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Exercise 10.1 Greenhouse Effect

(a) Calculate the solar constant S0 (energy flow density of the radiation of the sun on
earth) using the following data: Temperature of the sun TS = 5800K, radius of the
sun rS = 6.96 · 108m, distance sun-earth R = 1.50 · 1011m.

(b) Using the result of (a), calculate the earth’s mean temperature. Model the earth as
a black body and include the effect of reflection of the sun’s radiation by modifying
S0 → (1− r)S0. Consider the cases r = 0 and r = 0.3.

(c) Building upon (b), include the greenhouse effect by modeling the atmosphere as
a layer around earth that is completely transparent for the sun’s radiation, but
absorbs all the radiation from earth (like the glass roof of a greenhouse).

Exercise 10.2 Magnetostriction in a Spin-Dimer-Model

As in exercise 8.1, we again start with a dimer consisting of two (quantum) spins, s = 1/2,
described by the Hamiltonian

H0 = J(~S1 · ~S2 + 3/4), (1)

with J > 0. This time, however, the distance between the spins is not fixed but they are
connected by a spring (cf. fig.) such that the Hamiltonian of the system reads

H =
p̂2

2m
+
mω2

2
x̂2 + J(1− λx̂)(~S1 · ~S2 + 3/4); (2)

i.e., the spin-coupling constant depends on the distance between the two sites.
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In the above figure, m is the mass of the two constituents, ω is the spring constant and
d denotes the equilibrium distance between the two spins for the case of no spin-spin
interaction. Furthermore, x is measured from this equilibrium.

(a) Write the Hamiltonian (2) in second quantized form and calculate the partition sum,
the internal energy, the specific heat and the entropy. In the limit T → 0, discuss
the entropy for different values of λ.
Hint: Introduce an operator n̂t defined through

〈σ|n̂t|σ〉 =

{
1 σ is a triplet,
0 σ is the singlet,

(3)



and trace first over the spin-degrees of freedom.

(b) Calculate the expectation value of the distance of the two spins, 〈d+ x̂〉, as well as
the fluctuations 〈(d+ x̂)2〉.
How can we manipulate this quantities by applying a magnetic field in z-direction,
leading to an additional term in (2),

Hm = −gµBH
∑
i,m

Sz
i,m? (4)

(c) If the two sites carry an equal but opposite charge ±q, the dimer forms a dipole
with moment P = q〈d + x〉. This dipole moment can be measured by applying an
electric field E in x direction,

Hel = −q(d+ x̂) · E. (5)

Calculate the zero-field susceptibility of the dimer,

χ
(el)
0 = − ∂2F

∂E2

∣∣∣∣
E=0

, (6)

and compare with the result of the fluctuation-dissipation theorem,

χ
(el)
0 ∝

(〈
(d+ x)2

〉
−
〈
d+ x

〉2)
. (7)

Plot the zero-field susceptibility as a function of the applied magnetic field H and
discuss.


