉 =

3N
α
kBT . (3.81)

The total energy is given by the sum of the two contributions.

Diatomic molecules: An interesting aspect appears in the case of multi-atomic molecules, as such
they have internal degrees of freedom and a binding potential. We consider here a system of
N atoms forming diatomic molecules. Molecules form due to a binding two-particle interaction:
V (q) =

∑
i<j Vij(q) with Vij(q) = v(|~qi − ~qj |). A good approximation for the binding potential

is the Lenard-Jones potential composed of an attractive and a ”hard-core” repulsive part,

v(r) = 4ε

{(
r̃

r

)12

−
(
r̃

r

)6
}
, (3.82)

with ε as the potential depth and r0 = 21/6r̃ as the minimal point (Fig. 3.4). Around the
minimum the potential can be approximated up to a constant by a harmonic potential,

v(r) ≈ A(r − r0)2 with A = 36ε/21/3r̃2 . (3.83)

V

−6

r −12

harmonic

r

r

Fig. 3.4: Lenard-Jones potential.

The part of the potential energy is obtained from the following partition function of the molecule
(for ε� kBT ):

Zv =
∫
d3re−βv(r) = 4π

∫ ∞

0
dr r2e−βA(r−r0)2 ≈ 4πr20

∫ +∞

−∞
dy e−Ay2

= 4πr20

√
π

Aβ
, (3.84)

which then yields,

〈v〉 = − ∂

∂β
lnZv =

kBT

2
(3.85)

Together with the kinetic energy part we obtain

U = 〈Ekin〉+ 〈V 〉 =
3N
2
kBT +

N

2
〈v〉 ≈ 7N

4
kBT =

N

2

5
2
kBT + kBT︸︷︷︸

harmonic oscillator

 . (3.86)
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This result is interesting in the following sense. The specific heat of the dissociated molecules
at high temperature is lower than the one of the diatomic molecule, although there are more
independent particles at high temperature:

CV

N
=

1
N

(
∂U

∂T

)
V,N

=


3kB

2
kBT � ε

7kB

4
kBT � ε

. (3.87)

This result is independent of the sharpness of the harmonic potential. However, if we turn
to the limit of the rigid molecular bond, i.e. no harmonic potential (or infinitely sharp), then
the situation changes. The motion of the two atoms is constraint by the rigidity condition:
(~pi − ~pj) · (~qi − ~qj) = 0. Then the internal energy is given by

U =
5N
4
kBT ⇒ CV

N
=

5kB

4
. (3.88)

The change to this value is singular within classical statistical mechanics. Only quantum me-
chanics is able to describe the ”freezing out” of the vibrational degree of freedom. In fact within
the quantum mechanical description we find even a further lowering when the rotational degrees
of freedom freeze out such that eventually U = 3kBT/4. Further temperature lowering then
requires to consider the system as a quantum liquid of Bosons or Fermions.

3.4.3 Fluctuation of the energy and the equivalence of microcanonial and
canonical ensembles

The internal energy is given as the average of the Hamiltonian U = 〈H〉. Therefore the following
relation holds: ∫

dp dq [U −H] eβ(F−H) = 0 . (3.89)

Taking the derivative of this equation with respect to β we obtain

0 =
∂U

∂β
+
∫
dp dq (U −H)

[
F − T

∂F

∂T
−H

]
eβ(F−H) =

∂U

∂β
+ 〈(U −H)2〉 . (3.90)

This leads to the relation for the fluctuations of the energy around its average value U ,

〈H2〉 − 〈H〉2 = 〈(U −H)2〉 = −∂U
∂β

= kBT
2∂U

∂T
= kBT

2CV , (3.91)

as we had seen in section 2.2.3. Because CV is an extensive quantity and therefore proportional
to N , it follows that

〈H2〉 − 〈H〉2

〈H〉2
∝ 1
N

(3.92)

which is a sign of the equivalence of microcanonical and canonical ensembles. In the thermody-
namic limit N →∞ the fluctuations of the energy vanish compared to the energy itself.

We now consider the partition function

Z =
∫
dp dq e−βH(p,q) =

∫ ∞

0
dE ω(E)e−βE =

∫ ∞

0
dE e−βE+ln ω(E) =

∫ ∞

0
dE eβ(TS(E)−E)

(3.93)
where the entropy S(E) is defined according to the microcanonical ensemble. The maximum of
the integrand at E = E0 is defined by the condition

T
∂S

∂E

∣∣∣∣
E=E0

= 1 and
∂2S

∂E2

∣∣∣∣
E=E0

< 0 . (3.94)
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Note that
∂2S

∂E2

∣∣∣∣
E=E0

=
∂

∂E

1
T

∣∣∣∣
E=E0

= − 1
T 2

∂T

∂E

∣∣∣∣
E=E0

= − 1
T 2CV

< 0 . (3.95)

If we now expand the exponent in the integrand, we obtain

TS(E)− E = TS(E0)− E0 −
1

2TCV
(E − E0)2 + · · · (3.96)

such that with U = E0,

Z ≈ eβ(TS−U)

∫ ∞

0
dE e−(E−U)2/2kBT 2CV = eβ(TS−U)

√
2πkBT 2CV

⇒ F ≈ U − TS − 1
2
kBT ln {2πkBTCV } = U − TS +O(lnN) .

(3.97)

Since the free energy is extensive, the term of order lnN is in the large-N limit irrelevant.

3.4.4 Ideal gas in canonical ensemble

Consider a gas of N particles without external potential and mutual interactions described by
the Hamiltonian

H(p) =
N∑

i=1

~p2
i

2m
. (3.98)

The partition function is given by

Z =
N∏

i=1

∫
d3pi d

3qi e
−~p2

i /2mkBT =
{∫

d3p d3q e−~p2/2mkBT

}N

= V N {2πmkBT}3N/2 . (3.99)

From this we obtain the free energy and the internal energy

F (T, V,N) = −kBT lnZ = −3N
2
kBT ln(2πmkBT )−NkBT lnV ,

U(T, V,N) = − ∂

∂β
lnZ =

3N
2
kBT .

(3.100)

The entropy is given by

S(T, V,N) = −
(
∂F

∂T

)
V,N

= NkB ln(V T 3/2) +
3N
2
kB + S0 (3.101)

and the pressure by

p = −
(
∂F

∂V

)
T,N

=
NkBT

V
(3.102)

which corresponds to the thermodynamic equation of state.
An important aspect for the ideal system is the fact that the partion function has a product
form because each particle is described independently. In this way it leads to an extensive free
energy and internal energy.
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3.4.5 Ideal paramagnet

As a next example we consider again an ideal paramagnet. Unlike the example discussed in the
microcanonical ensemble we use here a magnetic moment ~m which can point in any direction
(full rotational symmetry) and is represented as a vector of fixed length m. The externally
applied magnetic field couples in the usual Zeeman form,

H(~mi) = −
N∑

i=1

~mi · ~H = −
N∑

i=1

mH cos θi (3.103)

where θi denotes the angle between magnetic field and moment (magnetic field defines z-axis).
It is easy to calculate now the partion function

Z =
N∏

i=1

∫
dΩi e

−βmH cos θi =
{

2π
∫ +1

−1
dx e−βmHx

}N

=
{

4π
mHβ

sinh(βmH)
}N

= ZN
m .

(3.104)
This again shows the product form. The thermodynamics is again obtained via the free energy
and the internal energy,

F (T,H,N) = −kBT lnZ = NkBT ln(βmH)−NkBT ln sinh(βmH)

U(T,H,N) = NkBT −NmH coth(βmH)
(3.105)

From this we obtain

CH(T,H,N) = NkB −N
(mH)2

kBT 2

1
sinh2(mH/kBT )

. (3.106)

which yields the limiting behaviors

CH =



NkB

3

(
mH

kBT

)2

kBT � mH

NkB

(
1− 4

(
mH

kBT

)2

e−2mH/kBT

)
kBT � mH

(3.107)

Analogous to our previous ideal paramagnet, the magnetic field enters as a characteristic energy
scale separating two regimes of thermodynamics.
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Fig.3.5: Mean magnetization per moment: left panel, as a function of temperature and fixed
magnetic field, with full saturation at T = 0; right panel, as a function of magnetic field and

fixed temperature, with full saturation at mH � kBT .
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The magnetization can be calculated as

〈~m〉 =
1
Zm

∫
dΩ ~m(φ, θ)e−β ~m· ~H (3.108)

with ~m(φ, θ) = m(sin θ cosφ, sin θ sinφ, cos θ) leading to 〈mx〉 = 〈my〉 = 0 and

〈mz〉 = m coth
(
mH

kBT

)
− kBT

H
(3.109)

which corresponds to

〈~m〉 = − 1
N

(
∂F

∂ ~H

)
T,N

. (3.110)

The second derivative with respect to ~H yields the magnetic susceptibility as a response function
(in the limit of ~H → 0 it is the linear response)7

χzz(T ) = −
(
∂2F

∂H2
z

)
T,N

=
Nm2

kBT

[(
kBT

mH

)2

− 1
sinh2(mH/kBT )

]

=


N

m2

3kBT
kBT � mH

N
m2

kBT

{(
kBT

mH

)2

− 4e−2mH/kBT

}
kBT � mH

(3.112)

It is interesting to study the fluctuations of the magnetization,

〈m2
z〉 − 〈mz〉2 = m2

[(
kBT

mH

)2

− 1
sinh2(mH/kBT )

]
=
kBT

N
χzz . (3.113)

Note that here the zero-temperature limit of the specific heat does not vanish, but is NkB and
corresponds to the contribution of the potential energy of a two-dimensional harmonic oscillator
(the fluctuating magnetic moment nearly aligned with magnetic field feels a harmonic potential).
Analogous to the fluctuations of the energy discussed above we find that the fluctuations of the
magnetization are connected with a response function, the susceptibility.8 This is a simplified
version of the so-called fluctuation-dissipation theorem which will encounter later again.

7Generally we define

N〈mν〉 = −
„
∂F

∂Hν

«
T,N

and χνν′ = −
„

∂2F

∂Hν∂Hν′

«
T,N

. (3.111)

8Generally we find the relation for the fluctuations of the magnetization ~M =
P

i ~mi from the following
argument:

0 =

Z
dΩ1 · · · dΩN (〈 ~M〉 − ~M)eβ(F−H) (3.114)

taking the derivative with respect to the field leads to

0 =
∂〈Mz〉
∂H

+ β

Z
dΩ1 · · · dΩN (〈Mz〉 −Mz)

2eβ(F−H) = χzz − β〈(〈Mz〉 −Mz)
2〉 . (3.115)

This yields the convenient relation,

χzz =
1

kBT

˘
〈M2

z 〉 − 〈Mz〉2
¯
. (3.116)
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3.4.6 More advanced example - classical spin chain

We now go beyond the ideal paramagnetic system by considering a chain of spins (magnetic
moments) {~si} which interact with each other via nearest-neighbor coupling in the following
way:

H(~si) = J

N∑
i=1

~si · ~si+1 (3.117)

where J is the coupling strength. For J < 0 the spins tend to align parallel (ferromagnetic) and
for J > 0 they tend to be antiparallel, alternating (antiferromagnetic). This chain is open and
occupied regularly by N + 1 spins (N bonds).

J > 0

J

ferromagnetic antiferromagnetic

J < 0

Fig.3.6: Spin chain: Coupling J between spins of arbitrary orientation. J < 0: ferromagnetic
alignment prefered; J > 0: antiferromagnetic alignment prefered.

Interestingly the topology of the coupling allows to calculate the partition function exactly. We
consider the spins as vectors of fixed length S and write the partition function as

Z =
∫
dΩ1 · · · dΩN+1 e

−βJ
P

i ~si·~si+1 , (3.118)

which decays into product form, if we consider the reference polar axis (”z-axis”) for the spin
~si given by the direction of the spin ~si+1 (θi is defined as angle between ~si and ~si+1). Therefore
may write

Z =
N∏

i=1

{∫
e−βJS2 cos θidΩi

}∫
dΩN+1 = 4π

{
2π
∫ +1

−1
dxe−βJS2x

}N

= 4π
{

4π
sinh(βJS2)
βJS2

}N

(3.119)

which looks similar to the expression obtained for the ideal paramagnet. We may actually
consider each spin being subject to the Zeeman field induced via the coupling by the neighboring
spins (mean field idea). It is interesting to see that Z does not depend on the sign of J . Thus,
the thermodynamics is the same for a ferromagnetic and an antiferromagnetic chain.
Easily we can determine the free and the internal energy,

F (T,N) = NkBT ln(βJS2)−NkBT ln
{
sinh(βJS2)

}
−NkBT ln 4π

U(T,N) = NkBT −NJS2 coth(βJS2)
(3.120)

which leads to the specific heat

CV = NkB

{
1−

(
βJS2

sinh(βJS2)

)2
}

(3.121)
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with a similar form as for the ideal paramagnet.

Correlation function: Now we turn to a new aspect which did not encounter in the ideal param-
agnet. The question of the mutual influence of spins is not meaningful in the ideal paramagnet,
since the spins are completely independent. Moreover, there was no topology which would tell
us the ”distance” between two spins. The same is true for the positions of particles in an ideal
gas. For our spin chain, however, the question of how the orientation of spin ~si influences the
orientation of spin ~si+l makes sense, since we have a clear topology and coupling among the
spins. We define the correlation function

Γl = 〈~si · ~si+l〉 = 3〈sz
i s

z
i+l〉

=
3
Z

∫
dΩ1 · · · dΩN+1S

2 cos Θi cos Θi+le
−βJS2

P
i cos θi .

(3.122)

where Θi is the angle of spin i with respect to the general z-axis (e.g. along the chain). We
can perform all integrations for the spin ~sj with j < i and j > i+ l which decay into the same
product form as discussed above. The remaining integrals are now

Γl = 3S2

(
βJS2

4π sinh(βJS2)

)l ∫
dΩi cos Θie

−βJS2 cos θi

×
∫
dΩi+1e

−βJS2 cos θi+1 · · ·
∫
dΩi+l cos Θi+l

(3.123)

Taking again the spin si+1 as a reference of the spin si we find the relation9

cos Θi = cos Θi+1 cos θi + sinΘi sin θi cosφ′i; . (3.126)

Inserting this we notice that the averages 〈cos θi〉 6= 0 and 〈sin θi cosφi〉 = 0. Thus

Γl = 3S2

(
βJS2

4π sinh(βJS2)

)l ∫
dΩi cos θie

−βJS2 cos θi

×
∫
dΩi+1 cos Θi+1e

−βJS2 cos θi+1 · · ·
∫
dΩi+l cos Θi+l

= Γl−1
βJS2

4π sinh(βJS2)

∫
dΩi cos θie

−βJS2 cos θi = Γl−1u(βJS2)

(3.127)

with
u(x) =

1
x
− cothx . (3.128)

If we take into account that Γl=0 = S2 we find

Γl = S2
[
u(βJS2)

]l = S2e−l/ξ(−sign(J))l with ξ−1 = − ln{|u(βJS2)|} . (3.129)

9Consider ~s1 and ~s2 and take ŷ′ ⊥ ~z,~s2:

~s1 = ~s2 cos θ1 + (ŷ′ × ~s2) sin θ1 cosφ1 + ŷ′ sin θ1 sinφ1 (3.124)

and multiply by ẑ:
ẑ · ~s1| {z }

=S cos Θ1

= cos θ1 ẑ · ~s2| {z }
=S cos Θ2

+~y′ · (~s2 × ẑ)| {z }
=ŷS sin Θ2

sin θ1 cosφ1 . (3.125)
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Note that 0 < u < 1 for all finite temperatures and couplings. The correlation function decays
exponentially for all finite temperature with a correlation length ξ:

ξ(T ) =


[ln(kBT/|J |S2)]−1 kBT � |J |S2

|J |S2

kBT
kBT � |J |S2

(3.130)

For large temperature the correlation length shrinks rather slowly to zero and in the zero-
temperature limit it diverges indicating an infinitely extending correlation. Indeed we find for
T = 0 that u→ 1 such that

Γl(T = 0) = S2(−signJ)l (3.131)

for all l. This means that the spins order either ferromagnetically for J < 0 or antiferromagnet-
ically for J > 0 at T = 0. However, for any finite temperature Γl → 0 for l→∞.
Finally we want to study the susceptibility assuming a coupling to the magnetic field of the form

H′ = H− g

N+1∑
i=1

~si · ~H ., (3.132)

χ

ferromagnetic

antiferromagnetic

a)
1
/

b)

Fig.3.7: Thermodynamic properties of spin chain: a) Specific heat: saturates at low
temperature to NkB like the potential energy of a two-dimensional harmonic oscillator; b)

Susceptibility plotted inversely: ferromagnetic case show divergence at T = 0 and
antiferromagnetic case approaches non-monotonically a finite value at T = 0. Extrapolations

from high-temperature region cut horizontal axis at positive (ferromagnetic) and negative
(antiferromagnetic) axis, indicating effective energy scales for the corresponding correlations.

since it is impossible to use the above scheme to calculate the partition function with a finite
magnetic field coupling to the magnetic moments. Therefore, we will use the relation derived
earlier (3.116) based on the fluctuations of the magnetization, which does not require the knowl-
edge of the partition function at finite fields.

χzz =
g2

kBT

N+1∑
i=1

N+1∑
j=1

{
〈sz

i s
z
j 〉 − 〈sz

i 〉〈sz
j 〉
}
. (3.133)

The second term on the right hand side vanishes, since 〈sz
i 〉 = 0 for all i, as can be easily shown.

For the first term we can use our result for the correlation function. In the limit of very large
N we obtain

χzz =
g2

3kBT

N+1∑
i=1

N+1∑
j=1

Γ|i−j| ≈
g2

3kBT

N∑
i=1

(
Γl=0 + 2S2

∞∑
l=1

ul

)

=
g2N

3kBT
S2

(
1 +

2u
1− u

)
=
g2S2N

3kBT

1 + u(βJS2)
1− u(βJS2)

.

(3.134)
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This susceptibility at high temperature (kBT � JS2) follows the Curie behavior

χzz =
g2S2N

3kBT
(3.135)

irrespective of the sign of J . For the antiferromagnetic coupling χzz goes through a maximum at
kBTmax ≈ 0.238JS2 to a finite zero-temperature value. On the other hand, for the ferromagnetic
case χzz diverges at low temperatures

χzz = N
g2S2

3
JS2

(kBT )2
, (3.136)

more strongly than the Curie 1/T behavior.
Let us now also look at the first lowest order correction in the high-temperature limit,

1
χzz

≈ 3kBT

g2S2N

(
1 +

2JS2

3kBT

)
=

3kB

g2S2N
(T −ΘW ) ⇒ χzz =

C

T −ΘW
(3.137)

where ΘW = −2JS2/3kB defines the so-called Weiss temperature. Thus the extrapolation from
the high-temperature limit of 1/χzz allows from the intersection on the temperature axis to
determine ΘW and consequently the sign and magnitude of the J (see dashed lines in Fig. 3.6).

3.5 Grand canonical ensemble

We consider now a new situation by allowing beside the heat exchange also the exchange of
matter of our system with a very large reservoir. Thus we take the system 1 with N1 particles
in a volume V1 coupled to the reservoir 2 with N2 particles in the volume V2 with

N1 � N2 and V1 � V2 , (3.138)

and N = N1 +N2 and V = V1 + V2 fixed. The Hamiltonian can be decomposed into two parts

H(p, q,N) = H(p1, q1, N1) +H(p2, q2, N2) (3.139)

such that the corresponding partion function for given temperature (everything is coupled to an
even larger heat reservoir) is given by

ZN (V, T ) =
1
N !

∫
dp dq e−βH(p,q) . (3.140)

For counting reasons we introduce here the factor 1/N ! taking into account that all possible
commutation of the particles give the same states (distinguishable classical particles). Now we
segregate into the subsystems fixing the volumes and particle numbers (N2 = N −N1),

ZN =
1
N !

N∑
N1=0

N !
N1!N2!

∫
dp1 dp2

∫
V1

dq1

∫
V2

dq2e
−βH(p1,q1,N1)+H(p2,q2,N2)

=
N∑

N1=0

1
N1!

∫
V1

dp1 dq1 e
−βH(p1,q1,N1) 1

N2!

∫
V2

dp2 dq2 e
−βH(p2,q2,N2)

(3.141)

Note that the distribution of the particles into the two subsystems is not fixed yielding the
combinatorial factor of N !/N1!N2! (number of configurations with fixed N1 and N2 by permuting
the particles in each subsystem). From this we define the probability ρ(p1, q1, N1) that we can
find N1 particles in the volume V1 at the space coordinates (p1, q1),

ρ(p1, q1, N1) =
e−βH(p1,q1,N1)

ZNN1!N2!

∫
V2

dp2 dq2 e
−βH(p2,q2,N2) (3.142)
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which is renormalized as
N∑

N1=0

∫
V1

dp1dq1ρ(p1, q1, N1) = 1 (3.143)

We may write

ρ(p1, q1, N1) =
ZN2

ZN

1
N1!

e−βH(p1,q1,N1) , (3.144)

where we now use the relation

ZN2(V2, T )
ZN (V, T )

= e−β{F (T,V−V1,N−N1)−F (T,V,N)} (3.145)

with

F (T, V − V1, N −N1)−F (T, V,N) ≈ −
(
∂F

∂V

)
T,N

V1−
(
∂F

∂N

)
T,V

N1 = −µN1 + pV1 . (3.146)

Thus we define
z = eβµ (3.147)

which we call fugacity, and we write

ρ(p, q,N) =
zN

N !
e−β{pV +H(p,q,N)} . (3.148)

µ is the chemical potential as introduced earlier. We now introduce the grand partition function

Z(T, V, z) =
∞∑

N=0

zNZN (V, T ) , (3.149)

which incorporates all important information of a system of fixed volume, temperature and
chemical potential.

3.5.1 Relation to thermodynamics

We use now (3.148) and integrate both sides

1 = e−βpV
∞∑

N=0

zN

N !

∫
dp dq e−βH(p,q) = e−βpV Z(T, V, z) (3.150)

which leads to
Ω(T, V, µ) = −pV = −kBT lnZ(T, V, z) , (3.151)

the grand potential:
dΩ = −SdT − pdV −Ndµ . (3.152)

The average value of N is then given by

〈N〉 = −
(
∂Ω
∂µ

)
T,V

= kBT
∂

∂µ
lnZ = z

∂

∂z
lnZ =

1
Z

∞∑
N=0

NzNZN . (3.153)

It is also convenient to derive again the internal energy

U = − ∂

∂β
lnZ ⇒ CV =

(
∂U

∂T

)
V,µ

. (3.154)
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We consider now the fluctuations of the particle number. The following relation holds

〈N2〉 − 〈N〉2 = z
∂

∂z
z
∂

∂z
lnZ = z

∂

∂z

1
Z
∑
N

NzNZN =
1
Z
∑
N

N2zNZN −

{
1
Z
∑
N

NzNZN

}2

(3.155)
from which we derive

〈N2〉 − 〈N〉2 = kBT
∂2

∂µ2
Ω(T, V, µ) = kBT

∂〈N〉
∂µ

. (3.156)

We now relate the right hand side with the isothermal compressibility. Introducing the specific
volume v = V/N we consider µ = µ(v, T ) (note that µ is not extensive). Moreover we use the
Gibbs-Duhem relation (1.72),

dµ = v dp− S

N
dT ⇒

(
∂µ

∂v

)
T

= v

(
∂p

∂v

)
T

. (3.157)

Since v depends on both V and N , the following derivatives are useful(
∂

∂v

)
V,T

=
(
∂N

∂v

)
V,T

(
∂

∂N

)
V,T

= −N
2

V

(
∂

∂N

)
V,T

,

(
∂

∂v

)
N,T

=
(
∂V

∂v

)
N,T

(
∂

∂V

)
N,T

= N

(
∂

∂V

)
N,T

.

(3.158)

From (3.157) then conclude

− N2

V

(
∂µ

∂N

)
V,T

= V

(
∂p

∂V

)
N,T

⇒ 1
N

(
∂N

∂µ

)
V,T

= − 1
vV

(
∂V

∂p

)
N,T

=
κT

v
. (3.159)

Consequently the fluctuations of the particle number is connected with the response function,
κT , the isothermal compressibility:

κT =
v

〈N〉kBT

{
〈N2〉 − 〈N〉2

}
. (3.160)

3.5.2 Ideal gas

For the ideal gas it is easy to calculated the grand partition function,

Z(T, V, z) =
∞∑

N=0

zNZN (T, V ) =
∞∑

N=0

zN

N !
V N (2πmkBT )3N/2 = exp

{
zV (2πmkBT )3/2

}
(3.161)

We can also derive the probability PN of finding the system with N particles. The average value
is given by

〈N〉 = z
∂

∂z
zV (2πmkBT )3/2 = zV (2πmkBT )3/2 (3.162)

From this we conclude

PN = e−〈N〉 〈N〉N

N !
(3.163)

which is strongly peaked at N = 〈N〉. The fluctuations are given by

〈N2〉 − 〈N〉2 = z
∂〈N〉
∂z

= 〈N〉 ⇒ κT =
v

kBT
=

1
p

(3.164)

The grand potential is given by

Ω(T, V, µ) = −kBTe
βµV (2πmkBT )3/2 = −kBT 〈N〉 = −pV (3.165)

The chemical potential is obtained as

µ = kBT ln

(
〈N〉(2πmkBT )−3/2

V

)
. (3.166)
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3.5.3 Chemical potential in an external field

In order to get a better understanding of the role of the chemical potential we now consider an
ideal gas in the gravitational field, i.e. the particles are subject to the potential φ(h) = mgh.
We take the chemical potential µ0 as a constant. Then we write for the chemical potential,

µ = µ0 +mgh+ kBT ln
{
n(2πmkBT )−3/2

}
(3.167)

where we define n = 〈N〉/V as the local number density of particles. In equilibrium the tem-
perature and the chemical potential shall be constant. We may determine µ by the condition
that the at h = 0 the density is n = n0,

µ(T ) = µ0 + kBT ln
{
n0(2πmkBT )−3/2

}
⇒ mgh = kBT ln

(n0

n

)
(3.168)

We can now solve this equation for n = n(h):

n(h) = n0e
−βmgh . (3.169)

and with the (local) equation of state

p(h) = n(h)kBT = p0e
−βmgh (3.170)

This is the famous barometer formula.

3.5.4 Paramagnetic ideal gas

As a further example we consider an ideal gas of particles with a magnetic moment which
only can point in two direction, parallel or antiparallel to an applied magnetic field. Thus, the
Hamiltonian is given by

H(p, q,H) =
∑

i

~p2
i

2m
−
∑

i

miH , (3.171)

where mi = ±m̃. Having now an ideal gas of two types of particles, moment parallel (+)
and antiparallel (−) to H, we treat this problem in the grand canonical ensemble language.
We introduce the corresponding particle numbers N+ and N−. The grand canonical partition
function is easily calculated as

Z =
∑
N

1
N !

N++N−=N∑
N+,N−

N !
N+! N−!

{
V az+e

βHm̃
}N+

{
V az−e

−βHm̃
}N−

=
∑
N+

1
N+!

{
V az+e

βHm̃
}N+ ∑

N−

1
N−!

{
V az−e

−βHm̃
}N−

= exp
{
z+e

βm̃HV a
}

exp
{
z−e

−βm̃HV a
}

(3.172)

with a = (2πmkBT )3/2. The average numbers of up and down magnetic moments are then

N± = z±
∂

∂z±
lnZ = z±e

±βm̃HV a (3.173)

From this we derive the chemical potential, z± = eβµ± ,

µ± = kBT ln
(n±
a

)
± m̃H , (3.174)
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where n± = N±/V . In equilibrium µ+ = µ− = µ otherwise the system would shift the distribu-
tion of moments, N+ ↔ N−. This leads to the ratio

N+

N−
=
n+

n−
= e2βm̃H . (3.175)

The partial pressures defined by

p± =
N±kBT

V
⇒ p = p+ + p− (3.176)

add up to the total pressure. The number of particles and the magnetization are given by

N = N+ +N− = 2V aeβµ cosh(βm̃H) and M = m̃(N+ −N−) = 2m̃V aeβµ sinh(βm̃H)
(3.177)

Under the condition that there is an external reservoir of particles at the chemical potential µ,
we can define the magnetization per particle in the system,

M

N
= m̃ tanh(βm̃H) , (3.178)

as we had obtained earlier for the ideal paramagnet.
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Chapter 4

Quantum Statistical Physics

Quantum statistical physics opens the door to new phenomena and also provides an under-
standing of the third law of thermodynamics which we had found to be often violated within
classical statistical physics. Moreover, we will find that for ideal quantum gases the concept of
indistinguishable particles leads to the classification of particles into two categories: Bosons and
Fermions.

4.1 Basis of quantum statistics

Every state of a quantum mechanical system can be described by a superposition of stationary
states |ψn〉 of the Hamiltonian H, which form a complete orthonormalized basis,

|Ψ〉 =
∑

n

cn|ψn〉 (4.1)

where the complex coefficients cn represent the wavefunction whose time dependence is deter-
mined by the Hamiltonian H. For the stationary states the following holds:

H|ψn〉 = εn|ψn〉 with 〈ψn|ψn′〉 = δnn′ (4.2)

The renormalization of the state |Ψ〉 requires,

1 = 〈Ψ|Ψ〉 =
∑
n,n′

c∗ncn′〈ψn|ψn′〉 =
∑

n

|cn|2 . (4.3)

The square modulus |cn|2 denotes the probability to find the state |ψn〉 in |Ψ〉.
Observable quantities are represented by Hermitian operators A and their expectation value is

〈A〉 = 〈Ψ|A|Ψ〉 =
∑
n,n′

c∗ncm〈ψn|A|ψ′n〉 . (4.4)

This expectation value is generally time dependent: cn = cn(t).
Considering now a measurement of a macroscopic observable, which corresponds to an average
(indicated here by over-bar) over a time much longer than the microscopic time scales (time
between collisions, inverse energy spacing, etc.).

〈A〉 =
∑
n,n′

c∗ncn′〈ψn|A|ψn′〉 (4.5)

Let us now restrict to eigenstates in a certain narrow energy range: E ≤ εn ≤ E + ∆ (micro-
canonical point of view). The quantum statistical physics is based on two key postulates:
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• Equal probability:

c∗ncn =


r , E ≤ εn ≤ E + ∆ ,

0 , otherwise .
(4.6)

where r is a real constant.

• Random phase: if n 6= n′ then
c∗ncn′ = 0 , (4.7)

i.e. the phase of the wavefunction is a random variable. Such a behavior requires an at
least weak coupling to the environment in order to randomize the phases.

As a consequence average expectation values are given by

〈A〉 =
∑

n

|cn|2〈ψn|A|ψn〉 (4.8)

which corresponds to considering the state |Ψ〉 as an incoherent superposition of the eigenstates
(pure versus mixed state). We may consider the drop out of interference terms as an effect of
averaging over a long time whereby the phases depend on time. Alternatively, we average over
an ensemble of many different states which different phases.

4.2 Density matrix

Mixed states or incoherent superpositions of states are conveniently described by density matrices
ρ̂. We define first the density matrix as an operator through its matrix elements

〈ψn|ρ̂|ψ′n〉 = |cn|2δnn′ (4.9)

In the basis of stationary states the density matrix is diagonal. Therefore we may formally write
the density matrix in spectral form as

ρ̂ =
∑

n

|ψn〉|cn|2〈ψn| . (4.10)

We may also express the average value of A as a trace of the form,

〈A〉 =
∑

n〈ψn|Aρ̂|ψn〉∑
n〈ψn|ρ̂|ψn〉

=
tr(Aρ̂)
trρ̂

(4.11)

Note that the final expression is independent of the basis {ψn〉}, as known from standard linear
algebra. The cyclic permutation of matrices (operators) does not change the trace: tr(ABC) =
tr(BCA). Thus the basis transformation U yields A′ = UAU−1, such that

tr(A′) = tr(UAU−1) = tr(AU−1U) = tr(A) . (4.12)

In this sense the density matrix is a convenient tool to perform ensemble averages as it contains
basis-free informations. In order to describe equilibrium properties ρ̂ should not depend on time
t and commutes with the Hamiltonian:

i~
∂ρ̂

∂t
= [H, ρ̂] = 0 . (4.13)

It is obvious that the density matrix defined in (4.10) commutes with H. Compare this with
Liouville’s theorem of classical mechanics.
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4.3 Ensembles in quantum statistics

We now formulate the quantum statistical physics in terms of the three types of ensembles which
we introduced for the classical statistical physics.

4.3.1 Microcanonical ensemble

The microcanonical ensemble is suitable for closed systems which do not exchange energy and
particles with the environment. We take the density matrix in its diagonal form ρnn′ = δnn′ |cn|2.
In this ensemble we consider an incoherent state which consist of the equally distributed set of
states within a certain narrow energy range between E and E + δE. Thus,

|cn|2 =


1 E ≤ εn ≤ E + δE

0 otherwise
(4.14)

The energies εn are the eigenenergies of the stationary states |ψn〉 for the Hamiltonian H.
Formally we then write the density tensor as

ρ̂ =
∑

E≤εn≤E+δE

|ψn〉〈ψn| with trρ̂ =
∑

n

ρnn = ω(E) (4.15)

Here ω(E) is the number of quantum states |ψn〉 with energy in the given energy range. Anal-
ogous to the classical case we use now ω(E) to define the entropy

S(E, V ) = kB lnω(E) . (4.16)

From this we may derive the thermodynamics. Note that ω(E) is connected with the density of
states dΦ(E)/dE of the quantum system.

Φ(E) =
∑

n

Θ(E − εn) ⇒ ω(E) =
dΦ(E)
dE

δE . (4.17)

with Θ(x) as the step function

Θ(x) =
{

1 x > 0
0 x ≤ 0

. (4.18)

4.3.2 Canonical ensemble

For a system which is in thermal equilibrium with a reservoir of given temperature T we use
the canoncial ensemble formulation. Analogous to the classical statistical physics we define the
density matrix here as

ρ(p, q) = e−βH(p,q) → ρnn′ = δnn′e
−βεn . (4.19)

and we define the partition function as

Z =
∑

n

e−βεn = trρ̂ = e−βF (T,V,N) (4.20)

where F is the Helmholtz free energy. The density matrix can be written as an operator,

ρ̂ =
∑

n

|ψn〉e−βεn〈ψn| = e−βH
∑

n

|ψn〉〈ψn|︸ ︷︷ ︸
=1

= e−βH . (4.21)

Thus the partition function can also be expressed as

Z = tre−βH (4.22)
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and average values of observables are given by

〈A〉 =
tr(Ae−βH)
tre−βH =

1
Z
tr
(
Ae−βH

)
. (4.23)

The connection to thermodynamics is given via the Helmholtz free energy,

F (T, V,N) = −kBT lnZ . (4.24)

4.3.3 Grandcanonical ensemble

Now we connect the system in addition to the heat reservoir also to the particle reservoir of
given chemical potential µ. In the same spirit as for the canonical ensemble we use the analogy
to the classical systems. The density matrix now reads,

ρ̂ = e−β(H−µN̂) (4.25)

with N the particle number operator and the grandcanonical partition function is then

Z = tre−β(H−µN) =
∑
N

zNZN (4.26)

with z = eβµ as the fugacity, leading to the grand potential

Ω(T, V, µ) = −kBT lnZ . (4.27)

4.3.4 Ideal gas in grandcanonical ensemble

A gas of independent particles in quantum mechanics has the additional key feature that indis-
tinguishable particles are categorized in Fermions (particles with half-integer spins) and Bosons
(particles with integer spins). The former follow the Pauli principle: we cannot find two Fermions
in the same quantum state. For Bosons no such restriction exists. In terms of the many-particle
wave function the Fermions are described by a completely antisymmetric and the symmetric
wavefunction under exchange of particle variables. The free particles in quantum mechanics are
represented by plane waves

|ψ~p〉 =
1√
V
ei~p·~r/~ with ε~p =

~p2

2m
. (4.28)

The grand partition function for a gas of such particles is given by

Z =
∑
{n~p}

g{n~p}e
−β(E−µN){n~p} , (4.29)

with
E =

∑
~p

ε~pn~p and N =
∑

~p

n~p . (4.30)

Here n~p is the number of particles per state, the occupation number, whereby the sum
∑

{n~p}
runs over all allowed configurations of occupations. The factor g{n~p} is given by

g{n~p} =


1 indistinguishable particles (Fermions and Bosons) ,

∏
~p

1
n~p!

classical particles (Boltzmann) .
(4.31)
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For Fermions we find that for each state |ψ~p〉 the occupation number is n~p = 0, 1 and for Bosons
n~p = 0, 1, 2, . . .. Thus, calculating the partition function we obtain for Fermions/Bosons,

Z =
∑

n~p1
,n~p2

,...

[{
ze−βε~p1

}n~p1
{
ze−βε~p2

}n~p2 · · ·
]

=
∏
~p

∑
n~p

(
ze−βε~p

)n~p

=



∏
~p

(
1 + ze−βε~p

)
Fermions

∏
~p

1
1− ze−βε~p

Bosons

(4.32)

with z = eβµ as the fugacity.
From the partition function we arrive at the equation of state

pV

kBT
= −βΩ(T, V, µ) =



∑
~p

ln
(
1 + ze−βε~p

)
Fermions ,

−
∑

~p

ln
(
1− ze−βε~p

)
Bosons ,

(4.33)

and the particle number

N = z
∂

∂z
lnZ =



∑
~p

1
eβε~pz−1 + 1

Fermions ,

∑
~p

1
eβε~pz−1 − 1

Bosons .

(4.34)

These equations can be used to determine the chemical potential, if we fix N . The occupation
number of a state is also easily obtained,

〈n~p〉 =
1
Z

∞∑
N=0

zN

P
~p n~p=N∑
{n~p}

n~pe
−β

P
~p ε~pn~p = −kBT

∂

∂ε~p
lnZ

=


1

z−1eβε~p + 1
Fermions ,

1
z−1eβε~p − 1

Bosons .

(4.35)

These correspond to the Fermi-Dirac and the Bose-Einstein distributions, respectively.
Eventually we compare the grand potential and the internal energy. Using (4.33) we obtain

Ω = −kBT
∑

~p

ln
(
1± zeβε~p

)
= −kBT

∫
dε g(ε) ln

(
1± ze−βε

)

= −V kBT
1

4π2

(
2m
~2

)3/2 ∫ ∞

0
dε ε1/2 ln(1± ze−βε)

= −2
3
V

1
4π2

(
2m
~2

)3/2 ∫ ∞

0
dε

ε3/2

z−1eβε ± 1
,

(4.36)
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where the plus (minus) sign stands for the Fermions (Bosons). For the second equality we
performed an integration by parts. We have also introduced the density of states

g(ε) =
∑

~p

δ(ε− ε~p) = V
1

4π2

(
2m
~2

)3/2

ε1/2 , (4.37)

for the energy integration. Now consider the internal energy

U =
∑

~p

〈n~p〉ε~p = V
1

4π2

(
2m
~2

)3/2 ∫ ∞

0
dε

ε3/2

z−1eβε ± 1
. (4.38)

Thus from Ω = −pV we obtain the general relation

U =
3
2
pV . (4.39)

Note that we did not so far include the spin s of the particles in our considerations. This gives
an additional factor 2s+ 1 to Ω and U .

4.4 Properties of Fermi gas

We consider now Fermions of spin s, i.e. there are 2s+1 different species. The equation of state
and the equation for the particle number of the Fermi gas are given by

p

kBT
=

4π
h3

(2s+ 1)
∫ ∞

0
dp p2 ln

(
1 + ze−βε~p

)
,

1
v

=
N

V
=

4π
h3

(2s+ 1)
∫ ∞

0
dp p2 1

z−1eβε~p + 1
.

(4.40)

where we used the relation
∑

~p = V
h3

∫
d3p. We rewrite these equations introducing special

functions of z,
p

kBT
=

2s+ 1
λ3

f5/2(z)

1
v

=
2s+ 1
λ3

f3/2(z)

(4.41)

where λ = h/
√

2πmkBT is the thermal wavelength. These functions are defined as1

f5/2(z) =
4√
π

∫ ∞

0
dx x2 ln(1 + ze−x2

) = −
∞∑
l=1

(−1)l z
l

l5/2

f3/2(z) = z
∂

∂z
f5/2(z) = −

∞∑
l=1

(−1)l z
l

l3/2

(4.43)

1Expansion of f5/2(z):

4√
π

Z ∞

0

dx x2 ln(1 + ze−x2
) = − 4√

π

Z ∞

0

dx

∞X
l=1

x2(−1)i z
le−lx2

l
= −

∞X
l=1

(−1)l z
l

l5/2
. (4.42)
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For the following it will also be important to consider the asymptotic behavior of these functions.
For z � 1 we may use the expansion just given. For z � 1 we find2

f5/2(z) ≈
8

15
√
π

(ln z)5/2

[
1 +

5π2

8(ln z)2
+ · · ·

]

f3/2(z) =
4

3
√
π

(ln z)3/2

[
1 +

π2

8(ln z)2
+ · · ·

] (4.47)

4.4.1 High-temperature and low-density limit

Low density (high temperature) implies λ3 � v = V/N and z = eβµ � 1 . We can use now
(4.41)

λ3

v
= (2s+1)

{
z − z2

23/2
+ · · ·

}
⇒ z =

λ3

v

1
2s+ 1

+
1

23/2(2s+ 1)2

(
λ3

v

)2

+ · · · . (4.48)

This allows us to replace z in the equation of state,

p

kBT
≈ 2s+ 1

λ3

{
z − z2

25/2

}
≈ N

V

{
1 +

N

25/2

λ3

V

}
(4.49)

The second term represents the quantum correction to the classical limit of the ideal gas. This
allows us also to calculate the isothermal compressibility,

κT = − 1
V

(
∂V

∂p

)
T,N

=
V

NkBT

1
1 + λ3N

23/2V

(4.50)

The quantum correction decreases the compressibility, as a consequence of Pauli’s exclusion
principle, i.e. Fermions avoid each other. The occupation numbers is approximatively given by

〈n~p〉 ≈
λ3

v

1
2s+ 1

e−βε~p =
Nh3

V (2πmkBT )3/2
e−βε~p (4.51)

corresponding to the Maxwell-Boltzmann distribution. With the general relation (4.39) we
obtain immediately the internal energy and the specific heat

U ≈ 3
2
NkBT

{
1 +

N

25/2

λ3

V

}
and CV =

3
2
NkB

{
1− N

27/2

λ3

V

}
, (4.52)

including the first quantum corrections.
2Derivation of the large-z-expansion: Use ν = µ/kBT = ln z and rewrite

f5/2(z) =
2√
π

Z ∞

0

dy y1/2 ln(1 + eν−y) =
8

15
√
π

Z ∞

−ν

dy′(y′ + ν)5/2 ey′

(1 + ey′)2
, (4.44)

where the second equation is obtained by twice integrating by parts. More over we extend the lower integration
boundary to −∞, at the expense of a small error of order e−ν = 1/z. We now expand (y+ ν)5/2 assuming ν large
and find

f5/2(z) =
8

15
√
π

Z +∞

−∞
dy′

»
ν5/2 +

5

2
ν3/2y′ +

15

8
ν1/2y2 + · · ·

–
ey′

(1 + ey′)2

=
8

15
√
π

»
I0ν

5/2 +
5

2
I1ν

3/2 +
15

8
I2ν

1/2 + · · ·
– (4.45)

where

In =

Z +∞

−∞
dy

yney

(1 + ey)2
⇒ I0 = 1, I1 = 0, I2 =

π2

3
, . . . . (4.46)

Note that all In = 0 for n odd. It is easy to obtain f3/2(z) by taking the derivative.
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4.4.2 Low-temperature and high-density limit: degenerate Fermi gas

At low temperature we reach the ”quantum limit” λ3 � v = V/N , which implies large fugacity
z. First we consider the zero-temperature situation. The occupation numbers follow a step
function

〈n~p〉 = Θ(ε~p − µ) =


1 , ε~p < µ ,

0 , ε~p > µ .
. (4.53)

The Fermions occupy states within a sphere in momentum space, the Fermi sphere. The particle
density n is

n =
N

V
=

2s+ 1
h3

∫
d3p〈n~p〉 =

2s+ 1
h3

4π
3
p3

F =
(2s+ 1)k3

F

6π2
(4.54)

where pF is the Fermi momentum (ε~pF
= µ(T = 0) = εF ), isotropic, and kF = pF /~ is the Fermi

wavevector. The groundstate energy is

U0 =
2s+ 1
h3

V

∫
d3pε~p〈n~p〉 =

3
5
NεF (4.55)

where εF denotes the Fermi energy. The zero-point pressure is obtained through (4.33),

p0 =
2
3
U

V
=

2
5
N

V
εF . (4.56)

In contrast to the classical ideal gas, a Fermi gas has finite zero-point pressure which is again
a consequence of the Pauli principle and is responsible for the stability of metals, neutron stars
etc.

p
z

p
y

p
x

p
F

Fig.4.1: Fermi sphere of occupied single particle states. Fermi radius pF .

Next we turn to finite temperatures for which the occupation number broadens the step at pF .
We use now (4.47, 4.54) to obtain the relation(

εF
kBT

)3/2

=
3
4

√
πλ3

2s+ 1
N

V
=
(

µ

kBT

)3/2

+
π2

8

(
µ

kBT

)−1/2

+ · · · , (4.57)

which at constant density n = N/V can be solved for the chemical potential,

µ(T ) = εF

(
1− π2

12

(
kBT

εF

)2

+ · · ·

)
, (4.58)

and in very much the same way we obtain for the pressure,

p(T ) = p0

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·

)
. (4.59)
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Again we derive the internal energy from the relation (4.33)

U =
3
2
pV =

3
5
NεF

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·

)
, (4.60)

which also leads to the specific heat for fixed N

CN = kBN
π2

2
kBT

εF
+ · · · . (4.61)

This is the famous linear temperature dependence of the specific heat, which can be observed
well for the electrons in simple metals. Obviously now the third law of thermodynamics is
satisfied: CN

T→0→ 0. Also the entropy goes to zero linearly in T .

4.5 Bose gas

There are two situations for Bosons: (1) a system with well-defined particle number, e.g. bosonic
atoms, 4He, ... ; (2) Bosons which results as modes of harmonic oscillators (no fixed particle
number), e.g. photons, phonons, magnons, etc..

4.5.1 Bosonic atoms

We consider Bosons without spin (S = 0) for which 4He is a good example. Analogous to the
Fermions we introduce functions of z to express the equation of state and the particle number,

p

kBT
=

1
λ3
g5/2(z) =

1
λ3

∞∑
l=1

zl

l5/2

1
v

=
N

V
=

1
λ3
g3/2(z) =

1
λ3

∞∑
l=1

zl

l3/2
.

(4.62)

For small z both functions grow linearly from zero and g3/2(z) has a divergent derivative for
z → 1. We concentrate on the range 0 < z ≤ 1, such that µ(T ) ≤ 0. For z = 1 we obtain

g3/2(1) =
∑

l

1
l3/2

= ζ(3/2) ≈ 2.612 and g5/2(1) =
∑

l

1
l5/2

= ζ(5/2) ≈ 1.342 (4.63)

where ζ(x) is Riemann’s ζ-function.

g
5/2

g
3/2

Fig.4.2: Functions g3/2(z) and g5/2(z).
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4.5.2 High-temperature and low-density limit

It is easy to see that like the Fermions the Bosons behave in this limit as a classical ideal gas.
An intriguing aspect occurs, however, in the quantum corrections. For the pressure we find

p(T ) =
N

V
kBT

{
1− N

25/2

λ3

V
+ · · ·

}
. (4.64)

The quantum correction reduces the classical ideal gas pressure and yields the compressibility

κT = − 1
V

(
∂V

∂p

)
T,N

=
V

NkBT

1
1− λ3N

23/2V

(4.65)

In contrast to the Fermions where the quantum nature of the particles diminishes the compress-
ibility, here the compressibility is enhanced. Actually, in this approximation the compressibility
even diverges, if

23/2 =
N

V
λ3 (4.66)

i.e. at low enough temperature or high enough density. We will now see that this indeed indicates
an instability of the Bose gas.

4.5.3 Low-temperature and high-density limit: Bose-Einstein condensation

Let us now consider equation (4.62) carefully, The function g3/2(z) is monotonically increasing
with z. If T is lowered, λ ∝ T−1/2 increases, such that z has to increase too in order to satisfy
(4.62). Therefore µ approaches the singular point at 0 (z = 1). The critical point is determined
by

g3/2(1) = ζ(3/2) =
N

V
λ3 ⇒


Tc =

h2

2πkBm[ζ(3/2)V/N ]2/3
,

Vc =
N

ζ(3/2)
h3

(2πmkBT )3/2
.

(4.67)

This defines a critical temperature Tc and critical volume Vc below which a new state of the Bose
gas occurs. Note that this equation is qualitatively very similar to (4.66) and even quantitatively
not so far (ζ(3/2) ≈ 2.612 ↔ 23/2 ≈ 2.85) . The question arises what happens for T < Tc or
V < Vc. Actually the problem occurring in (4.62) and (4.67) arises in the step

N =
∑

~p

1
eβ(ε~p−µ) − 1

→ V

h3

∫
d3p

1
eβ(ε~p−µ) − 1

. (4.68)

The integral does not count the occupation of the state ~p = 0, because the momentum distribu-
tion function entering the integral,

ρ(p) =
p2

eβ(ε~p−µ) − 1
⇒ ρ(0) = 0 . (4.69)

This is fine as long as the occupation of the ~p = 0-state (single-particle groundstate) is vanish-
ingly small compared to N . However, for T < Tc (V < Vc) the occupation becomes macroscopic,
〈n~p=0〉/N > 0 and we cannot neglect this contribution in the calculation of N . Thus the correct
density is

N

V
=

1
λ3
g3/2(z) + n0(T ) = nn(T ) + n0(T ) (4.70)

with n0(T ) denoting the density of Bosons in the single-particle groundstate (~p = 0). These
particles form a condensate, the Bose-Einstein condensate. What happens at Tc is a phase
transition. We encounter here a ”two-fluid” system for which the total particle density split
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into a condensed fraction n0 and a normal fraction nn. From (4.70) we find the temperature
dependence of n0,

n0(T ) =
N

V

[
1−

(
T

Tc

)3/2
]
. (4.71)

1

n
nn0

n0

p TTc

n

Fig.4.3: Occupation: Left panel: A macroscopic fraction of particle occupy the momentum
p = 0-state for T < Tc. Right panel: Temperature dependence of the condensate fraction.

Next we also determine the equation of state,

p =


kBT

λ3
g5/2(z) , V > Vc

kBT

λ3
g5/2(1) , V < Vc

(4.72)

We now consider the compressibility for V > Vc . For this purpose we first determine

∂V

∂z
= −Nλ3

g′3/2(z)

g3/2(z)2
, (4.73)

and consider

∂p

∂V
=
kBT

λ3
g′5/2(z)

∂z

∂V
⇒ κT =

Nλ6

kBTg3/2(z)2
g′3/2(z)

g′5/2(z)
. (4.74)

where we use the notation g′n(z) = dgn(z)/dz. As anticipated earlier the compressibility diverges
at the transition V → Vc (or T → Tc), since the derivative g′3/2(z) → ∞ for z → 1. In the
condensed phase the pressure is independent of V as is obvious from (4.72). Therefore the
condensed phase is infinitely compressible, i.e. it does not resist to compression.
Some further thermodynamic quantities can be derived. First we consider the entropy S from
the grand canonical potential

S(T, V, µ) = −
(
∂Ω
∂T

)
V,µ

=
(
∂pV

∂T

)
V,µ

=


NkB

(
5v
2λ3

g5/2(z)− ln z
)
, T > Tc ,

NkB
5
2
g5/2(1)
g3/2(1)

(
T

Tc

)3/2

, T < Tc .

(4.75)
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where we used (4.62).3 For the specific heat at fixed particle number N we find from the internal
energy U = 3

2pV ,

CV =
(
∂U

∂T

)
V,N

=


NkB

(
15v
4λ3

g5/2(z)−
9
4
g3/2(z)
g1/2(z)

)
, T > Tc ,

NkB
15
4
g5/2(1)
g3/2(1)

(
T

Tc

)3/2

, T < Tc .

(4.79)

T

V

NkB

Tc

3/2

C

Fig.4.4: Specific heat: CV has a cusp at the transition and vanishes as T 3/2 towards
zero-temperature. In the high-temperature limit Cv approaches 3NkB/2 which corresponds to

the equipartition law of a mono-atomic gas.

In accordance with the third law of thermodynamics both the entropy and the specific heat go
to zero in the zero-temperature limit. The entropy for T < Tc can be viewed as

S

N
= s

(
T

Tc

)3/2

=
nn(T )
n

s with s =
5
2
kB

g5/2(1)
g3/2(1)

(4.80)

where s is the entropy per normal particle (specific entropy), i.e. a non-vanishing contribution
to the entropy is only provided by the normal fraction (two-fluid model). The specific heat has
a cusp at T = Tc.

3Calculation of the temperature derivatives: (1) Fixed chemical potential:

∂

∂T

V kBT

λ3
g5/2(z) =

5V kB

λ3
g5/2(z) +

V kBT

λ3

g3/2(z)

z

∂z

∂T| {z }
= −kB

V

λ3
g3/2(z)βµ = −NkB ln z

(4.76)

where we used ∂
∂z
g5/2 = g3/2/z.

(2) Fixed particle number: we use

g3/2(z) =
N

V
λ3 ⇒

dg3/2

dT
=
g1/2(z)

z

dz

dT
= −3

2

N

V

λ3

T
(4.77)

which leads to the relation
dg5/2

dT
=
g3/2(z)

z

dz

dT
= −9

4

g3/2(z)

g1/2(z)

Nλ3

V
. (4.78)

This leads to the expression for the specific heat.
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Fig.4.5: Phasediagrams; Left panel: p-v-diagram; the isothermal lines reach the transition line
with zero-slope, i.e. the compressibility diverges. Right panel: p-T -diagram; the condensed

phase corresponds to the transition line, there is no accessible space above the transition line.

We consider now the phase diagram of various state variable.
(1) p-v-diagram: phase transition line

p0v
5/3 =

h2

2πm
g5/2(1)

[g3/2(1)]5/3
. (4.81)

(2) p-T -diagram: phase transition line

p0 =
kBT

λ3
g5/2(1) ∝ T 5/2 (4.82)

which is the vapor pressure (constant for T < Tc). We use this line to determine the latent heat
l per particle via the Clausius-Clapeyron relation,

dp0

dT
=

l

T∆v
with l = T∆s (4.83)

The condensate takes no specific volume compared to the normal fraction. Thus, ∆v = vc.
Therefore we obtain

l = Tvc
dp0

dT
= Tvc

5
2
kBg5/2(1)

λ3
= T

5
2
kB

g5/2(1)
g3/2(1)

(4.84)

where we used the relation λ3 = vcg3/2(1). Note that this is consistent with our result on
the specific entropy s. The condensed phase has no specific entropy such that ∆s = s and,
consequently, l = T∆s using (4.80).

Examples of the Bose-Einstein condensates is the quantum fluid 4He which shows a condensation
below Tc ≈ 2.18K into a superfluid phase. The superfluid phase is characterized by a frictionless
flow, which is a signature of the ”rigidity” of the condensate.

T
5.19 K2.18 K T

λ

Cv

He II

He I

solid

p

T

gas

Fig.4.6: 4He: Left panel: Schematic phase diagram below 2.18 K the superfluid phase HeII
appears and the phase He I is a normal quantum fluid. At 5.19 K a critical end point is

located. At high pressure Helium becomes a solid. Right panel: Specific heat shows a singularity
at the transition point. Due to the characteristic shape this transition is called ”λ-transition”.
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A further very modern example are ultracold atoms in optical traps, e.g. 87 Rb (37 electrons +
87 nucleons = 124 Fermions → Boson). For 2000 atoms in the trap the critical temperature is
170 nK.

Fig.4.7: Velocity distribution of Rb-atoms: Left panel: T > Tc; middle panel: T ∼ Tc ; right
panel T � Tc. A peak at the center develops corresponding to the fraction of particles with
”zero-velocity” and at the same time the fraction of particles with finite velocity shrinks.

(Source: http://www.nist.gov/public affairs/gallery/bosein.htm)

4.6 Photons and phonons

We consider now classes of Bose gases whose particle number is not conserved. They are derived
as normal modes of harmonic oscillators. Thus we first consider the statistical physics of the
harmonic oscillator. The most simple example is the one-dimensional harmonic oscillator whose
spectrum is given by

εn = ~ω
(
n+

1
2

)
with n = 0, 1, 2, . . . (4.85)

and the eigenstates |n〉. The quantum number n is considered as the occupation number of
the oscillator mode. We analyze this within the canonical ensemble formulation with a given
temperature T . The partition function reads

Z = tre−βH =
∞∑

n=0

〈n|e−βH|n〉 =
∞∑

n=0

e−βεn = e−β~ω/2
∞∑

n=0

e−β~ωn =
e−β~ω/2

1− e−β~ω
. (4.86)

The internal energy is obtained through

U = −∂ lnZ
∂β

=
1
2

~ω +
~ω

eβ~ω − 1
. (4.87)

The specific heat is

C =
dU

dT
= kB

(
~ω

2kBT

)2 1
sinh2(β~ω/2)

, (4.88)

with the limiting properties

C =


kB kBT � ~ω

kB

(
~ω

2kBT

)2

e−β~ω kBT � ~ω .
(4.89)
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In the large-temperature limit the specific heat approaches the equipartition law of a one-
dimensional classical harmonic oscillator. The mean occupation number is given by

〈n〉 =
1
Z

∞∑
n=0

ne−βεn =
1

eβ~ω − 1
. (4.90)

This corresponds to the Bose-Einstein distribution function. Thus we interpret n as a number
of Bosons occupying the mode ω.

4.6.1 Blackbody radiation - photons

Electromagnetic radiation in a cavity is a good example of a discrete set of independent harmonic
oscillators. Consider a cubic cavity of edge length L. The wave equation is expressed in terms
of the vector potential (

1
c2
∂2

∂t2
− ~∇2

)
~A = 0 (4.91)

and the electric and magnetic field are then

~E = −1
c

∂ ~A

∂t
and ~B = ~∇× ~A , (4.92)

where we used the Coulomb gauge ~∇ · ~A = 0 and φ = 0. This can be solved by a plane wave:

~A(~r, t) =
1√
V

∑
~k,λ

{
A~kλ

~e~kλ
ei

~k·~r−iωt +A∗~kλ
~e∗~kλ

e−i~k·~r+iωt
}

with


ω = ω~k

= c|~k| ,

~e~kλ
· ~k = 0 ,

(4.93)
i.e. a linear dispersion relation and a transverse polarization ~e~kλ

(λ: polarization index). As-
suming for simplicity periodic boundary conditions in the cube we obtain the quantization of
the wavevector,

~k =
2π
L

(nx, ny, nz) with ni = 0,±1,±2, . . . (4.94)

Each of the parameter set (~k, λ) denotes a mode representing an independent harmonic oscillator.
These oscillators can be quantized again in the standard way.4 The states of a mode differ by
energy quanta ~ω~k

. The occupation number n~kλ
is interpreted as the number of photons in this

mode.
The partition function is then derived from that of a harmonic oscillator

Z =
∏
~k,λ

e−β~ω~k
/2

1− e−β~ω~k

=
∏
~k

(
e−β~ω~k

/2

1− e−β~ω~k

)2

(4.98)

4Canonical quantization of the radiation field: Introduce the variables

Q~kλ =
1√
4πc

`
A~kλ +A∗~kλ

´
and P~kλ =

iω~k√
4πc

`
A~kλ −A∗~kλ

´
(4.95)

which leads to the following expression for the Hamiltonian

H =

Z
d3r

~E2 + ~B2

8π
=

X
~k,λ

ω~k

2πc

˛̨
A~kλ

˛̨2
=

1

2

X
~k,λ

`
P 2

~kλ
+ ω2

~k
Q2

~kλ

´
. (4.96)

This is the Hamiltonian of a harmonic oscillator for each mode which we can quantize and obtain the new form

H =
X
~k,λ

~ω~k

„
a†~kλ

a~kλ +
1

2

«
=

X
~k,λ

~ω~k

„
n~kλ +

1

2

«
(4.97)

where A~kλ → a~kλ annihilates and A∗~kλ
→ a†~kλ

creates a photon in the mode (~k, λ).
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where the exponent 2 originates from the two polarization directions. The internal energy follows
from

U(T ) = −∂ lnZ
∂β

= 2
∑
~k

~ω~k

eβ~ω~k − 1
=
∫
dωD(ω)

~ω
eβ~ω − 1

= V

∫
dωu(ω, T ) (4.99)

where we have neglected the zero point motion term (irrelevant constant). The density of modes
in (4.99) is denoted as

D(ω) =
∑
~k,λ

δ(ω − ω~k
) =

2V
(2π)3

4π
∫
dk k2δ(ω − ck) = V

ω2

π2c3
(4.100)

which leads to the spectral energy density

u(ω, T ) =
ω2

π2c3
~ω

eβ~ω − 1
, (4.101)

which is the famous Planck formula. There are two limits

u(ω, T ) ≈


kBT

ω2

π2c3
~ω � kBT Rayleigh-Jeans-law

~ω3

π2c3
e−β~ω ~ω � kBT Wien’s law

(4.102)

whereby the Rayleigh-Jeans law corresponds to the classical limit. The maximum for given T
follows Wien’s displacement law,

~ω0 = 2.82kBT . (4.103)

The total internal energy density leads to the Stefan-Boltzmann law

U

V
=
∫
dωu(ω, T ) =

π2

15
(kBT )4

(~c)3
∝ T 4 . (4.104)

The energy current density of a blackbody is defined as

U

V
c =

energy
area · time

(4.105)

Thus the emission power of electromagnetic radiation per unit area for the surface of a blackbody
is defined by

Pem =
U

V
c

1
4π

∫
dΩ~k

~k · ~n
|~k|

=
U

V
c

1
4π

∫
dΩ~k

cos θ =
Uc

4V
=
π2

60
(kBT )4

~3c2
= σT 4 (4.106)

where for the current density the component perpendicular to the surface counts (~n: surface
normal vector).

Rayleigh−Jeans
Planck

B
h     /k  Tω

Wien

Fig.4.8: Spectral density of black body radiation.
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This blackbody radiation plays an important role for the energy budget of the earth. The sun
can be considered a blackbody emitting an energy current at the temperature of T ≈ 6000K.
This delivers an energy supply of 1.37kW/m2 to the earth. The earth, on the other hand, has
to emit radiation back to the universe in order not to heat up arbitrarily. The earth is not a
black body but a ”gray” body as it is strongly reflecting in certain parts of the spectrum. A
further example of blackbody radiation is the cosmic background radiation at a temperature
2.73 K which originates from the big bang.

4.6.2 Phonons in a solid

We consider Debye’s theory of the lattice vibration and their influence on the thermodynamics of
a solid. A solid consists of atoms which form a lattice. They interact with each other through a
harmonic potential. Let us assume that the solid consists of NA atoms arranged in a cube of edge
length L, i.e. there are 3NA degrees of freedom of motion. For our purpose it is convenient and
sufficient to approximate this solid as a homogenous isotropic elastic medium whose vibration
are described by the following equations of motion:

1
c2l

∂2~u

∂t2
− ~∇(~∇ · ~u) = 0 longitudinal sound mode ,

1
c2t

∂2~u

∂t2
− ~∇2~u = 0 transversal sound mode .

(4.107)

There are two independent transversal (~k · ~u = 0) and one longitudinal (~k × ~u = 0) sound
mode. These equation can be solved by plane waves and yield linear dispersion analogous to
the electromagnetic waves:

ω
(l)
~k

= cl|~k| and ω
(t)
~k

= ct|~k| . (4.108)

The density of states is obtained analogously using periodic boundary conditions for the waves,

D(ω) =
V ω2

2π2

(
1
c3l

+
2
c3t

)
. (4.109)

A difference occurs due to the finite number of degrees of freedom. In the end we get 3NA

modes. Thus there must be a maximal value of ω and |~k|. We take the sum

3NA =
∑

|~k|≤kD

3 =
3V

(2π)3
4π
∫ kD

0
dk k2 =

V k3
D

2π2
⇒ kD =

(
6π2NA

V

)1/3

(4.110)

and define in this way the Debye wave vector kD and the Debye frequency ωD = ceffkD where

3
c3eff

=
(

1
c3l

+
2
c3t

)
. (4.111)

The internal energy is obtained again in the same way as for the electromagnetic radiation apart
from the limit on the frequency integration:

U(T )
V

=
∫ ωD

0
dω u(ω, T ) . (4.112)
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Fig.4.9: Density of states of phonons. Left panel: Debye model; right panel: more realistic
spectrum. Note that the low frequency part in both cases follows an ω2 law and leads to the
T 3-behavior of the specific heat at low temperature. This is a consequence of the linear

dispersion which is almost independent of the lattice structure and coupling.

We consider first the limit of small temperatures kBT � kBθD = ~ωD (θD: Debye temperature).
The internal energy is given by

U(T ) = V
(kBT )4

(2π~)3
3
c3eff

4π
∫ ∞

0
dx

x3

ex − 1︸ ︷︷ ︸
= π4/15

= V
π2(kBT )4

10~3c3eff

=
3π4kBT

5

(
T

θD

)3

NA (4.113)

and correspondingly the low-temperature specific heat is

CV =
12π4

5
NAkB

(
T

θD

)3

, (4.114)

the famous Debye law. On the other hand, at high temperatures (T � θD) we use

1
eβ~ω − 1

≈ 1
β~ω

− 1
2

+
β~ω
12

. (4.115)

This yields for the internal energy

U(T ) =
3V

2π2c3eff

∫ ωD

0
dω

(
ω2kBT −

~ω3

2
+

~2ω4

12kBT

)
+ · · ·

= 3NAkBT

{
1− ~ωD

kBT
+

1
20

(
~ωD

kBT

)2
}

+ · · ·
(4.116)

and leads to the specific heat

CV = 3NAkB

{
1− 1

20
θ2
D

T 2

}
+ · · · . (4.117)

In the high-temperature limit the specific heat approaches the value of the equipartition law for
3NA harmonic oscillators.
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Fig.4.10: Specific heat: Low-temperature behavior follows a T−3-law. At high-temperature the
universal Dulong-Petit law recovers, which is a classical result of the equipartition law for

particles in a harmonic potential.

The Debye temperature lies around room temperature usually. However, there also notable
exception such as lead (Pb) with θD = 88K or diamond with θD = 1860K.

4.6.3 Diatomic molecules

We now return to the problem of the diatomic molecules made of N atoms which we had already
analyzed in the framework of classical statistical physics (Sect.3.4.2). Quantum mechanical
aspects appear in the low-temperature regime kBT � ε (ε: depth of the Lenard-Jones potential).
Under this condition we consider again the Lenard-Jones potential around its minimum as a
harmonic potential. Ignoring for the moment the motion of the center of mass, the Hamiltonian
can be restricted to the relative coordinates r and relative momenta ~p,

H =
~p2

2m∗ + v(r) =
~p2

2m∗ +A(r − r0)2 ≈
p2

r

2m∗ +
~L2

2m∗r20
+A(r − r0)2 (4.118)

where the reduced mass is given by m∗ = m/2 and pr is radial momentum along the axis of
the molecule bond. The motion separates into radial vibrational part which corresponds to a
one-dimensional harmonic oscillator and the rotational motion. The two independent spectra
are given by

Evib
n = ~ω

(
n+

1
2

)
and Erot

l =
~2l(l + 1)

2m∗r20
(4.119)

with ω =
√

2A/m∗.
Let us now analyze the partition function of the different degrees of freedom. The translational
degree of freedom (center of mass motion) corresponds to the motion of a particle of mass 2m
in three dimensions. At low temperatures this has to be treated as bosonic quantum liquid in
the case that the atoms are identical (not only chemically but also as an isotope, same mass m),

Ztrans =
∏
~p

1
1− z−1e−β~p2/4m

. (4.120)

Next we have the vibrational part and the rotational part which we want to consider more
carefully,

Zvib =

(
e−β~ω/2

1− e−β~ω

)N/2

(4.121)
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and

Zrot =

( ∞∑
l=0

(2l + 1)e−βl(l+1)/Irot

)N/2

(4.122)

where Irot = mr20/~2. Note that per angular momentum quantum number l there are 2l + 1
degenerate states. Since we know the behavior of Ztrans and Zvib already from the previous
sections, we address now only the rotational part. The partition function cannot be expressed
in closed form. Thus we examine only the limiting behaviors. As a characteristic energy scale
we take kBθrot = 2/Irot. For T � θrot

Zrot ≈
(∫ ∞

0
dl (2l + 1)e−βl(l+1)/Irot

)N/2

=
(
kB

∫ ∞

0
dl

d

dl
e−βl(l+1)/Irot

)N/2

= (IrotkBT )N/2 =
(

2
T

θrot

)N/2

.

(4.123)

and for T � θrot,

Zrot ≈
(
1 + 3e−β2/Irot + · · ·

)N/2
. (4.124)

There is a hierarchy of temperatures in this system, Tc � θrot � θvib � Tdis, where Tc is
the critical temperature for the Bose-Einstein condensation of the molecules, kBθvib = ~ω and
kBTdis is the molecule dissociation temperature (∼ binding energy). We consider in the different
regimes the behavior of the specific heat per molecule, C(T ) = dU/dT :

2C(T )
N

=



3
2
kB + 3kB

(
θrot

T

)2

e−θrot/T Tc � T � θrot

3
2
kB + kB + kB

(
θvib

2T

)2

e−θvib/T θrot � T � θvib

3
2
kB + kB + kB θvib � T � Tdis

3kB Tdis � T

(4.125)
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Fig. 4.11: Schematic behavior of specific heat of a diatomic molecule.
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Note that due to the vibrational modes the specific heat goes through maxima when molecules
are formed. Also the rotational modes are responsible for a non-monotonic behavior. Upon
lowering temperature it looses gradually in magnitude due to the quantum mechanical freezing
out of degrees of freedom.
For the hydrogen molecule H2 the energy scales are Tdis ∼ 50000K, θvib ∼ 2000K and θrot ∼
85K. 5 There is no Bose-Einstein condensation for H2, because it solidifies at 14K.

5 Note that due to the fact that the nuclear spins of the H-atom is 1/2, there is a subtlety about the degeneracies.
Actually, as identical Fermions their wave function has to be totally antisymmetric under exchange. If the two
spins form a spin singlet then the orbital part has to have even parity, i.e. l = 0, 2, 4, . . . (called ”para-hydrogen”),
while for the spin triplet configuration odd parity is required, i.e. l = 1, 3, 5, . . . (called ”ortho-hydrogen”). As a
consequence in the partition function (4.122) the summands of odd l should have a prefactor 3. This does not
affect the specific heat at temperatures T � θrot which is the classical limit of the rotator. But there is a (minor)
correction at lower temperature such that

2C

N
≈ 3

2
kBT + 9kB

„
θrot

T

«2

e−θrot/T (4.126)

for Tc � T � θrot.

87



Chapter 5

Phase transitions

Phase transitions in macroscopic systems are ubiquitous in nature and represent a highly impor-
tant topics in statistical physics and thermodynamics. Phase transitions define a change of state
of a system upon changing external parameters. In many cases this kind of change is obvious,
e.g. transition between liquid and gas or between paramagnetic and ferromagnetic phase, and
in most cases it is accompanied by anomalies in measurable macroscopic quantities.
In the previous chapter we have seen a phase transition, the Bose-Einstein condensation. This
transition is special in the sense that it occurs for non-interacting particles. Generally, phase
transitions require an interaction favoring an ordered phase. Then the phase transition occurs as
a competition between the internal energy (or enthalpy) which is lowered by the order and the
entropy which at finite temperature favors disorder. The relevant thermodynamic potentials to
describe phase transitions are the Helmholtz free energy F (T, V,N) and the Gibbs free energy
G(T, p,N),

F = U − TS and G = H − TS . (5.1)

These potentials show anomalies (singularities) at the phase transition.

5.1 Ehrenfest classification of phase transitions

The type of singularity in the thermodynamic potential defines the order of the phase transition.
According to Ehrenfest classification we call a phase transition occurring at a critical temperature
Tc (different phase for T > Tc and T < Tc) to be of nth order, if the following properties hold:(

∂mG

∂Tm

)
p

∣∣∣∣∣
T=Tc+

=
(
∂mG

∂Tm

)
p

∣∣∣∣∣
T=Tc−

and
(
∂mG

∂pm

)
T=Tc+

=
(
∂mG

∂pm

)
T=Tc−

(5.2)

for m ≤ n− 1, and(
∂nG

∂Tn

)
p

∣∣∣∣∣
T=Tc+

6=
(
∂nG

∂Tn

)
p

∣∣∣∣∣
T=Tc−

and
(
∂nG

∂pn

)
T=Tc+

6=
(
∂nG

∂pn

)
T=Tc−

(5.3)

The same definition is used for the free energy. In practice this classification is rarely used
beyond n = 2.

n = 1: A discontinuity is found in the entropy and in the volume:

S = −
(
∂G

∂T

)
p

and V =
(
∂G

∂p

)
T

(5.4)

The discontinuity of the entropy is experimentally the latent heat. The change in volume is
connected with the difference in density of the substance. A well-known example is the transition
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between liquid and gas phase, for which the former is much denser than the latter and accordingly
takes a much smaller volume.
n = 2: The discontinuities are not in the first derivatives but in the second derivatives of the
Helmholtz free energy or Gibbs free energy, i.e. in the response functions. Some such quantities
are the specific heat, the compressibility or the thermal expansion coefficient:

Cp = −T
(
∂2G

∂T 2

)
p

, κT = − 1
V

(
∂2G

∂p2

)
T

, α =
1
V

(
∂2G

∂T∂p

)
(5.5)

As we will see later, second order phase transitions are usually connected with spontaneous
symmetry breaking and can be associated with the continuous growth of an order parameter.
Such transitions show also interesting fluctuation features which lead to the so-called critical
phenomena and universal behavior at the phase transition.

Ehrenfest relations: Interesting relations between various discontinuities at the phase transition
exist. They are generally known at Ehrenfest relations. We consider first a first-order transition
such as the gas-liquid transition. The phase boundary line in the p-T -phase diagram describes
the relation between temperature and vapor pressure in the case of liquid-gas transition. For
the differentials of the free enthalpy in the two phases the following equality holds:

dGl = dGg ⇒ −SldT + Vldp = −SgdT + Vgdp . (5.6)

This allows us to get from the vapor pressure curve (p(T ) at the phase boundary in the p-T -
plane) the relation

dp

dT
=
Sg − Sl

Vg − Vl
=

L

T∆V
(5.7)

where L = T (Sg − Sl) is the latent heat and ∆V = Vg − Vl is the change of the volume. This
relation is known as the Clausius-Clapeyron equation.
If the transition is of second order then the both the entropy and the volume are continuous
through the transition between two phase A and B:

SA(T, p) = SB(T, p) and VA(T, p) = VB(T, p) , (5.8)

which yields the relations through the equality of their differentials,(
∂SA

∂T

)
p

dT +
(
∂SA

∂p

)
T

dp =
(
∂SB

∂T

)
p

dT +
(
∂SB

∂p

)
T

dp ,

(
∂VA

∂T

)
p

dT +
(
∂VA

∂p

)
T

dp =
(
∂VB

∂T

)
p

dT +
(
∂VB

∂p

)
T

dp .

(5.9)

We now use the Maxwell relation(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

= −V α (5.10)

and obtain

dp

dT
= −

(
∂SB
∂T

)
p
−
(

∂SA
∂T

)
p(

∂SB
∂p

)
T
−
(

∂SA
∂p

)
T

=
∆Cp

TV∆α
(5.11)

and analogously

dp

dT
= −

(
∂VB
∂T

)
p
−
(

∂VA
∂T

)
p(

∂VB
∂p

)
T
−
(

∂VA
∂p

)
T

=
∆α
∆κT

. (5.12)

Various other relations exist and are of experimental importance.
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5.2 Phase transition in the Ising model

The Ising model is the simplest model of a magnetic system. Like for our model of the ideal
paramagnet we consider magnetic moments or spins with two states, si = ±s (Ising spins).
Sitting on a lattice they interact with their nearest neighbors (analogous to the spin chain in
the Chapter 3). We write the model Hamiltonian as

H = −J
∑
〈i,j〉

sisj −
∑

i

siH . (5.13)

The sum
∑

〈i,j〉 denotes summation over nearest neighbors on the lattice, counting each bond
only once. J is the coupling constant which we assume positive. The second term corresponds
to a Zeeman term due to an external magnetic field. The Ising spins are classical variables,
unlike quantum spins ~s whose different components do not commute with each other. Ising
spins represent only one component of a quantum spin.
The interaction favors the parallel alignment of all spins such that this model describes a fer-
romagnetic system. The ferromagnetic phase is characterized by a finite uniform mean value
〈si〉 = m, the magnetization, even in the absence of an external magnetic field.

5.2.1 Mean field approximation

The mean field approximation is based on the view that a given spin in the lattice coupling to
surrounding spins feels an average field which acts analogous to a Zeeman field. Thus for the
spin si we may define

H =
∑

i

Hi =
1
2

∑
i

si

−J ∑
j∈Λi

sj − 2H

 = −
∑

i

sihi (5.14)

where Λi denotes the set of neighbors of site i (factor 1/2 due to double counting). The most
simple form of the mean field approximation is to replace the field of the neighboring by their
mean value, i.e. hi = heff which is independent of i.
Let us now tackle the problem in a more systematic way. We rewrite the spin for each site

si = 〈si〉+ (si − 〈si〉) = m+ (si −m) = m+ δsi (5.15)

and insert it into the Hamiltonian, where we approximate 〈si〉 = m uniformly.

H = −J
∑
〈i,j〉

{m+ (si −m)} {m+ (sj −m)} −
∑

i

siH

= −J
∑
〈i,j〉

{
m2 +m(si −m) +m(sj −m) + δsiδsj

}
−
∑

i

siH

= −J
∑

i

(
zmsi −

z

2
m2
)
−
∑

i

siH − J
∑
〈i,j〉

δsiδsj .

(5.16)

Here z is the number of nearest neighbors (for a hypercubic lattice in d dimensions z = 2d). In
the mean field approximation we neglect the last term assuming that it is small. This means
that the fluctuations around the mean value would be small,

Eij =
〈δsiδsj〉
〈si〉〈sj〉

=
〈δsiδsj〉
m2

� 1 , (5.17)
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to guarantee the validity of this approximation. We will see later that this condition is not
satisfied very near the phase transition and that its violation is the basis for so-called critical
phenomena. We now write the mean field Hamiltonian

Hmf = −
∑

i

siheff +NJ
z

2
m2 with heff = Jzm+H , (5.18)

which has the form of an ideal paramagnet in a magnetic field heff . It is easy to calculate the
partition function and the free energy as a function of the parameter m,

Z(T,m,H) = e−βJzm2N/2 {2 cosh(βsheff)}N (5.19)

and
F (T,H,m) = −kBT lnZ = NJ

z

2
m2 −NkBT ln {2 cosh(βsheff)} . (5.20)

To find the equilibrium condition we have now to find the minimum of F for given T and H.
To this end we minimize F with respect to m as the only free variable,

0 =
∂F

∂m
= NJzm−NJzs tanh(βsheff) . (5.21)

This equation is equivalent to the self-consistence equation for the mean value of si:

m = 〈si〉 =

∑
si=±s sie

βsiheff∑
si=±s e

βsiheff
= s tanh(βsheff) (5.22)

This is a non-linear equation whose solution determines m and eventually through the free
energy all thermodynamic properties.

5.2.2 Instability of the paramagnetic phase

The disordered phase above a certain critical temperature Tc is called paramagnetic phase. For
this phase we consider first the magnetic susceptibility χ(T ) at zero magnetic field, which is
obtained from

χ(T ) = N
d〈si〉
dH

∣∣∣∣
H=0

= − d2F

dH2

∣∣∣∣
H=0

= − d

dH

{
∂F

∂H
+
∂F

∂m

∂m

∂H

}∣∣∣∣
H=0

= − d

dH

∂F

∂H

∣∣∣∣
H=0

(5.23)

where we used the equilibrium condition (5.21). Thus we obtain

χ(T ) = Ns
d

dH
tanh [β(Jzsm(H) + sH)]

∣∣∣∣
H=0

=
Ns

kBT

{
Jzs

dm

dH

∣∣∣∣
H=0

+ s

}

=
s

kBT
Jzsχ(T ) +

Ns2

kBT
.

(5.24)

where we used that for a paramagnet m(H = 0) = 0. This leads to the susceptibility

χ(T ) =
Ns2

kBT − Jzs2
(5.25)

which is modified compared to that of the ideal paramagnet. If kBT → Jzs2 from above χ(T )
is singular. We define this as the critical temperature

Tc =
Jzs2

kB
. (5.26)
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T = T
c

T < Tc

T > T
c

m

m

Fig. 5.1: Graphical solution of the self-consistence equation (5.22). The crossing points of the
straight line and the step-like function gives the solution. There is only one solution at m = 0

for T ≥ Tc and three solutions for T < Tc.

As the system approaches T = Tc it becomes more and more easy to polarize its spin by a tiny
magnetic field. This indicates an instability of the system which we now analyze in terms of
the self-consistence equation (5.22) in the absence of a magnetic field. Looking at Fig. 5.1 we
find that indeed the critical temperature Tc plays an important role in separating two types of
solutions of equations (5.22). For T ≥ Tc there is one single solution at m = 0 and for T < Tc

there are three solutions including m = 0,m(T ),−m(T ). The physically relevant solution is
then the one with finite value of m, as we will show below. It is obvious that below T = Tc

the mean field m grows continuously from zero to a finite value. In order to see which of the
solutions is a minimum of the free energy we expand F in m assuming that m and H are small.

F (T,H,m) ≈ NJz

[
m2

2
− kBT

Jz

{
(βsheff)2

2
− (βsheff)4

12

}]
−NkBT ln 2 (5.27)

For H = 0 we find

F (T,H,m) ≈ F0(T ) +NJz

[(
1− Tc

T

)
m2

2
+

1
12s2

(
Tc

T

)3

m4

]

≈ F0(T ) +NJz

[(
T

Tc
− 1
)
m2

2
+

m4

12s2

] (5.28)

where for the last step we took into account that our expansion is only valid for T ≈ Tc.
Moreover, F0 = −kBT ln 2. This form of the free energy expansion is the famous Landau theory
of a continuous phase transition.
It is obvious that for T > Tc the minimum lies at m = 0. For T < Tc the coefficient of
the m2-term (2nd-order) changes sign and a finite value of m minimizes F (see Fig.5.2). The
minimization leads to

m(T ) =

 ±s
√

3τ T < Tc

0 T ≥ Tc

(5.29)

with τ = 1− T/Tc as a short-hand notation. There are two degenerate minima and the system
chooses spontaneously one of the two (spontaneous symmetry breaking).
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m

c

T = T
c

T > Tc

F

T < T

Fig. 5.2: Landau free energy: T > Tc: 2nd-order term is positive and minimum of F at m = 0;
T = Tc, 2nd vanishes and free energy minimum at m = 0 becomes very shallow; T < Tc:

2nd-order term is negative and minimum of F is at finite value of m, bounded by the 4th-order
term.

Next we analyze the behavior of the free energy and other thermodynamic quantities around
the phase transition. The temperature dependence of the free energy and the entropy is given
by

F (T ) = F0(T )− 3NkBTcτ
2

4
Θ(τ) and S(T ) = −∂F (T )

∂T
= NkB ln 2− 3NkBτ

2
Θ(τ) ,

(5.30)
and eventually we obtain for the specific heat,

C

T
=
∂S

∂T
=

3NkB

2Tc
Θ(τ) + C0 (5.31)

where C0 is zero in the present approximation for H = 0. While the free energy and the entropy
are continuous through the transition, the specific heat shows a jump indicating the release of
entropy through ordering.
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Fig. 5.3: Thermodynamic quantities within mean field theory. Free energy, entropy and
specific heat.

Within mean field approximation the region close to Tc is described by the Landau expansion.
However, taking the solution of the complete mean field equations leads to the thermodynamic
behavior for the whole temperature range as shown in Fig. 5.3. Note that in this mean field
approximation the entropy is NkB ln 2 in the paramagnetic phase, the maximal value the entropy
can reach.
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5.2.3 Phase diagram

So far we have concentrated on the situation without magnetic field. In this case the phase
transition goes to one of two degenerate ordered phases. Either the moments order to m = +|m|
or m = −|m|. An applied magnetic field lifts the degeneracy by introducing a bias for one of
the two states. The order with m parallel to the field is prefered energetically. In a finite field
the transition turns into a crossover, since there is already a moment m for temperatures above
Tc. This is also reflected in the thermodynamic properties which show broad features around Tc

and not anymore the sharp transition, e.g. the specific heat is turned into a broadened anomaly.

0 0.5 1 1.5
T / Tc

0

0.5

1

1.5

m
(T

,H
) 

/ s

0 0.5 1 1.5
T / Tc

0

0.5

1

1.5

C
T

c / 
N

k B
T

Fig. 5.4: Ising system in a finite magnetic field: (left panel) Magnetization as a function of
temperature in a fixed magnetic field (solid line) and in zero field (dashed line); (right panel)

specific heat for a fixed magnetic field. In a magnetic field no sharp transition exists.

Next we turn to the behavior of the magnetization m as a function of the magnetic field and
temperature (illustrated in Fig.5.5 and 5.6). At H = 0 going from high to low temperatures
the slope of m(H)|H=0 is linear and diverges as we approach Tc. This reflects the diverging
susceptibility as a critical behavior.

m

c

T > T
c

T = T
c

H

metastable

instable

stable

T < T

Fig. 5.5: Magnetization as a function of magnetic field for different temperatures.

For all temperatures T > Tc m(H) is a single-valued function in Fig.5.5. Below Tc, however,
m(H) is triply valued as a solution of the self-consistence equation. The part with dm/dH > 0
is stable or metastable representing local minima of the free energy. The part of dm/dH < 0
corresponds to a local maximum of the free energy and is unstable. Considering for T < Tc

the magnetic field running from negative to positive values, we find for H < 0 the state with
m < 0 has lowest free energy. At H = 0 there is a degeneracy between +|m| and −|m| as both
minima have the same energy and for H > m > 0 is the lowest energy phase. Thus we encounter
a level-crossing of the free energy for the two states at H = 0 and magnetization jumps from
negative to positive direction. This represents a first-order transition, since the free energy as a
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function of H is singular, i.e. it has a sharp slope change (a discontinuity in the first derivative
of F with respect to H).1

This may be visualized also in a three-dimensional graph in m, H and T (Fig. 5.6). The
shaded region appearing for T < Tc is a coexistence region of two degenerate phases. As m is
changed in this region, the fraction of the two degenerate finite magnetization phases is changed
continuously following a Maxwell construction.

m(q) = q|m(H = 0, T )|+ (1− q){−|m(H = 0, T )|} = (2q − 1)|m(H = 0, T )| (5.32)

where q can change continuously with 0 ≤ q ≤ 1. This may be viewed as domains of the two
states changing in size.

m

T

H

isothermal

Fig. 5.6: Phase diagram in (H,m, T ). The shaded region represents a coexistence region.

In the H-T -plane this shaded region is simply a line for the first order transition of a discontin-
uously changing magnetization.

5.2.4 Hubbard-Stratonovich transformation

We analyze the mean field approximation from a different point of view, using the Hubbard-
Stratonovich transformation. The partition function of the Ising model can be rewritten by
introducing an auxiliary field φi:

Z =
∑
{si}

e−
β
2

P
i,j Jijsisj+β

P
i siHi

=
1

(2πkBT )N/2
√
detJ

∫ +∞

−∞

(∏
i′

dφi′

)
e

β
2

P
i,j(J

−1)ij(φi−Hi)(φj−Hj)
∏

i

∑
si=±s

eβφisi

=
1

(2πkBT )N/2
√
detJ

∫ +∞

−∞

(∏
i′

dφi′

)
e

β
2

P
i,j(J

−1)ij(φi−Hi)(φj−Hj)+
P

i ln[2 cosh(βsφi)]

(5.33)
where we use the N ×N -matrix

Jij =


−J (i, j) nearest neighbors

0 otherwise
(5.34)

1Note that in reality ramping H through 0 does not necessarily lead to a sharp transition. Flipping all
magnetic moments at once is not a trivial matter. Thus the system may stay trapped in the metastable free
energy minimum for a certain range of positive H. The transition may happen through the nucleation of reversed
magnetic bubbles (domains) and the subsequent expansion of the reversed region by means of domain wall motion.
(Similar to the nucleation and expansion of droplets in undercooled vapor.) There is a certain field where the
metastable minimum becomes a saddle point and thus unstable for infinitesimally higher fields. Varying the
magnetic field periodically can lead to hysteretic loops.
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and (J−1)ij is the inverse of Jij . We take the magnetic field as site dependent, which will be
convenient later. We used the identity∫ +∞

−∞
dφ e−

φ2

2a
+sφ = e

a
2
s2

∫ +∞

−∞
dφ e−

1
2a

(φ−sa)2 =
√

2πae
a
2
s2

⇒
∫ +∞

−∞

(∏
i

dφi

)
e−

1
2

P
i,j φi(A

−1)ijφj+
P

i φisi = (2π)N/2
√
detA e

1
2

P
ij siAijsj

(5.35)

with A being a positive definite N × N -matrix. This exact rewriting of the partition function
is called Hubbard-Stratonovich transformation. We replaced here the discontinuous variable si

by a continuous field φi.
We introduce the potential S(φi,Hi) and write

Z = C

∫ +∞

−∞

(∏
i′

dφi′

)
e−βS(φi,Hi) = e−βF (5.36)

with C = 1/(2πkBT )N/2
√
detJ and

S(φi,Hi) = −1
2

∑
i,j

(J−1)ij(φi −Hi)(φj −Hj)−
1
β

∑
i

ln[2 cosh(βsφi)] (5.37)

From this we can derive the mean field result by the saddle point approximation (sometimes
also called method of steepest decent) which is based on the idea that one set replaces the
auxiliary field by the value φ̄i which dominates the integral for the partition function. 2 This is
analogous to discussions we had earlier when we tested the equivalence of different ensembles.
This method relies on the fact that the fluctuations of the field φi are small - something which
has to be tested. Therefore we look for the maximum of S now and approximate Z then by

Z ≈ Ce−βS(φ̄i,Hi) with 0 =
∂S

∂φi

∣∣∣∣
φi=φ̄i

= −
∑

j

(J−1)ij(φ̄j −Hj)− s tanh(βsφ̄i) (5.41)

which leads to the saddle-point equation

φ̄i = Hi − s
∑

j

Jij tanh(βsφ̄j) (5.42)

For Hi = 0 the saddle point is given by the uniform solution φ̄i = φ̄, satisfying

φ̄ = −s
∑

j

Jij tanh(βsφ̄) = Jzs tanh(βsφ̄) . (5.43)

2Method of steepest decent: We consider the integral

I =

Z b

a

eNg(x)dx (5.38)

and N � 1 and g(x) a function with a unique maximum at x = x̄ in the interval [a, b], i.e.

g(x) = g(x̄) + g′(x̄)(x− x̄) +
1

2
g′′(x̄)(x− x̄)2 + · · · . (5.39)

For the maximum, the conditions g′(x̄) = 0 and g′′(x̄) < 0 holds. We approximate the integral

I ≈ eNg(x̄)

Z b

a

e−N|g′′(x̄)|(x−x̄)2 ≈ eNg(x̄)

Z +∞

−∞
e−N|g′′(x̄)|(x−x̄)2 =

„
2π

N |g′′(x̄)|

«1/2

eNg(x̄) (5.40)

which is exact in the limit N →∞. Considering ln I we find that ln I ≈ Ng(x̄) +O(lnN).
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This yields the same critical temperature for the onset of a finite solution for φ̄ as the mean field
solution. The relation to m of the mean field approximation is given by the condition

〈si〉 = −kBT
∂ lnZ
∂Hi

= −dS(φ̄i,Hi)
dHi

= − ∂S

∂Hi
= −

∑
j

(J−1)ij(φ̄i −Hi) = s tanh(βsφ̄i) (5.44)

such that
m = s tanh(βsφ̄) ⇒ φ̄ = Jzm . (5.45)

The discussion of the thermodynamic properties are in this formulation analogous to the ordinary
mean field treatment and give exactly the same behavior. We are, however, now in a position
to go beyond the mean field level and, in particular, to test the validity of the mean field
approximation.

5.2.5 Correlation function and susceptibility

We consider first the correlation function

Γij = 〈sisj〉 − 〈si〉〈sj〉 = −(kBT )2
∂ lnZ
∂Hi∂Hj

≈ −kBT
d2S(φ̄i,Hi)
dHidHj

. (5.46)

With (5.44) we obtain

βΓij =
d

dHj
s tanh(βsφ̄i) (5.47)

which if inverted yields

kBTΓ−1
ij =

kBT

s2
cosh2(βsφ̄i)

dHj

dφ̄i
=
kBT

s2
cosh2(βsφ̄i)

{
δij +

βs2Jij

cosh2(βsφ̄)

}
(5.48)

where we use (5.42)

Hj = φ̄j + s
∑
j′

Jjj′ tanh(βsφ̄j′) ⇒ dHj

dφ̄i
= δij +

βs2Jij

cosh2(βsφ̄i)
. (5.49)

The following Fourier-transformations lead to a simple form for (5.48),3

Jij =
∫

d3q

(2π)3
J(~q)ei~q·(~ri−~rj) , Γij =

∫
d3q

(2π)3
Γ(~q)ei~q·(~ri−~rj) , δij =

∫
d3q

(2π)3
ei~q·(~ri−~rj)

(5.54)
3For the inversion of Γij it is important to realize that Γij = Γ(~ri − ~rj) is translation invariant. We use now

the linear equation

ai =
X

j

Γ−1
ij bj ⇒

X
j

Γijaj = bi . (5.50)

We perform now the Fourier transform of the second equation,X
i

X
j

Γijaje
−i~q·~ri =

X
i

X
j

Γijaje
−i~q·(~ri−~rj)e−i~q·~rj = Γ(~q)a(~q) =

X
i

bie
−~q·~ri = b(~q) . (5.51)

On the other hand, we findX
i

X
j

Γ−1
ij bje

−i~q·~ri =
X

i

X
j

Γ−1
ij bje

−i~q·(~ri−~rj)e−i~q·~rj = Γ−1(~q)b(~q) =
X

i

aie
−~q·~ri = a(~q) , (5.52)

leading to the relation

Γ−1(~q) =
1

Γ(~q)
, (5.53)

which is a convenient way to handle the inverted matrix Γ−1
ij .
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with

Γ(~q) =
kBTΓ0

1 + Γ0J(~q)
with Γ0 =

βs2

cosh2(βsφ̄)
= β(s2 −m2) , (5.55)

using (5.45). On a d-dimensional hypercubic lattice with only nearest-neighbor coupling we
obtain for J(~q),

J(~q) =
1
N

∑
i,j

Jije
−i~q·(~ri−~rj) = −2J

d∑
α=1

cos qαa (5.56)

with the lattice constant a. If we focus on the long-distance correlations only, we can restrict
ourselves to the small ~q range and we expand J(~q) as

J(~q) ≈ −Jz+Jq2a2 ⇒ Γ(~q) ≈ kBT
kBT

s2−m2 − Jz + Jq2a2
≈ kBTs

2

kB(T − Tc) + Js2q2a2 + kBTm2/s2

(5.57)
where for the last approximation we assumed m� s as is the case in ordered phase close to Tc

and for T > Tc.
First let us use this result to determine the susceptibility. For this purpose we take the earlier
derived connection of the susceptibility with the fluctuations.

χ = β
∑
i,j

{〈sisj〉 − 〈si〉〈sj〉} = β
∑
i,j

Γij = NβΓ(~q = 0) =
Ns2

kB(T − Tc) + kBTm2/s2
(5.58)

We use now the earlier mean field result for m2 = 3s2τ in (5.29) and obtain for the regime very
close to Tc the behavior,

χ(T ) =


Ns2

kB(T − Tc)
T > Tc ,

Ns2

2kB|T − Tc|
T < Tc ,

(5.59)

showing that the susceptibility is singular approaching Tc from both sides of the phase transition
with the same exponent for |τ |.
Now return to the correlation function in the paramagnetic phase (T > Tc) and represent the
correlation function in real space, where we restrict ourselves to the long-distance behavior
r → ∞. Thus we have the Fourier-transform Γ(~q). For simplicity we consider only the three-
dimensional case,

Γ~r =
∫

d3q

(2π)3
Γ(~q)ei~q·~r =

A

4π2

∫ ∞

0
dq q2

∫
dθ sin θ

eiqr cos θ

1 + ξ2q2
=

A

4π2ir

∫ ∞

0
dq q

eiqr − e−iqr

1 + ξ2q2

=
A

4π2ir

∫ +∞

−∞
dq q

eiqr

1 + ξ2q2
=

A

4π
e−r/ξ

rξ2
=
kBT

4πJ
e−r/ξ

r
(5.60)

where we used residue calculation for the last integral and introduced the parametrization,

A =
s2

1− Tc/T
=
kBTξ

2

Ja2
and ξ2 =

Js2a2

kB(T − Tc)
. (5.61)

The general form of the correlation function for other dimensions d is

Γ~r ∝
e−r/ξ

r(d−1)/2
(5.62)
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if T > Tc. In all cases there is a correlation length which diverges as we approach T → Tc+. At
Tc we find

Γ~r =
kBT

J

∫
ddq

(2π)3
ei~q·~r

q2
∝


ln r d = 2

r2−d d ≥ 3
(5.63)

This suggests that for T → Tc+ the correlation function should rather behave as

Γ~r ∝


ln r e−r/ξ d = 2

e−r/ξ

rd−2
d ≥ 3

(5.64)

which we will encounter later in the context of scaling again.

5.3 Ginzburg-Landau theory

We have used the Landau expansion of the free energy above to discuss phase transitions in
the vicinity of the critical temperature where m was small. This method can be extended
to a highly convenient scheme which allows us to discuss phase transition more generally, in
particular, those of second order. Landau’s concept is based on symmetry and spontaneous
symmetry breaking. The disordered high-temperature phase has a certain symmetry which is
characterized by a group G of all symmetry operations leaving the system invariant. At the
second order phase transition a form of order appears reducing this symmetry such that the
low-temperature phase obeys a symmetry group G′ which is a subgroup of G. This change of
symmetry is called spontaneous symmetry breaking. This symmetry lowering is described by
the appearance of an order parameter, a quantity which does not possess all symmetries of the
group G.
A further important aspect emerges when long-length scale variations of the order parameter
are taken into account. This can be easily incorporated in the Ginzburg-Landau theory and
allows to discuss spatial variations of the ordered phase as well as fluctuations.

5.3.1 Ginzburg-Landau theory for the Ising model

For the Ising model of the previous section we can identify m as the order parameter. The order
parameter m is not invariant under time reversal symmetry K̂,

K̂m = −m . (5.65)

The two states with positive and negative m are degenerate. The relevant symmetry group
above the phase transition is

G = G×K (5.66)

with G as the space group of the lattice (simple cubic) and K, the group {E, K̂} (E denotes
the identity operation). As for the space group we consider the magnetic moment here detached
from the crystal lattice rotations such that G remains untouched through the transition so that
the corresponding subgroup is

G′ = G ⊂ G (5.67)

The degeneracy of the ordered phase is given by the order of G/G′ which is 2 in our case.
The Ginzburg-Landau free energy functional has in d dimensions the general form

F [m;H,T ] = F0(H,T ) +
∫
ddr

{
A

2
m(~r)2 +

B

4
m(~r)4 −H(~r)m(~r) +

κ

2
[~∇m(~r)]2

}

= F0(H,T ) +
∫
ddr f(m, ~∇m;HT )

(5.68)
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where we choose the coefficients according to the expansion done in (5.28) as

A =
Jz

ad

(
T

Tc
− 1
)

= −Jzτ and B =
Jz

3s2ad
. (5.69)

Here a is the lattice constant. We have introduced the spatial continuum limit for the order
parameter m which is based on the procedure of coarse graining. We take a block of sites with
the volume Ld

b with Lb much larger than the lattice constant a and define

m(~r) =
1
Nb

∑
i∈Λb(~r)

〈si〉 with Nb =
ad

Ld
b

(5.70)

and Λb(~r) is the set of sites in the block around the center position ~r. Here we assume that 〈si〉
is changing slowly in space on the length scale Lb.
Under this condition we can now also determine κ from the model Hamiltonian using the fol-
lowing consideration. The variational equation of the free energy functional is given by

0 =
δF

δm
=

∂f

∂m
− ~∇ · ∂f

∂~∇m
= −κ~∇2m+Am+Bm3 −H (5.71)

Let us compare this equation with the saddle-point equation (5.42,5.43) assuming H = 0. It is
sufficient to keep only the terms of first order in m. We then take the equations (5.42,5.45) and
expand the self-consistence equation to linear order

φ̄i = φ̄(~ri) ≈ −βs2
∑

j

Jijφ̄(~rj) = βs2
∑

{~a}n.n.

Jφ̄(~ri + ~a)

= βs2J

zφ̄(~ri) +
∑

{~a}n.n.

~a · ~∇φ̄(~ri) +
1
2

∑
{~a}n.n.

∑
µ,ν=x,y...

aµaν
∂2

∂rµ∂rν
φ̄(~ri)

 .

(5.72)

The sum
∑

{~a}n.n.
runs over nearest-neighbor sites. Note that the second term in the bracket

[. . .] vanishes due to symmetry. Now using the coarse graining procedure we may replace φ̄(~ri) =
Jzm(~r) and obtain

0 = Jz

(
T

Tc
− 1
)
m(~r)− Ja2~∇2m(~r) , (5.73)

and the comparison of coefficients leads to

κ = Ja2−d . (5.74)

We may rewrite the equation (5.73) as

0 = m− ξ2~∇2m with ξ2 =
kBTc

zkB(T − Tc)
=

Js2a2

kB(T − Tc)
(5.75)

where we introduced the length ξ which is exactly equal to the correlation length for T > Tc in
(5.61).

5.3.2 Critical exponents

Close to the phase transition at Tc various quantities have a specific temperature or field depen-
dence which follows powerlaws in τ = 1− T/Tc with characteristic exponents, so-called critical
exponents. We introduce here the exponents relevant for a magnetic system like the Ising model.
The specific heat C and the susceptibility χ follow the behavior

C(T ) ∝ |τ |−α and χ(T ) ∝ |τ |−γ (5.76)
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for both τ > 0 and τ < 0. Also the coherence length displays a powerlaw

ξ(T ) ∝ |τ |−ν . (5.77)

For τ > 0 (ordered phase) the magnetization grows as

m(T ) ∝ |τ |β . (5.78)

At T = Tc (τ = 0) the magnetization has the field dependence

m ∝ H1/δ (5.79)

and the correlation function has a powerlaw dependence on the distance r

Γ~r ∝
1

rd−2+η
. (5.80)

These exponents are not completely independent but are related by means of so-called scaling
laws:

• Rushbrooke scaling: α+ 2β + γ = 2

• Widom scaling: γ = β(δ − 1)

• Fisher scaling: γ = (2− η)ν

• Josephson scaling: νd = 2− α

We do not derive all relations, but restrict to Fisher’s result in order to show the basic idea. We
consider the correlation function for τ > 0 but very close to Tc. Then using (5.80) we assume
that we can write Γ~r as

Γ~r ∝
1

rd−2+η
g(r/ξ) . (5.81)

According to our previous discussion the susceptibility is given by the integral of Γ~r over space

χ ∝
∫
ddr Γ~r ∝

∫
ddr

1
rd−2+η

g(r/ξ) ∝ ξ2−η

∫
ddy

1
yd−2+η

g(y) ∝ |τ |−ν(2−η) ∝ |τ |−γ (5.82)

which leads to γ = ν(2− η).
Let us now determine the exponents within mean field theory. The only one we have not
determined so far is δ. Using the Ginzburg-Landau equations for τ = 0 leads to

Bm3 = H ⇒ δ = 3 (5.83)

Thus the list of exponents is

α = 0 , β =
1
2
, γ = 1 δ = 3 , ν =

1
2

η = 0 (5.84)

These exponents satisfy the scaling relations apart from the Josephson scaling which depends
on the dimension d.
The critical exponents arise from the specific fluctuation (critical) behavior around a second-
order phase transition. They are determined by dimension, structure of order parameter and
coupling topology, and are consequently identical for equivalent phase transitions. Therefore,
the critical exponents incorporate universal properties.
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5.3.3 Range of validity of the mean field theory - Ginzburg criterion

In equation (5.17) we gave a condition for the validity of the mean field approximation. The
fluctuations around the mean field should be small. We formulate this statement more precisely
here. In previous chapters we have found that for large systems the fluctuations are very small
compared to the mean value (e.g. energy, particle number, ...). Looking at the fluctuations of
the magnetic moments, the question arises what is the ”system size”. The natural length scale
for fluctuations here is the correlation length which we know from the correlation function Γij .
Thus, the relevant ”system size” corresponds to the volume Vξ = ξd. Looking at the ratio

Eij =
〈(si − 〈si〉)(sj − 〈sj〉)〉

〈si〉〈sj〉
⇒ EGL =

∑
j∈Vξ

Γ0j∑
j∈Vξ

〈s0〉〈sj〉
. (5.85)

We first look at the numerator and use the fact that Γ~r decays on the length ξ quickly. Thus
we use ∫

Vξ

ddr Γ~r = fkBT
χ(T )
N

. (5.86)

where the factor f is independent of ξ and temperature and gives the fraction to which integral
limited to Vξ corresponds to the susceptibility. We can estimate it by using the scaling form of
Γ~r,∫ ξ

0
dr
rd−1

rd−2
g(r/ξ) = f

∫ ∞

0
dr
rd−1

rd−2
g(r/ξ) ⇒ ξ2

∫ 1

0
dx xg(x) = fξ2

∫ ∞

0
dx xg(x) ,

(5.87)
which leads indeed to f independent of ξ and of order one. Next we consider the denominator
of EGL and we restrict to T < Tc so that we immediately find∑

j∈Vξ

〈s0〉〈sj〉 = m(T )2Nξ (5.88)

with Nξ = (ξ/a)d as the number of lattice sites within the volume Vξ. The criterion for the
mean field theory to be applicable is then given by

fkBTc
χ(T )
N

�
(
ξ

a

)d

m(T )2 ⇒ fs2

τ
� 3s2τ

(
ξ0
a

)d

τ−d/2 (5.89)

with ξ0 as the correlation length at zero-temperature. From these we obtain the range of validity

τ
4−d
2 � f

3

(
a

ξ0

)d

(5.90)

which excludes obviously a narrow range of temperature close to Tc for dimensions d ≤ 3. For
dimensions d > 4 there is no limitations and the mean field theory including the Ginzburg-
Landau theory is valid also close to Tc. The temperature region

∆T = Tc − T ∼ Tc

{
f

3

(
a

ξ0

)d
} 2

4−d

(5.91)

is called the critical region and grows with shrinking ξ0 as the number of spins in the correlation
volume Vξ becomes smaller.
One important result is the fact that the dimension dc = 4 has been identified as an upper
critical dimension. For d > dc the mean field exponents are valid. This does, however, not mean
that the mean field approximation delivers the exact thermodynamics.
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5.4 Self-consistent field approximation

Fluctuation effects affect not only the critical exponents, they also alter the condition for the
instability. The mean field approximation overestimates the tendency to order by ignoring
fluctuations. The functional integral formulation based on the Hubbard-Stratonovich transfor-
mations allows to tackle the discussion of fluctuation effects in a systematic way. Since the
Ginzburg-Landau free energy is a good approximation to the saddle point solution close to the
phase transition, it shall be the basis for our discussion. A good insight into some aspects of
the fluctuation effects is obtained by the so-called self-consistent field approximation which is
used to analyze the instability condition. We consider the fluctuations around the mean order
parameter value by looking at the partion function

Z =
∫
Dm(~r)e−βF (m;T,H) (5.92)

which represent a functional integral in the order parameter m(~r). Our aim in the following will
be to examine the instability condition of the paramagnetic state. Including thermal fluctuations
we find that the mean square of the order parameter is finite above the transition temperature,
while the simple mean value vanishes, i.e. 〈m(~r)2〉 6= 0 while 〈m(~r)〉 = 0.

5.4.1 Renormalization of the critical temperature

In order to avoid difficulties with the functional integral due to the fourth-order terms in F , we
expand F to second order around its mean value in the paramagnetic phase (〈m(~r)〉 = 0),

F = F0 + FL +
1
2

∫
ddr ddr′ m(~r)

〈
δ2F

δm(~r)δm(~r ′)

〉
m(~r ′) (5.93)

where we use 〈
δ2F

δm(~r)δm(~r ′)

〉
=
{
A+ 3B〈m(~r)2〉 − κ~∇2

}
δ(~r − ~r ′) . (5.94)

FL is the term in zeroth order. which is FL = 0 for T > Tc where m = 0. This leads to the
so-called Gaussian approximation. The mean value 〈m(~r)2〉 = 〈m2〉 is taken to be uniform.
It is now convenient to represent the order parameter fluctuations in Fourier space,

m(~r) =
1√
Ld

∑
~q

m~q e
i~q·~r with m∗

~q = m−~q , (5.95)

in a hypercube of edge length L to introduce periodic boundary conditions for m(~r). Then F
reads

F = F0 +
1
2

∑
~q

{
A+ 3B〈m2〉+ κq2

}
m~qm−~q = F0 +

∑
~q

G−1(~q)m~qm−~q (5.96)

Now we may rewrite the partition function in this approximation as

Z ′ = Z0

∏
~q

∫
dm~q dm−~q exp

{
−βG−1(~q)m~qm−~q

}

= Z0

∏
~q

∫
dm′

~q dm
′′
~q exp

{
−βG−1(~q)(m′

~q
2 +m′′

−~q
2)
} (5.97)

where we used the parametrization m±~q = m′
~q ± im′′

~q . Now determine the mean value

〈m2〉 =
1
Ld

∫
ddr 〈m(~r)2〉 =

1
Ld

∑
~q

〈m~qm−~q〉

=
1
Ld

∑
~q

〈m′
~q
2 +m′′

~q
2〉 =

kBT

Ld

∑
~q

G(~q) =
1
Ld

∑
~q

kBT

A+ 3B〈m2〉+ κq2

(5.98)
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which represents a self-consistent equation for 〈m2〉. Note that the G(~q) corresponds to a
renormalized correlation function, analogous to Γ~q in (5.57).
On the other hand, we can determine the susceptibility using the fluctuations,

χ(T ) = β
1
Ld

∫
ddr ddr′

{
〈m(~r)m(~r ′)〉 − 〈m(~r)〉〈m(~r ′)〉

}
= β〈m2

~q=0〉 = G(~q = 0) =
1

A+ 3B〈m2〉

(5.99)

The fact that the susceptibility diverges at the phase transition can now be used to determine
the instability temperature T ∗c which is different from the ”bare” Tc defining the zero of A. Thus
we analyze the equation

χ−1 = [A+ 3B〈m2〉] = A+
3BkBT

Ld

∑
~q

1
χ−1 + κq2

. (5.100)

where χ−1 = 0 determines T ∗c . For the sum over ~q we have to be careful because the form we
have chosen for the expansion in small powers of q is not valid at large q. We correct for this
by introducing an upper cutoff Λ for q, which is of the order a−1, the inverse lattice constant.
Then going to integral form L−d

∑
~q →

∫
ddq/(2π)d and setting χ−1 = 0 we reach at equation

Ac = Jza−d

(
T ∗c
Tc
− 1
)

= −Jza
−d

s2
CdkBT

∗
c

(2π)d

∫ Λ

0
dq

qd−1

κq2
(5.101)

where Cd is the volume of a unit-sphere in d dimensions as defined int (3.37). Thus the renor-
malized transition temperature is

T ∗c =
Tc

1 +
Cdz

(2π)d

(Λa)d−2

d− 2

< Tc . (5.102)

Therefore the transition temperature is reduced by the fluctuations. The dimension d = dL = 2
appears as lower critical dimension. For dimension d < dL the integral diverges at the lower
boundary (infrared divergence) such that no finite transition temperature is possible. The
dimension dL is more subtle. Below we will comment from a different point of view on this
result.

5.4.2 Renormalized critical exponents

Now we turn to the behavior of the susceptibility at the new critical temperature. For this
purpose we rewrite (5.100) with the help of (5.101) and obtain for T → T ∗c+

χ−1 = (A−Ac) +
3BCd

(2π)d

∫ Λ

0
dq qd−1

[
kBT

χ−1 + κq2
− kBT

∗
c

κq2

]

≈ (A−Ac)−
3BCdkBT

∗
c

(2π)dκ

∫ Λ

0
dq

qd−3

1 + χκq2

= (A−Ac)−
3BCdkBT

∗
c

(2π)dκ
{κχ}(2−d)/2

∫ Λ
√

κχ

0
dx

xd−3

1 + x2
.

(5.103)
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Note that κχ = ξ2. We distinguish now two cases. First choose the dimension larger than the
upper critical dimension d > dc = 4 and obtain

χ−1 ≈ (A−Ac)−
3BCdkBT

∗
c

(2π)dκ
{κχ}(2−d)/2 {Λ(κχ)1/2}d−4

d− 4

= (A−Ac)−
3BCdkBT

∗
c

(2π)dκ2

Λd−4

d− 4
χ−1 =

kB

ads2
(T − T ∗c )− Cdz

2

2(2π)d

T ∗c
Tc

(Λa)d−4

d− 4
χ−1

⇒ χ(T ) =
ads2

kB(T − T ∗c )

{
1 +

Cdz
2

2(2π)d

T ∗c
Tc

(Λa)d−4

d− 4

}−1

∝ |T − T ∗c |−1 .

(5.104)

We observe that this corresponds to the behavior found in mean field calculation. Indeed the
above the critical dimension dc the mean field exponents are correct, and the only effect of
fluctuations is to renormalize certain quantities such as the critical temperature.

c

c

T

χ

mean field
mean field

|T − T |
−γ

T

γ = 1 γ = 1
critical

γ = 1

Fig. 5.7: Critical region.

Next we consider d < dc = 4. In this case the integral over x in (5.103) converges and the upper
bound does not enter in the limit T → T ∗c . The integral only depends on d and is given by
Kd = Γ[(d− 2)/2]Γ[(4− d)/2]. Therefore, we obtain

χ−1 = (A−Ac)−
3BCdkBT

∗
c

(2π)dκd/2
Kdχ

(2−d)/2 (5.105)

This equation has two regimes. For large χ the second term on the right hand side is dominating
over χ−1. On the other hand, if χ is small, χ−1 is dominant. The first case applies for T very
close to T ∗c such that we arrive at the behavior

χ(T ) ∝ |T − T ∗c |−γ with γ =
2

d− 2
. (5.106)

Away from T ∗c the second case holds and we return back to the usual mean field behavior,

χ(T ) ∝ |T − T ∗c |−1 . (5.107)

The crossover happens roughly at the boundary defined by the Ginzburg criterion. It is now
also obvious that the critical exponent γ depends on the dimension. The critical dimensions
dL = 2 and dc = 4 need a special care in this discussion as the expression we have obtained do
not straightforwardly apply to them.
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We can now also use this result to determine the exponent of the correlation length, ν. We may
use ξ2 = κχ such that we find immediately

ν =
γ

2
. (5.108)

5.5 Long-range order - Peierls’ argument

We have seen in the previous section that the critical temperature is reduced from its mean field
value by quantum fluctuations. The lower the dimension (the coordination number) the more
severe thermal fluctuations act against order. We consider here the case of the Ising model in
one and two dimensional order. In one dimension no magnetic order is possible at any finite
temperature, while in two dimensions there is a finite-temperature phase transition.

5.5.1 Absence of finite-temperature phase transition in the 1D Ising model

We consider the groundstate of the ferromagnetic Ising chain. All spins are aligned. The lowest
energy excitation is a domain wall for which the spins point up on the left and down on the right
of the domain wall. The energy for such a wall is 2Js2. With N spins on the Ising chain, there
would be N − 1 positions possible for this wall and would yield an entropy S = kB ln(N − 1)
accounting for the uncertainty of the configuration of the state. Therefore a simple estimate of
the free energy for the presence of a domain wall leads to

∆F = 2Js2 − kBT ln(N − 1) . (5.109)

Taking now the thermodynamic limit N →∞ would yield for any finite temperature a negative
∆F such that the ordered phase (without domain wall) would be unfavorable.

domain
wall

Fig. 5.8: Domain wall as the lowest excitation.

In the one-dimensional Ising chain long-range order exists only at zero temperature analogous
to the classical spin chain discussed earlier.

5.5.2 Long-range order in the 2D Ising model

The argument given by Peierls to proof long-range order for the 2D Ising model is also based on
domains. We consider a square lattice and assume that all spins at the boundary are pointing
up. This requirement is not relevant, if the thermodynamic limit is considered, i.e. the number
of site or spins N →∞. However, it implies that all domain walls on the lattice are closed. The
energy cost for a domain wall of the length L compared to the completely aligned configuration
is

E(L) = 2Js2L . (5.110)

Now choose a site j somewhere in the interior of the system. We define P± as the probability
that this spin sj is ±s. Thus the mean value of the spin is

〈sj〉 = s(P+ − P−) (5.111)
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where in the case of long range order 〈sj〉 > 0 due to the boundary condition. Moreover the
correlation function satisfies for |i− j| → ∞,

〈sisj〉 → 〈si〉〈sj〉 = s2(P+ − P−)2 (5.112)

which is finite for the long-range ordered system, if P+ 6= P−. Thus our proof has to address
this point.
In case sj = −s we find an odd number of domain walls encircling the site j. The relative
probability that the shortest domain wall around j (closest to site j) has the length L is given
by

PL,j =
e−KL

Z

∑
L′

e−KL′ (5.113)

where the sum
∑

L′ runs over all other domain walls and K = 2βJs2. If we consider sj = +s
this shortest domain wall is absent. Thus we may write

P+ =
1
Z

∑
L′

e−KL′ and P− =
∑
L

g(L)e−KLP+ . (5.114)

Here g(L) is the number of domain wall shapes of length L around j.

Fig. 5.9: Domain wall configurations.

From topological point of view the domain wall should not cut each other. If we ignore this
condition and in addition the requirement that the domain wall is closed, we can derive a simple
upper bound for g(L),

g(L) < 4× 3L−1 × 1
L
× 1

2
×
(
L

4

)2

=
L2

24L
eL ln 3 . (5.115)

which can be understood as a walk of length L through the lattice. From the starting point,
we may start in 4 directions and every following step has 3 possible directions. On the contour
there L equivalent starting points (assuming close contour) and 2 directions. Then there are
maximally (L/4)2 sites enclosed by the domain and the starting point may be shift on any of
them (for given circumference the square has the largest area among all rectangles). Therefore
we can write

P− <
∑
L≥4

L2

24L
eL(ln 3−K)P+ <

∑
L=4,6,8,...

L2

96
eL(ln 3−K) (5.116)

since P+ < 1. For sufficiently low temperature ln 3 − K = ln 3 − 2Js2β < 0 so that the sum
converges very well. Making the temperature small enough also the condition P− < 1

2 can be
reached. With the condition P+ + P− = 1 follows that

P+ − P− > 0 ⇒ lim
|i−j|→∞

〈sisj〉 = const. (5.117)

which means that we have long- range order at a finite temperature.
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Chapter 6

Linear Response Theory

The observation of its response to a small external perturbation, such as an external field,
provides much information about a macroscopic sytem. If the perturbation is sufficiently small
we can consider the response of the system in lowest order only, as a so-called linear response.
We already are familiar with this from magnetism where the magnetization is proportional to the
applied magnetic field. This susceptibility as a linear response function incorporates important
information about the macroscopic system when we take dynamical aspects into account. Thus,
we will extend our discussion to the dynamical linear response function looking at the response
to spatial and time dependent perturbations. If we knew all stationary states of a macroscopic
quantum system with many degrees of freedom we would in principle be ready to calculate
any desired quantity. As we mentioned earlier this full information is hard to store and is also
unnecessary in view of our real experimental interests. The linear response functions are an
efficient way to provide in a condensed form the most important and relevant information of
the system accessible in an experiment. The linear response function is one element of quantum
field theory of solid state physics. We will introduce it here on an elementary level.

6.1 Linear Response function

Some of the well-known examples of linear response functions are the dielectric and the mag-
netic susceptibilities which describe the dielectric and magnetic response to an external field,
respectively.

~P (~r, t) =
∫
d3r′

∫
dt′ χe(~r − ~r ′, t− t′) ~E(~r ′, t′)

~M(~r, t) =
∫
d3r′

∫
dt′ χm(~r − ~r ′, t− t′) ~H(~r ′, t′)

(6.1)

where we consider here a homogeneous, isotropic medium. It is obvious from this form that the
response functions χ describes how a field at the position ~r ′ at time t′ influences the system
at ~r at a later time t (causality). Causality actually requires that χ(~r, t) = 0 for t < 0. The
response functions are non-local in space and time. We may get a ”local” form by going to
momentum-frequency space (convolution).

~P (~q, ω) = χe(~q, ω) ~E(~q, ω) and ~M(~q, ω) = χm(~q, ω) ~H(~q, ω) (6.2)

where the Fourier transformation is performed as follows,

f(~r, t) =
1
V

∑
~q

∫ +∞

−∞

dω

2π
f(~q, ω)e−i(ωt−~q·~r) . (6.3)

We now determine the response function for a general external field and response quantity.
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6.1.1 Kubo formula - retarded Green’s function

We consider a system described by the Hamiltonian H0 and analyze its response to an external
field h(~r, t) which couples to the field operator Â(~r),

H = H0 +H′(t) = H0 +
∫
d3r Â(~r)h(~r, t)eηt (6.4)

where η = 0+ is a small positive parameter allowing to switch the perturbation adiabatically
on. The behavior of the system can now be determined by the density matrix ρ̂(t). Possessing ρ̂
we are able to calculate interesting mean values of operators, 〈B̂(t)〉 = tr(ρ̂(t)B̂) . We find the
density matrix by means of the equation of motion,

i~
∂ρ̂

∂t
= −[ρ̂,H] = −[ρ̂,H0 +H′] . (6.5)

We proceed using the concept of perturbation theory, ρ̂ = ρ̂0 + δρ̂(t), with

ρ̂0 =
1
Z
e−βH0 and Z = tre−βH0 (6.6)

Then we insert this separated form and truncate the equation in linear order in H′,

i~
∂

∂t
δρ̂ = −[δρ̂,H0]− [ρ̂0,H′] + · · · (6.7)

We introduce now the interaction representation (time-dependent perturbation theory),

δρ̂(t) = e−iH0t/~ŷ(t)eiH0t/~ ⇒ i~
∂

∂t
δρ̂ = −[δρ̂,H0] + e−iH0t/~

{
i~
∂ŷ(t)
∂t

}
eiH0t/~ . (6.8)

Comparing Eqs. (6.7) and (6.8) and using (6.5) we arrive at the equation for ŷ,

i~
∂ŷ(t)
∂t

= −[ρ̂0,H′
int(t)] with H′

int(t) = eiH0t/~H′e−iHot/~ (6.9)

which is formally solved by

ŷ(t) =
i

~

∫ t

−∞
dt′ [ρ̂0,H′

int(t
′)] . (6.10)

We now look at the mean value of the observable B̂(~r). For simplicity we assume that the
expectation value of B̂ vanishes if there is no perturbation, i.e. 〈B̂〉0 = tr{ρ̂0B̂} = 0. We
determine

〈B̂(~r, t)〉 = tr
{
δρ̂(~r, t)B̂(~r)

}
= tr

{
i

~
e−iH0t/~

∫ t

−∞
dt′ [ρ̂0,H′

int(t
′)]eiH0t/~B̂(~r)

}
.

(6.11)

By means of cyclic permutation which does not affect the trace we arrive at the form

〈B̂(~r, t)〉 = − i
~

∫ t

−∞
dt′
∫
d3r′ tr

{
ρ̂0[B̂int(~r, t), Âint(~r ′, t′)]

}
h(~r ′, t′)eηt′

=
∫
dt′
∫
d3r′ χBA(~r − ~r ′, t− t′)h(~r ′, t′) ,

(6.12)

which defines the response function. Notably, it is entirely determined by the properties of the
unperturbed system.

Recipe for the linear response function: We arrive at the following recipe to obtain a general
linear response function: From now on we denote the Hamiltonian of the (unperturbed) system
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H. Then the linear response function of the pair of operators Â, B̂ (they are often in practice
conjugate operators, Â = B̂†) is given by

χBA(~r − ~r ′, t− t′) = − i
~
Θ(t− t′)〈[B̂H(~r, t), ÂH(~r ′, t′)]〉H (6.13)

where 〈. . .〉H is the thermal mean value with respect to the Hamiltonian H,

〈Ĉ〉H =
tr{Ĉe−βH}
tr{e−βH}

, (6.14)

ÂH(t) = eiHt/~Âe−iHt/~ is the Heisenberg representation of the operator Â (analog for B̂). Note
that the temporal step function Θ(t− t′) ensures the causality, i.e. there is no response for the
system before there is a perturbation. The form (6.13) is often called Kubo formula or retarded
Green’s function.

Frequently used examples are:

• magnetic susceptibility:

perturbation H′ = −
∫
d3r µBŜ

z(~r)h(~r, t)

conjugate magnetization M̂(~r) = µBŜ
z(~r)

response function χzz(~r − ~r ′, t− t′) =
i

~
Θ(t− t′)〈[Ŝz

H(~r, t), Ŝz
H(~r ′, t′)]〉H .

(6.15)

• dielectric susceptibility:

perturbation H′ =
∫
d3r en̂(~r)φ(~r, t)

conjugate density en̂(~r)

response function χe(~r − ~r ′, t− t′) = − i
~
Θ(t− t′)〈[n̂H(~r, t), n̂H(~r ′, t′)]〉H .

(6.16)

6.1.2 Information in the response function

The information stored in the response function can be most easily visualized by assuming that
we know the complete set of stationary states of the system Hamiltonian H: H|n〉 = εn|n〉.
For simplicity we will from now on assume that Â = B̂† which is the case in many practical
examples, and will simplify our notation. We can then rewrite the response function χ as

χ(~r − ~r ′, t− t′) = − i
~
Θ(t− t′)

∑
n

e−βεn

Z

{
〈n|eiHt/~B̂(~r)e−iHt/~eiHt′/~B̂(~r ′)†e−iHt′/~|n〉

−〈n|eiHt′/~B̂(~r ′)†e−iHt′/~eiHt/~B̂(~r)e−iHt/~|n〉
}

= − i
~
Θ(t− t′)

∑
n,n′

e−βεn

Z

{
〈n|B̂(~r)|n′〉〈n′|B̂(~r ′)†|n〉ei(εn−εn′ )(t−t′)/~

−〈n|B̂(~r ′)†|n′〉〈n′|B̂(~r)|n〉ei(εn′−εn)(t−t′)/~
}
.

(6.17)
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It is convenient to work in momentum and frequency space. Thus, we perform now the Fourier
transform

χ(~q, ω) =
∫
d3r̃

∫ +∞

−∞
dt̃ χ(~̃r, t̃)eiωt̃−i~q·~̃r

= − i
~
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2

∫ ∞

0
dt̃
{
ei(εn−εn′+~ω)t̃/~ − ei(εn′−εn+~ω)t̃/~

}
e−ηt̃

(6.18)

where we introduce
B̂~q =

∫
d3r̃B̂(~̃r)e−i~q·~̃r . (6.19)

with B̂~q = B̂†
−~q due to the inversion symmetry (~r → −~r), i.e. χ(~r− ~r ′, t− t′) = χ(~r ′ − ~r, t− t′).

Performing the time integral in (6.18) we obtain

χ(~q, ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2

{
1

~ω − εn′ + εn + i~η
− 1

~ω − εn + εn′ + i~η

}

=
∫ ∞

0
dω′ S(~q, ω′)

{
1

ω − ω′ + iη
− 1
ω + ω′ + iη

}
.

(6.20)

In the last line we write the response function in a spectral form with S(~q, ω) as the spectral
function,

S(~q, ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(~ω − εn′ + εn) (6.21)

We call S(~q, ω) also dynamical structure factor. It represents a correlation function1 ,

S(~r − ~r ′, t− t′) =
1
h

〈
B̂H(~r, t)ÂH(~r ′, t′)†

〉
H
, (6.23)

and contains the spectrum of the excitations which can be coupled to by the external perturba-
tion.

6.1.3 Analytical properties

The representation of the linear response function in (6.20) shows that χBA(~q, ω) has poles only
in the lower half of the complex ω-plane. This property reflects causality (χ(~r, t) = 0 for t < 0.
We separate now χ = χ′ + iχ′′ in real and imaginary part and use the relation

lim
η→0+

1
x+ iη

= P 1
x
− iπδ(x) . (6.24)

1Consider the Fourier transform

S(~q, ω) =

Z
d3r̃

Z +∞

−∞
dtS(~̃r, t)eiωt−i~q·~̃r

=
1

V h

Z
d3r̃d3r′

Z +∞

−∞
dt

X
n,n′

e−βεn

Z
〈n|eiHt/~B̂(~̃r + ~r ′)e−iHt/~|n′〉〈n′|B̂(~r ′)†|n〉e−i~q·(~̃r+~r ′)−~q ′·~r ′+iωt

=
1

h

Z +∞

−∞
dt

X
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2ei(εn−εn′+~ω)t/~

=
X
n.,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(~ω − εn′ + εn) ,

(6.22)
as gven in (6.21).
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with P denoting the principal part. This relation leads to

χ′(~q, ω) =
∫ ∞

0
dω′ S(~q, ω′)

{
P 1
ω − ω′

− P 1
ω + ω′

}
,

χ′′(~q, ω) = −π {S(~q, ω)− S(~q,−ω)} .

(6.25)

Therefore the imaginary part of χ corresponds to the excitation spectrum of the system.
Finally, it has to be noted that χ(~q, ω) follows the Kramers-Kronig relations:2

χ′(~q, ω) = − 1
π

∫ +∞

−∞
dω′ P χ

′′(~q, ω′)
ω − ω′

,

χ′′(~q, ω) =
1
π

∫ +∞

−∞
dω′ P χ

′(~q, ω′)
ω − ω′

.

(6.27)

6.1.4 Fluctuation-Dissipation theorem

First we consider the aspect of dissipation incorporated in the response function. For this
purpose we ignore for simplicity the spatial dependence and consider a perturbative part of the
Hamiltonian which only depends on time.

H′ = h(t)B̂ ⇒ 〈B̂(t)〉 =
∫ ∞

0
dt′ χ(t− t′)h(t′) (6.28)

with B̂ = B̂†. We assume now a monochromatic external field,

h(t) =
1
2
(h0e

−iωt + h∗0e
iωt)

⇒ 〈B̂(t)〉 =
∫ ∞

0
dt′χ(t− t′)

1
2
(h0e

−iωt′ + h∗0e
iωt′) =

1
2
{
χ(ω)∗h0e

−iωt + χ(ω)h∗0e
iωt
}
.

(6.29)
2Kramers-Kronig relation: This relation results from the analytic structure of χ. Consider a contour in the

upper half-plane of ω′ where χ(~q, ω′) has no poles due to causality.I
C

dω′
χ(~q, ω′)

ω − ω′ − iη′
= 0

⇒
R +∞
−∞ dω′ χ(~q, ω′)P 1

ω−ω′ + iπχ(~q, ω) = 0 .

(6.26)

Separating this equation into real and imaginary part yields the Kramers-Kronig relation.

’

C

Im

Re

ω

ω

’

Fig. 6.1: Contour C close in the upper half of the ω′-plane.
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The energy dissipation rate is determined by3

dE

dt
= 〈 ∂

∂t
H〉 = 〈B̂〉∂h

∂t
=
iω

4
[χ(ω)∗ − χ(ω)]|h0|2 =

ω

2
χ′′(ω)|h0|2 < 0 (6.31)

where we dropped oscillating terms with the time dependence e±i2ωt. The imaginary part of the
dynamical susceptibility describes the dissipation of the system.
From the definition of the dynamical structure factor it follows that

S(~q,−ω) = e−β~ωS(~q, ω) (6.32)

because

S(~q,−ω) =
∑
n,n′

e−βεn

Z
|〈n|B̂~q|n′〉|2δ(−~ω − εn′ + εn)

=
∑
n,n′

e−βεn′−β~ω

Z
|〈n′|B̂−~q|n〉|2δ(~ω − εn + εn′) = e−β~ωS(~q, ω) .

(6.33)

This is a statement of detailed balance. The transition matrix element between two states is the
same whether the energy is absorbed or emitted. For emitting, however, the thermal occupation
of the initial state has to be taken into account.
Using (6.25) we can derive the following relation

χ′′(~q, ω) = −π[1− e−β~ω]S(~q, ω) (6.34)

which is known as the fluctuation-dissipation theorem. Let us consider here some consequences
and find the relation to our earlier simplified formulations.∫ +∞

−∞
dω S(~q, ω) = 〈B̂~q(t)B̂−~q(t)〉 = − 1

π

∫ +∞

−∞
dω

χ′′(~q, ω)
1− e−β~ω

(6.35)

This corresponds to the equal-time correlation function (assuming 〈B̂〉 = 0). Now we turn
towards the static limit which we consider as the limit kBT � ~ω. Then we may approximate
this equation by

〈|B̂~q|2〉 ≈ −
kBT

π

∫ +∞

−∞
dω
χ′′(~q, ω)

ω
= kBTχ

′(~q, 0) = kBTχ(~q, 0) . (6.36)

This is valid, if χ′′(~q, ω) essentially vanishes for frequencies comparable and larger than the
temperature. This leads us now to∫

d3rd3r′ 〈B̂(~r, t)B̂†(~r ′, t)〉 = kBTχ(~q = 0, ω = 0) = kBTχ , (6.37)

i.e. the static uniform susceptibility is related to the integration of the equal-time correlation
function as we had used previously several times.

3The time-derivative of the Hamiltonian is given by

dH
dt

=
∂H
∂t

+
i

~
[H,H] =

∂H
∂t

(6.30)

for a quantum mechanical problem. The analogous relation is obtained for classical systems.
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6.2 Example - Heisenberg ferromagnet

In this section we apply the linear response function to discuss the ferromagnetic Heisenberg
quantum spin model with s = ~/2. Like in the Ising model the spins reside on a hypercubic
lattice and are coupled via nearest-neighbor interaction. The Heisenberg model has the full
SU(2) spin rotation symmetry.

H = −J
∑
〈i,j〉

~̂Si · ~̂Sj = −J
∑
〈i,j〉

[
Ŝz

i Ŝ
z
j +

1
2

{
Ŝ+

i Ŝ
−
j + Ŝ−i Ŝ

+
j

}]

= − J
V

∑
~q

γ~q
~̂S~q · ~̂S−~q = − J

V

∑
~q

γ~q

[
Ŝz

~q Ŝ
z
−~q +

1
2

{
Ŝ+

~q Ŝ
−
−~q + Ŝ−~q Ŝ

+
−~q

}] (6.38)

with γ~q = 2
∑

α=x,y,... cos(qα) (lattice constant a = 1, unit of length). The exchange coupling
−J is negative so that the ground state is ferromagnetic (all spins aligned). This ground state

has maximal spin ~̂Stot =
∑

i
~̂Si which is a symmetry operator of the Hamiltonian. In the second

line we have introduced the Fourier transformed Hamiltonian with

~̂Si =
1
V

∑
~q

~̂S~qe
i~q·~ri (6.39)

where we use again periodic boundary condition with a hypercube of edge length L. The
quantum spins satisfy the following commutation relations:[

Ŝz
i , Ŝ

±
j

]
= ±~δijŜ±i ,

[
Ŝ+

i , Ŝ
−
j

]
= 2~δijŜz

i ,[
Ŝz

~q , Ŝ
±
~q ′

]
= ±~Ŝ±~q+~q ′ ,

[
Ŝ+

~q , Ŝ
−
~q ′

]
= 2~Ŝz

~q+~q ′ .

(6.40)

It is possible to discuss the ferromagnetic state by means of mean field approximation which
is formally the same as for the Ising model leading to the same critical temperature kBTc =
Jzs2 = Jd~2/2.

6.2.1 Tyablikov decoupling approximation

Here we would like to go beyond mean field theory using the response function for the Heisenberg
model. We introduce the transverse dynamical spin susceptibility,

χ(~q, t− t′) = − i
~
Θ(t− t′)〈[Ŝ−~q (t), Ŝ+

−~q(t
′)]〉 . (6.41)

We use now a method based on the equation of motion to find this response function.

i~
∂

∂t
χ(~q, t− t′) = δ(t− t′)〈[Ŝ−~q , Ŝ

+
−~q]〉 −

i

~
Θ(t− t′)〈[[Ŝ−~q ,H](t), Ŝ+

−~q(t
′)]〉

= −2δ(t− t′)~〈Ŝz
~q=0〉

+
i

~
Θ(t− t′)

J~
V

∑
~q ′

(γ~q ′ − γ~q+~q ′)
{〈[

Ŝz
~q ′(t)Ŝ

−
~q−~q ′(t), Ŝ

+
−~q(t

′)
]〉

+〈
[
Ŝ−~q+~q ′(t)Ŝ

z
−~q ′(t), Ŝ

+
−~q(t

′)
]
〉
}
.

(6.42)
This equation leads on the right-hand side to new retarded Green’s functions containing three
spin operators. Thus we would have also to set up equations of motion for them which would in
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turn lead to Green’s functions with four spin operators and so on. This hierarchy of equation is
intractable. Therefore we introduce here the approximation which truncates the hierarchy and
leads to a closed equation system,

Ŝz
~q ′(t)Ŝ

−
~q−~q ′(t) → 〈Ŝz

0〉Ŝ−~q (t)δ0,~q ′

Ŝ−~q+~q ′(t)Ŝ
z
~q ′(t) → 〈Ŝz

0〉Ŝ−~q (t)δ0,~q ′

(6.43)

Replacing the corresponding terms on the right-hand side of the equation of motion and per-
forming the Fourier transform for the time we obtain the closed equation

(ω + iη)χ(~q, ω) = −2〈Ŝz
0〉 − 2

J

V
〈Ŝz

0〉(γ0 − γ~q)χ(~q, ω) (6.44)

which leads to the solution

χ(~q, ω) =
−2〈Ŝz

0〉
ω + 2 J

V 〈Ŝ
z
0〉(γ0 − γ~q) + iη

. (6.45)

Here we define now the mean field 〈Ŝz
0〉 = −V m with 0 ≤ m ≤ ~/2. We have introduced the

small imaginary part iη in order to guarantee the causality.
First let us look at the spectrum of excitations if m 6= 0. This is given by the imaginary part of
χ.

χ′′(~q, ω) = −2πV mδ[ω − 2Jm(γ0 − γ~q)]

⇒ ω~q = 2Jm(γ0 − γ~q) = 4Jm
∑
α

(1− cos qα)
(6.46)

This is the dispersion of a collective magnetic mode, a magnon or spin wave, which corresponds
analogous to the phonons in a solid to a bosonic mode. This mode appears as an excitation
with well-defined momentum-energy relation. For small energy the dispersion is quadratic,
ω~q = 2Jm~q 2.

q

ω

ω

S(q,    )

Fig. 6.2: Dynamical structure factor for the spin excitation spectrum in the ferromagnetic
phase.

115



6.2.2 Instability condition

Now we construct the self-consistence equation for the mean field. In principle we could use
the mean field approximation solution. However, here we require now that the fluctuation-
dissipation theorem is satisfied in order to take the effects of fluctuations into account. Thus,
we consider the dynamical structure factor,

S(~q, ω) =
∫
dt eiωt 1

~
〈Ŝ−~q (t)Ŝ+

−~q(0)〉 . (6.47)

Taking the ~q-sum and ω integral provides an onsite equal time correlation function:

1
V 2

∑
~q

∫
dω S(~q, ω) =

1
~
〈Ŝ−i (0)Ŝ+

i (0)〉 =
1
~

{
〈 ~̂S

2

i 〉 − 〈Ŝz2
i 〉 − 〈Ŝz

i 〉~
}

=
~
2

+m . (6.48)

Now we may replace S(~q, ω) by means of the fluctuation-dissipation theorem (6.34).

~
2

+m = − 1
π

∫
dω

1
1− e−β~ω

1
V 2

∑
~q

χ′′(~q, ω) =
1
V

∑
~q

2m
1− e−β~ω~q

(6.49)

The instability condition defining the critical temperature is obtained from the limit m → 0,
assuming it to be a second order (continuous) phase transition. Then we may expand the
denominator on the right-hand side and obtain the equation

~
2

=
kBTc

J~
1
V

∑
~q

1
γ0 − γ~q

(6.50)

For the three-dimensional system a numerical solution shows kBTc ≈ 1.1J~2 which is consid-
erably smaller than the mean field result of 1.5J~2. The reduction is, analogous to the self-
consistent fluctuation approximation, caused by thermal fluctuations which are ignored in the
ordinary mean field approximation.
In one and two dimensions we find that the integral on the right-hand side diverges at the lower
boundary (infrared divergence).

1
V

∑
~q

1
γ0 − γ~q

→
∫

ddq

(2π)d

1
γ0 − γ~q

→
∫ Λ

0
dq
qd−1

q2
→∞ for d ≤ 2 . (6.51)

Thus kBTc → 0. This is a consequence of the spin wave fluctuations which destroy the magnetic
moment. This result is also known as the Hohenberg-Mermin-Wagner theorem. It applies to
systems with a continuous spin symmetry and short-range interaction. Note that Peierls’ domain
wall argument fails here, since the domain walls have an infinite width due to the continuous
degeneracy of the magnetic ground state, i.e. any direction for the ordered moment has the
same energy.

6.2.3 Low-temperature properties

How do the spin wave fluctuations influence the low-temperature behavior? Let us first consider
m(T ) = ~/2− δm(T ). We insert this into the self-consistence equation,

~− δm =
(

~
2
− δm

)
2
V

∑
~q

(
1 +

∞∑
n=1

e−β~ω~qn

)

≈ (~− 2δm)

{
1 +

∞∑
n=1

∫
d3q

(2π)3
e−3Jm~βnq2

}
= (~− 2δm)

{
1 +

ζ(3/2)(kBT )3/2

(6πJ~2)3/2

}
(6.52)

116



which leads to
δm(T ) ≈ ζ(3/2)

(6πJ~2)3/2
(kBT )3/2 . (6.53)

If we compare this with the result of the ordinary mean field approximation, δm ∝ exp(−T/Tc)
we find that the spin wave fluctuations suppress the magnetic order more strongly.
Finally we consider the spin wave contribution to the low-temperature specific heat. The
magnons as bosons have a dispersion ω~q = csq

2 leading to a density of states as

D(ω) ∝ ω1/2 . (6.54)

With this we obtain

U ∝
∫
dωω1/2 ~ω

eβ~ω − 1
∝ T 5/2 ⇒ C ∝ T 3/2 (6.55)

which is also a consequence of low-energy spin wave excitations.
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Chapter 7

Renormalization group

While the mean field approximation describes second-order phase transitions in a very handy
way, we have seen that it treats fluctuations poorly so that the critical behavior is not adequately
reproduced. This is particularly true for the renormalization of the transition point and the
critical exponents of quantities which are singular at the phase transition. In this context
a powerful method has been developed in the late sixties and seventies which introduce a new
concept to describe critical phenomena: the renormalization group method. This method is based
on a method for the successive decimation of high energy degrees of freedom of the system with
the aim to extract the most important information on the low-energy physics from a complex
many-body system. In this way the properties of a phase transitions, in particular, its critical
regime can be described. There are many variants of the renormalization procedure also beyond
the discussion of phase transitions and much development is still going on. Here we will restrict
to one special formulation which gives a good insight to the ides.

7.1 Basic method - Block spin scheme

Close to a second order phase transition fluctuations are large and hard to treat. The renormal-
ization group method has the aim to connect the behavior of a model close to with the behavior
of a related model far from the phase transition. The basic idea is to make a change of the length
scale at which the system is considered. Close to the critical point the only relevant length scale
is the correlation length, the length over which the degrees of freedom effectively interact. This
length is diverging, if the critical point approached. The procedure rests on diluting (reducing)
the number of degrees of freedom in a proper way so as to shrink effectively the length scale and
to ”move away” from the critical point.
In order to illustrate the method we consider again the Ising model with the degrees of freedom
si = ±s on a regular lattice. The partition function is given by

Z( ~K,N) =
∑
{si}

eH( ~K,{si},N) (7.1)

where we assume a generalized Hamiltonian of the form

H( ~K, {si}, N) = NK0 +K1

∑
i

si +K2

∑
〈i,j〉

sisj + · · · (7.2)

with couplings among many spins, ~K = (K0,K1,K2, . . .). In the standard form of the Ising
model we have

K0 = 0 , K1 = H/kBT , K2 = J/KBT , Kn>2 = 0 . (7.3)

The aim is now to reduce the number of degrees of freedom without changing the partition
function. This can be done by deriving an appropriate model of the remaining degrees of
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freedom. We introduce b > 1 which denotes the change of the length scale in the system. In
the decimation procedure we reduce the degrees of freedom by factor bd. In the following we
will use the so-called block spin or related formulations which gives an intuitive view of the
renormalization group procedure. We separate the spin degrees of freedom into two groups {Sb}
and {s′}. The first set will be eliminated while the second set represents the remaining degrees
of freedom.

Z( ~K,N) =
∑
{s′}

∑
{Sb}

eH( ~K,{Sb},{s′},N) =
∑
{s′}

eH( ~K′,{s′},Nb−d) = Z( ~K ′, Nb−d) . (7.4)

Thus we express the Hamiltonian in terms of new coupling constants between the remaining
degrees of freedom. Looking at the reduced free energy per spin we find

f( ~K) = − lim
N→∞

1
N

ln
[
Z( ~K,N)

]
= −b−d lim

N→∞

1
Nb−d

ln
[
Z( ~K ′, Nb−d)

]
= b−df( ~K ′) . (7.5)

The transformation ~K → ~K ′ can be repeated in the same way

~K(n) = R ~K(n−1) = Rn ~K with N → Nb−dn (7.6)

where the set of operations {Rn} with n = 0, 1, 2, 3, . . . represents a semigroup, leading to the
name renormalization group. It is a semigroup only, because it lacks the inversion. There is
namely no unique way to undo a decimation step. The renormalization group transformations
lead to a ”flow” of the coupling constants ~K.
The instabilities of the system are determined by so-called unstable fixed points where we find

R ~Kc = ~Kc , (7.7)

i.e. the coupling constants do not change under renormalization group transformation. The
region of ~K close to the fixed point is most interesting as we can approximate the flow of the
coupling constants within a linear approximation,

~K = ~Kc + δ ~K and R ~K ≈ ~Kc + Λδ ~K (7.8)

with Λ being a quadratic matrix of the dimensions of ~K which can be infinite in principle.
This matrix is generally not Hermitian and its eigenvectors ~ei (unit length) are not orthogonal.
Nevertheless we can express (7.8) as

~K = ~Kc +
∞∑
i=0

ci~ei and R ~K = ~K ′ = ~Kc +
∞∑
i=0

cib
yi~ei (7.9)

Thus we find
Rci = c′i = cib

yi . (7.10)

The exponents yi characterize the eigenvectors ~ei. If yi > 0 (yi < 0) then ~ei is called relevant
(irrelevant). ~ei with yi = 0 is called marginal. Along relevant eigenvectors we move away from
the fixed point under successive decimation (unstable fixed point).
Consider the case that only ~e1 is relevant, setting the external field H to zero. The phase
transition (critical temperature) corresponds to the temperature Tc where c1 vanishes (fixed
point). Close to the fixed point ( ~K close to ~Kc or T close to Tc) we can approximate

c1 = A

(
T

Tc
− 1
)

= −Aτ , (7.11)

and then consider the renormalization group step

c′1 = Rc1 = A

(
T ′

Tc
− 1
)

= −Aτ ′ ⇒ τ ′ = by1τ . (7.12)
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Thus the renormalization group step corresponds effectively to a change of the temperature. Let
us use this relation first for the length scale. The correlation length is changed in a renormal-
ization group step by

ξ → ξ′ = ξ(T )/b = ξ(T ′) (7.13)

The fixed point is characterized by ξ = ξ/b so that only two situations are possible ξ = ∞ for
the unstable fixed point and ξ = 0 for a stable fixed point which can be interpreted as the limit
of non-interacting degrees of freedom (no correlations). In case of an unstable fixed point we
obtain close to Tc,

|τ |−ν

b
= |τ ′|−ν ⇒ τ ′ = b1/ντ . (7.14)

This leads immediately to

ν =
1
y1

. (7.15)

Therefore the exponent y1 describing the change of temperature under the renormalization group
step is connected directly with the critical exponent, ν of the coherence length.

We now turn to the free energy, still assuming that c1 is the only component in the renormal-
ization group procedure. Then the singular part of the free energy per spin close to the critical
point has the following form:

f(τ) = b−df(τ ′) = b−df(τby1) = b−dlf(τbly1) , (7.16)

where the last equality means that we consider l renormalization group steps. We now choose l
as a real number so that τbly1 = 1 and so bl = τ−1/y1 . Then the free energy takes the form

f(τ) = τd/y1f(1) (7.17)

with the critical behavior of the specific heat C ∝ |τ |−α we find here that

2− α =
d

y1
. (7.18)

Thus, from the exponent y1 we have obtained ν and α. Equations (7.15) and (7.18) can be
combined to the Josephson scaling νd = 2−α, which we had seen in Section 5.3.2. Modifications
and additional exponents can be obtained by keeping the magnetic field as another coupling
constant. For simplicity we ignore this here and turn to the examples.

7.2 One-dimensional Ising model

The one-dimensional Ising model can be solved exactly in a rather simple way. In the absence
of a magnetic field the partition function and the reduced free energy are given by

Z = [2 cosh(K)]N and f(K) = ln [2 cosh(K)] , (7.19)

respectively, where K = J/kBT .
We define the partition functions as

Z =
∑
{s}

eNK0+K2
P

i sisi+1 , (7.20)

which is convenient to illustrate the way of decimation. Note that K = K2 here. We now
reorganize this partition function in order to identify a decimation scheme, where we sum over
the spins on the even sides,

Z =
∑
{sodd}

∑
{seven}

eK0+K2
P

i(s2i−1+s2i+1)s2i

=
∑
{sodd}

∏
i

e2K0

{
eK2(s2i−1+s2i+1) + e−K2(s2i−1+s2i+1)

}
=
∑
{sodd}

∏
i

eK
′
0+K′

2s2i−1s2i+1

(7.21)
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where s = 1. The new coupling parameter K ′ is related through the condition

e2K0

{
eK2(s2i−1+s2i+1) + e−K2(s2i−1+s2i+1)

}
= eK

′
0+K′

2s2i−1s2i+1 (7.22)

In order to solve this equation we consider the configurations (s2i−1, s2i+1) = (+1,+1) and
(+1,−1) which yields the equations

e2K0
{
e2K2 + e−2K2

}
= eK

′
0+K′

2

2e2K0 = eK
′
0−K′

2

 ⇒


K ′

0 = 2K0 +
1
2

ln [4 cosh(2K2)]

K ′
2 =

1
2

ln [cosh(2K2)]

(7.23)

Note that this decimation scheme conserves the form of the partition function, i.e. we end up
with the same connectivity of spins in the exponent (nearest neighbor coupling). We will see in
the next section that this is not generally the case.
There are two fixed points:

(K0c,K2c) = (∞,∞) and (K0c,K2c) = (− ln 2, 0) . (7.24)

For the coupling constant K2 the first fixed point is unstable (the iterative renormalization leads
the coupling constants away from the fixed point) and the second is stable.

b=2

3 4 5 7 8 9 10 116

1 3 5 7 9 11

RG step

1 2

Fig.7.1: Decimation scheme: Every second spin is integrated out to reach a renormalized new
system with only half the spins of the previous system.

We do not find a fixed point at a finite value ofK2 which states that no phase transition occurs, as
expected in view of Peierls argument. The unstable fixed point corresponds to zero-temperature
limit where the spins order in the ground state. The stable fixed point K2c = 0 is the limit
of non-interacting spins. The renormalization group treatment which had been here performed
exactly, shows that there is no phase transition at a finite temperature.

0

2

∞

K

Fig.7.2: Flow of the coupling constant K2 = J/kBT of the one-dimensional Ising model under
the renormalization group scheme. For any finite coupling and temperature the flow goes

towards K = 0 the limit of completely decoupled spins.

Therefore we find that starting at any finite value of K2 leads us through successive application
of the decimation procedure towards weaker and weaker coupling K2. The fixed point of K2 =
0 eventually corresponding to non-interacting spins is the ultimate limit of disordered spins.
Through the renormalization group procedure it is possible to generate an effective model which
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can be solved perturbatively and obtain the essential physics of the system. We introduce
K0 = g(K2) and write

g(K ′
2) =

1
2
(
ln 4 +K ′

2

)
. (7.25)

from (7.23). We start with K0 = 0 and write

ZN (K2) =
∑
{s}

eK2
P

i sisi+1 = eNg(K′
2)ZN/2(K

′
2) = eNg(K′

2)+Ng(K′′
2 )/2ZN/4(K

′′
2 ) = . . . . (7.26)

The reduced free energy

f(K2) = − 1
N

lnZN (K2) (7.27)

can now be approximated by

f (n)(K2) = −
n∑

n′=1

g(K(n′−1)
2 )

2n′−1
− 1

2n
ln 2 , (7.28)

by successively increasing n which leads to K
(n)
2 → 0. For K2 = 0 we find f = − ln 2. Thus

knowing the weak coupling limit allows us to determine the reduced free energy at any parameter
K2 (temperature).

7.3 Two-dimensional Ising model

Also for the two-dimensional Ising model there is an exact solution, due to Onsager, which is,
however, considerably more complicated than for the one-dimensional system. The partition
function is given by

Z =
[
2 cosh(2K)eI

]N
(7.29)

with

I =
∫ ∞

0

dφ

2π
ln
{

1
2

[
1 + (1− κ2 sin2 φ)1/2

]}
(7.30)

and
κ =

2 sinh(2K)
cosh2(2K)

. (7.31)

In this case there is a phase transition at finite temperature given by

sinh(2Kc) = 1 ⇒ kBTc = 2.27J Kc = 0.4407 . (7.32)

0’

b=   2
2

3

4

1
0

Fig.7.3: Decimation scheme for two-dimensional Ising model: Every second site is integrate
yielding an effective coupling among all surrounding spins.
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Now we turn to the renormalization group treatment.1 There are various decimation schemes
we could imagine. In analogy to the one-dimensional case we divide the square lattice into two
sublattices as shown in Fig. 7.3: The white sites are integrated out. We take the plaquette
indicated in the figure. Spins 1, 2, 3, and 4 encircle spin 0. The latter couples through nearest
neighbor interaction to the former four spins. Thus, our decimation works as follows

Z = · · ·
∑

s1,s2,s3,s4

∑
s0

eKs0(s1+s2+s3+s4) · · ·

= · · ·
∑

s1,s2,s3,s4

[
eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

]
· · · .

(7.33)

We reformulate the partition function for the remaining spin degrees of freedom

Z = · · ·
∑

s1,s2,s3,s4

eK
′
0+K′

1(s1s2+s2s3+s3s4+s4s1)+K′
2(s1s3+s2s4)+K′

3s1s2s3s4 · · · . (7.34)

Going through the space of spin configurations we find new effective interactions between the
four surrounding spins with the relation2

K ′
0 =

1
8

ln
{
cosh4(2K) cosh(4K)

}
+ ln 2

K ′
1 =

1
8

ln {cosh(4K)}

K ′
2 =

1
8

ln {cosh(4K)}

K ′
3 =

1
8

ln {cosh(4K)} − 1
2

ln {cosh(2K)}

(7.38)

where K ′
0 is again connected with the reduced free energy, K ′

1 and K ′
2 denote nearest- and

next-nearest-neighbor spin-spin interaction, and K ′
3 gives a four-spin interaction on the plaque-

tte. Note that the neighboring plaquettes contribute to the nearest-neighbor interaction, e.g.
summing in Fig. 7.3 over s0′ on site 0′, yields another interaction between s1 and s2. Therefore
we have to modify the second equation in (7.38) by multiplying by a factor 2,

K ′
1 =

1
4

ln {cosh(4K)} . (7.39)

1Literature: H.J. Maris and L.P. Kadanoff, Am. J. Phys. 46, 652 (1978).
2The renormalization group relations are obtained by looking at different spin configurations for

eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4)

= eK′
0+K′

1(s1s2+s2s3+s3s4+s4s1)+K′
2(s1s3+s2s4)+K′

3s1s2s3s4 .

(7.35)

We use now the configurations

(s1, s2, s3, s4) = (+,+,+,+), (+,+,+,−), (+,−,+,−), (+,+,−,−) (7.36)

and obtain the equations,

e4K + e−4K = eK′
0+4K′

1+2K′
2+K′

3 ,

e2K + e−2K = eK′
0−K′

3 ,

2 = eK′
0−4K′

1+2K′
2+K′

3 ,

2 = eK′
0−2K′

2+K′
3 ,

(7.37)

whose solution leads to (7.38).
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Unlike in the Ising chain we end up here with a different coupling pattern than we started. More
spins are coupled on a wider range. Repeating the decimation procedure would even further
enlarge the interaction range and complexity. This is not a problem in principle. However,
in order to have a more practical iterative procedure we have to make an approximation. We
restrict ourselves to the nearest neighbor interactions which would give a well-defined iterative
procedure. But simply ignoring the other couplings which additionally help to align the spins
would lead to an oversimplified behavior and would actually give no phase transition. Thus we
have to add the other couplings in some way to the nearest-neighbor coupling. It can be shown
that the four-spin interaction is small and not important close to the transition point, and we
concentrate on K ′

1 and K ′
2 only. Let us define the effective nearest-neighbor in a way to give the

same ground state energy as both couplings. Each site has four nearest- and four next-nearest
neighbors, which yield the energy per site for full spin alignment

E0 = 2NK ′
1 + 2NK ′

2 = 2NK ′ (7.40)

Thus we define the new renormalized nearest-neighbor coupling

K ′ = K ′
1 +K ′

2 =
3
8

ln {cosh(4K)} (7.41)

which now can be iterated. We find a stable fixed points of this new equation at K = 0 and ∞.
There is also an unstable fixed point at

Kc = 0.507 (7.42)

This unstable fixed point corresponds now to a finite-temperature phase transition at kBTc =
1.97J , which is lower than the mean field result kBTc = 4J , but relatively inaccurate compared
to the exact result of 2.27J .

order0

K
c

disorder
∞

Fig.7.4: Renormalization group flow of coupling constant; The unstable fixed point Kc

represents the critical point. On the left hand side, the flow leads to the stable fixed point
K = 0 corresponding to the uncoupled spins: disorder phase. The right hand side flows to the

stable fixed point K = ∞, where system is ordered.

It is now interesting to consider the exponents which we had discussed above. Thus we take
into account that in our decimation scheme b =

√
2 and calculate

K ′ −Kc =
3
8

[ln {cosh(4K)} − ln {cosh(4Kc)}]

=
3
8
(K −Kc)

d

dK
ln {cosh(4K)}

∣∣∣∣
K=Kc

= (K −Kc)
3
2

tanh(4Kc) = 1.45(K −Kc)

⇒ by1 = 2y1/2 = 1.45 ⇒ y1 = 2
ln 1.45
ln 2

= 1.07 .

(7.43)

From this result we obtain the critical exponents ν and α:

ν =
1
y1

= 0.93 and α = 2− d

y1
= 0.135 . (7.44)
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The exact result is νexact = 1 (mean field νmf = 1/2) and αexact = 0 meaning that the specific
heat has a logarithmic singularity not describable by an exponent.
The decimation method used here is only one among many which could be imagined and have
been used. Unfortunately, for practice reasons approximations had to be made so that the results
are only of qualitative value. Nevertheless these results demonstrate that non-trivial properties
appear in the critical region close to the second order phase transition.
Other decimations schemes can be used. Decimations in real space are only one type of method,
know under the name of block spin method. Alternatively, also decimations schemes in momen-
tum space can be used. Depending on the problem and the purpose different methods are more
useful.
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Appendix A

2D Ising model: Monte Carlo
method and Metropolis algorithm

By Christian Iniotakis

A.1 Monte Carlo integration

In the description of many physical scenarios, one may be confronted with an integration prob-
lem, which is not solvable analytically. Thus, the correct result of the integration has to be
approximated by evaluating the function at a sufficiently large set of sample points:∫

dx f(x) →
∑
xi

f(xi). (A.1)

There are several well-established numerical integration methods based on sample points, which
are equally spaced, e.g. the midpoint or trapezoidal rules, as well as some more evolved adaptive
methods1. These methods work fine in lower dimensions. However, if the space of integration
is of higher dimension, they are practically not applicable anymore, since the number of sample
points grows exponentially with the number of dimension.
In contrast to this, the main idea of Monte Carlo integration is to use sample points, which are
generated randomly2. For low-dimensional problems, such a method is not useful, if compared
to the other methods mentioned above (an example is given in the lecture). Nevertheless, Monte
Carlo integration is easy to generalize and is the method of choice for high-dimensional problems.

A.2 Monte Carlo methods in thermodynamic systems

We have already seen, that the the expectation value of a quantity A in the canonical ensemble
(where β = 1/kBT is fixed) can be written as

〈A〉 =

∑
Si
A(Si)e−βH(Si)∑
Si
e−βH(Si)

. (A.2)

Here the sums have to be performed over all possible microstates Si of the system and H(Si) is
the energy of the state Si. With the partition function

Z =
∑
Si

e−βH(Si) (A.3)

1These methods decide, whether and where more additional points should be evaluated.
2like in a casino, which gives some hint about the origin of the name.

126



we may define

P (Si) =
1
Z
e−βH(Si) (A.4)

so that
〈A〉 =

∑
Si

P (Si)A(Si). (A.5)

The expectation value for A is the sum of the values A(Si), weighted with the function P .
Although this structure looks rather simple, it is generally not possible to evaluate it in a naive
way. One concrete problem is the tremendous number3 of states Si involved. One might think
about using the Monte Carlo method here, generating a random sequence of n sample states
Si0 , Si1 , ..., Sin , for which we could evaluate the corresponding A(Sin). However, normally it is
not possible to calculate the partition function Z, even with a Monte Carlo technique. Thus
we do not know the corresponding weighting factors P (Sin). How can we manage to get the
expectation value, then?
Firstly, we notice that the weighting factor P represents the probability distribution of thermo-
dynamic equilibrium, since ∑

Si

P (Si) = 1. (A.6)

Thus, a rather elegant solution of the problem would be, to generate a series of sample states
for the Monte Carlo method, which contains the states Si according to their distribution P -
instead of a completely random sequence4. For these states, we could simply sum up all their
corresponding A values to get a good approximation for the expectation value. But still the
problem is, how to generate such a series, since we do not know the probability distribution P .
What we may access, however, is the relative probability of two states, because the partition
function drops out:

P (Si)
P (Sj)

= e−β[H(Si)−H(Sj)]. (A.7)

It turns out, that an algorithm originally developed by Metropolis et al. solves the problem5. It
is capable of generating sequences of random states, which fulfill the corresponding probability
distribution, based on the knowledge of the relative probabilities only. In the following, we will
illustrate the functional principle of the Metropolis algorithm for a very simple example, namely
an Ising model consisting of two sites only.

A.3 Example: Metropolis algorithm for the two site Ising model

Consider the two site Ising model, where the configuration space consists of the four states
Si = {↑↑, ↓↓, ↑↓, ↓↑}. Without an applied magnetic field, we have a ground state energy EG and
an excited state energy EE , and both of them are twofold degenerate. The two states S1 and
S2 belong to the ground state level, and both S3 and S4 to the excited one. In the following, p
denotes the probability of the excited state relative to the ground state, given by

p = e−β(EE−EG). (A.8)

Now, take a look at the following algorithm, which produces a sequence of states S(n):

1. Choose a starting state S(0) out of the four Si.
3Note, that we assume a model system with a discrete configuration space here. For a continuous model, the

sums should be replaced by integrals over configuration space.
4For a non-degenerate system at low temperatures, for example, the ground state should appear much more

often in this sequence than any specific state of higher energy (if the sequence is long enough...).
5Cf. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087

(1953).
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2. Given a state S(n), randomly pick one of the other states and denote it S̃.

3. Generate the next state S(n+1) according to the rule:
If the energy H(S̃) ≤ H(S(n)), set S(n+1) := S̃.
If the energy H(S̃) > H(S(n)), set S(n+1) := S̃ with probability p,
and keep S(n+1) := S(n) otherwise.

4. Continue with step 2.

The algorithm works quite simple, but what are its properties? We can answer this question
in terms of probability. Let p(n)

i denote the probability, that S(n) = Si. The corresponding
probability vector of the nth state lives in the configuration space and is given by

p(n) = (p(n)
1 , p

(n)
2 , p

(n)
3 , p

(n)
4 )T . (A.9)

One step of the algorithm may be represented by a probability matrix Π in the following way:

p(n+1) = Πp(n), (A.10)

where the matrix elements Πij are the probabilities Pj→i of the step getting from state Sj to
Si. It is not difficult to find, e.g., P1→2 = 1

3 · 1, P1→3 = P1→4 = 1
3 · p and P1→1 = 2

3(1 − p).
Eventually,

Π =
1
3


2(1− p) 1 1 1

1 2(1− p) 1 1
p p 0 1
p p 1 0

 . (A.11)

Note, that Π is diagonalizable. The matrices

M =


1
p 0 −2 −1
1
p 0 0 1
1 −1 1 0
1 1 1 0

 (A.12)

and

M−1 =
1

2(1 + p)


p p p p
0 0 −(1 + p) 1 + p
−p −p 1 1
−1 1 + 2p −1 −1

 (A.13)

result in
M−1ΠM = Λ (A.14)

with the diagonal matrix

Λ =


1 0 0 0
0 −1

3 0 0
0 0 1−2p

3 0
0 0 0 1−2p

3

 . (A.15)

This is quite helpful in finding the actual probability vector after n steps. We have

p(n) = Πp(n−1)

= Πnp(0)

= MΛnM−1p(0).

The nth power of the diagonal matrix Λ simply is a diagonal matrix with the elements of Λ,
but each raised to the power of n. For a large number of iteration steps, n → ∞, only the
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top-left entry of Λn will survive. The other eigenvalues have a modulus smaller than 1 and
vanish accordingly. In this limit, we get

p(∞) =
1

2(1 + p)


1 1 1 1
1 1 1 1
p p p p
p p p p

p(0) =
1

2(1 + p)


1
1
p
p

 . (A.16)

Now, we can list several remarkable properties, which are typical for a Metropolis algorithm in
general: Firstly note, that p(∞) is independent from the actual starting vector p(0) due to the
normalization condition

∑
i p

(0)
i = 1. Furthermore, it remains unchanged by Π, since we have

p(∞) = Πp(∞). (A.17)

Finally, most important, the elements of p(∞) show the correct probability distribution6. In
the practical use of such a Metropolis algorithm, one has to wait for a sufficiently large number
n of first initial steps7. After this initial process, the algorithm effectively produces a random
sequence of states according to the probability distribution of thermodynamic equilibrium. A
sufficiently large number of those states can then be used for the Monte Carlo integration.
The concrete generalization of the sample Metropolis algorithm presented above to an Ising
model with a larger amount of sites is straightforward. A typical way is as follows:

1. Choose a starting state S(0).

2. Given a state S(n), keep the spins at all sites, apart from one randomly picked site, where
you flip the spin. Denote this new state S̃.

3. Generate the next state S(n+1) according to the rule:
If H(S̃) ≤ H(S(n)), set S(n+1) := S̃.
If H(S̃) > H(S(n)), set S(n+1) := S̃ with prob. p = e−β[H(S̃)−H(S(n))],
and keep S(n+1) := S(n) otherwise.

4. Continue with step 2.

The basic step 3. remains unchanged. It fulfills the so-called detailed balance property

P (Si) · Pi→j = P (Sj) · Pj→i, (A.18)

which is a sufficient condition for P being the stationary probability distribution. Thus, one can
be sure to finally get the thermodynamic equilibrium distribution using the Metropolis algorithm.
Note, that the algorithm given here differs from the one presented above by a minor point
regarding step 2. The new state is not randomly chosen from the huge amount of all possible
states, as above. Instead, the new state is generated from the old one by randomly picking a site
and flipping its spin, but all the spins at other sites remain unchanged8. Alternatively, the local
spin flip may be performed not for a randomly chosen site, but for all sites, one after the other,
in a sweep. In the lecture, some sample solutions for the 2D Ising model, that are based on
the Monte Carlo Metropolis method, will be presented. There are even more evolved techniques
using cluster updates to overcome the effect of the critical slowing down.

6Actually, the Metropolis algorithm implements a Markov chain in configuration space, for which the thermo-
dynamic equilibrium distribution is stationary.

7The actual number severely depends on the initial values and the circumstances.
8This kind of local updating allows to determine the energy difference and thus the relative probability much

faster. An important aspect is to ensure the reachability of any state in a finite number of steps to keep ergodicity.
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Appendix B

High-temperature expansion of the
2D Ising model: Finding the phase
transition with Padé approximants

By Christian Iniotakis

In this section, we investigate the 2D Ising model using a specific approximation method, which
allows to determine singular critical points at phase transitions in a rather elegant numerical
way. Since we consider only the simplest two-dimensional cases, we may compare the final
results with those of exact analytical solutions1. We start with the Ising Hamiltonian

H = −J
∑

<i,j>

σiσj − h
∑

i

σi. (B.1)

Here, we assume a regular lattice of N sites with allowed spin values σi = ±1 at site i. The
index < i, j > denotes nearest neighbor connections. Due to the constants J > 0 and h,
it is energetically favorable if a spin is parallel to its next neighbors and to the direction of
the magnetic field, respectively. Obviously, the configuration space of this system contains 2N

possible states.

B.1 High-temperature expansion

For a general quantity A, the expectation value is given by

〈A〉 =
TrAe−βH

Tre−βH
, (B.2)

where the abbreviation β = 1/kBT has been used. In the following, we concentrate on the
average magnetization per spin/site

m = 〈 1
N

N∑
i=1

σi〉 (B.3)

and the resulting zero-field susceptibility

χ0 =
∂m

∂h

∣∣∣∣
h=0

. (B.4)

1Cf., e.g., L. Onsager, Phys. Rev. 65, 117 (1944).
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The Tr-operator in the expression for the expectation value sums over all 2N possible states of
our system. Furthermore, for the concrete evaluation it is helpful to realize that

Tr 1 = Trσ2n
i σ2m

j ...σ2l
k = 2N , (B.5)

whereas
Trσ2n+1

i σm
j ...σ

l
k = 0. (B.6)

In words, as long as we deal with products of even powers of the σi only, we get 2N . However,
as soon as at least one of the powers is odd, we get zero.
Exercise 1: Using above relations, show that the reduced zero-field susceptibility

χ = kBTχ0 (B.7)

is given by

χ =
1
N

Tr
∑

i,j σiσje
−βH0

Tr e−βH0
= 1 +

1
N

Tr
∑

i6=j σiσje
−βH0

Tr e−βH0
(B.8)

with H0 denoting the zero-field Hamiltonian

H0 = −J
∑

<i,j>

σiσj . (B.9)

As a next step, we want to evaluate both the numerator and the denominator of the reduced
zero-field susceptibility. For this purpose, we use the identity

eβJσiσj =
∞∑

n=0

(βJ)n

n!
σn

i σ
n
j

=
∞∑

n=0

(βJ)2n

(2n)!
+ σiσj

∞∑
n=0

(βJ)2n+1

(2n+ 1)!

= coshβJ + σiσj sinhβJ
= cosh(βJ)(1 + wσiσj) (B.10)

with the definition
w = tanhβJ. (B.11)

Note, that w → 0 for T →∞ and w < 1 for finite T . Thus, w is an ideal candidate (better than
β itself) for a series expansion in a small parameter, starting from the high-temperature regime.
Due to

e−βH0 = eβJ
P

<i,j> σiσj =
∏

<i,j>

eβJσiσj , (B.12)

Eq. (B.10) can be plugged into the expression for the reduced zero-field susceptibility Eq. (B.8),
and we find in orders of w:

χ = 1 +
1
N

Tr
∑
i6=j

σiσj

∏
<r,s>

(1 + wσrσs)

Tr
∏

<r,s>

(1 + wσrσs)

= 1 +
1
N

Tr
∑
i6=j

σiσj

1 + w
∑

<r,s>

σrσs + w2
∑

<r,s> 6=<n,m>

σrσsσnσm + ...


Tr

1 + w
∑

<r,s>

σrσs + w2
∑

<r,s> 6=<n,m>

σrσsσnσm + ...

 .
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n square lattice, q = 4 triangular lattice, q = 6 honeycomb lattice, q = 3
0 1 1 1
1 4 6 3
2 12 30 6
3 36 138 12
4 100 606 24
5 276 2586 48
6 740 10818 90
7 1972 44574 168
8 5172 181542 318
9 13492 732678 600
10 34876 2 935218 1098
11 89764 11 687202 2004
12 229628 46 296210 3696
13 585508 182 588850 6792
14 1 486308 717 395262 12270
15 3 763460 2809 372302 22140

Table B.1: Coefficients an of the high-temperature expansion of the reduced zero-field suscep-
tibility χ in orders of w = tanhβJ (cf. Exercise 2). The data for the different lattice types is
according to Sykes et al.

Exercise 2: Calculate the lowest orders in the numerator and the denominator. Show, that we
end up with

χ = 1 +
1
N

2NNqw + 2NNq(q − 1)w2 +O(w3)
2N +O(w3)

= 1 + qw + q(q − 1)w2 +O(w3),

where q denotes the number of nearest neighbors in the lattice.
The evaluation of higher coefficients is merely a combinatorial task. In Table B.1, we list

the results published by Sykes et al.2 in 1972.

B.2 Finding the singularity with Padé approximants

The coefficients in Table B.1 grow rapidly for higher orders. In particular, the series

χ =
∑

n

anw
n (B.13)

does not converge for all temperatures T or values of w, respectively. This is not surprising,
since we expect a singularity of the form

χ ∼ A(w − wc)−γ (B.14)

to appear when w → w−c due to the phase transition. The specific values of both wc and the
critical exponent γ > 0 are unknown so far. And obviously, an “ordinary” series expansion of the
Taylor-type is not sufficient to handle such a singularity appropriately. Therefore we employ the
method of the so-called Padé approximants3 in the following, which will allow us to determine
the critical values wc and γ with a high accuracy.

2Cf. M.F. Sykes, D.S. Gaunt, P.D. Roberts and J.A. Wyles, J. Phys. A 5, 624 (1972).
3Cf. H. Padé’s thesis of the year 1892 as well as G.A. Baker, Phys. Rev. 124, 768 (1961).
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The Padé approximant [m,n] to a given function f is the ratio of a polynomial of degree m
divided by a polynomial of degree n

[m,n] =
p0 + p1x+ p2x

2 + ...+ pmx
m

1 + q1x+ q2x2 + ...+ qnxn
(B.15)

such that it agrees with f up to order m+ n:

f = [m,n] +O(xm+n+1). (B.16)

Note, that the coefficients pi, qj of the polynomials are uniquely determined, and with them also
is the Padé approximant [m,n]. The Padé approximants [m, 0] just coincide with the Taylor
series expansion for f up to order m and are of no use for our purpose here. However, Padé
approximants of higher order in the denominator naturally exhibit poles. This feature makes
them good candidates for catching the singularity at the phase transition.
Since the expected singularity is of order γ, whereas the poles of the Padé approximants are
restricted to integer orders, we may introduce the following trick: Instead of χ, we use the
auxiliary function ∂w lnχ, since

χ ∼ A(w − wc)−γ

lnχ ∼ lnA− γ ln(w − wc)

∂w lnχ ∼ −γ
w − wc

.

Thus we expect the Padé approximants for the function ∂w lnχ to display a singularity at the
critical value wc, representing the physical phase transition. Moreover, the value of the residue
corresponding to this singularity should provide us with −γ. In Table B.2, we list the first
coefficients for the auxiliary function ∂w lnχ. Results for the concrete numerical evaluation of
the Padé approximants will be presented in the lecture. Some samples can be seen in Figs. B.1,
B.2 and B.3 for the square, triangular and honeycomb lattice, respectively. We get a very good
estimate for the critical exponent compared to its exact value

γ = 7/4 = 1.75, (B.17)

which is independent of the lattice type. Furthermore, the results for the critical values wc are
in excellent agreement with those of analytical solutions given in the brackets:

wSQU
c ≈ 0.414211 (

√
2− 1 ≈ 0.414214)

wTRI
c ≈ 0.267944 (2−

√
3 ≈ 0.267949)

wHON
c ≈ 0.577348 (1/

√
3 ≈ 0.577350).

The critical temperature Tc can easily be calculated from wc. We get

kBTc

J
≈ 2.269 / 3.641 / 1.519 (B.18)

for the square, triangular and honeycomb lattice, respectively. Note, that the critical tempera-
ture roughly scales with the number q of nearest neighbors in the lattice, which are accordingly
given by

q = 4 / 6 / 3. (B.19)

This behavior indicates, that a coupling to more neighbors enhances parallel alignment of the
spins, allowing the phase transition to occur already at higher temperatures.
Summarizing, employing Padé approximants revealed the phase transitions of the 2D Ising
model on different lattice types with a high accuracy. The main work within this method lies
in calculating sufficiently many coefficients of the power series of the corresponding singular
quantity4. A generalization to, e.g., the 3D-case is straightforward.

4Note, that the success of this method crucially depends on the concrete type of singularity to deal with.
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n square lattice, q = 4 triangular lattice, q = 6 honeycomb lattice, q = 3
0 4 6 3
1 8 24 3
2 28 90 9
3 48 336 15
4 164 1266 33
5 296 4752 27
6 956 17646 87
7 1760 65760 159
8 5428 245646 297
9 10568 917184 243
10 31068 3422898 795
11 62640 12773952 1503
12 179092 47674386 2499
13 369160 177928824 2355
14 1034828 664051230 7209

Table B.2: Coefficients of the high-temperature expansion of the function ∂w lnχ in orders of
w = tanhβJ . We only give results up to order 14, generated from Table B.1.

Pole: 0.414211

Res: -1.74965
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Fig. B.1: Poles of the [7, 7] Padé approximant for ∂w lnχ on the square lattice. The physical
pole is at wc ≈ 0.414211 with residue −1.7497.

134



Pole: 0.267944

Res: -1.74928
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Lattice: TRI Pade: @7,7D

Fig. B.2: Poles of the [7, 7] Padé approximant for ∂w lnχ on the triangular lattice. The
physical pole is at wc = 0.267944 with residue −1.7493.

Pole: 0.577348

Res: -1.74969
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Fig. B.3: Poles of the [15, 15] Padé approximant for ∂w lnχ on the honeycomb lattice. The
physical pole is at wc = 0.577348 with residue −1.7497.
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