Quantum Field Theory I, Exercise Set 8.

1. The Green's function in the interaction picture

We want to verify equation (12.31) in the lecture notes:

$$
\begin{equation*}
\langle\Omega| \mathrm{T}\left[\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right]|\Omega\rangle=\lim _{t \rightarrow \infty} Z_{[-t, t]}^{-1}\langle 0| \mathrm{T}\left[\varphi_{0}\left(x_{1}\right) \cdots \varphi_{0}\left(x_{n}\right) e^{-\mathrm{i} \int_{-t}^{t} \mathrm{~d} \tau H_{W}(\tau)}\right]|0\rangle . \tag{1}
\end{equation*}
$$

The $\varphi(x)$ are the field operators in the Heisenberg picture while $\varphi_{0}(x)$ are free field operators.
We define $H=H_{0}+H_{W}$, where H_{0} describes the free dynamics, and assume that we have normalised the energy so that $H|\Omega\rangle=0$. The propagator in the interaction picture is $U_{W}(t, s)=$ $\mathrm{T}\left[\exp -i \int_{s}^{t} \mathrm{~d} \tau H_{W}(\tau)\right]$ and the following relations hold:

$$
\begin{aligned}
e^{-\mathrm{i}(t-s) H} & =e^{-\mathrm{i} t H_{0}} U_{W}(t, s) e^{\mathrm{i} s H_{0}}, \\
e^{ \pm i t H_{0}}|0\rangle & =|0\rangle, \\
e^{\mathrm{i} x^{0} H_{0}} \varphi(\vec{x}) e^{-\mathrm{i} x^{0} H_{0}} & =\varphi_{0}\left(x^{0}, \vec{x}\right)=\varphi_{0}(x) .
\end{aligned}
$$

In the following, if not mentioned otherwise, we assume the spacetime points $x_{i}, 1 \leq i \leq n$, have time components t_{i} ordered so that $t>t_{1}>t_{2}>\ldots>t_{n}>-t$.
(i) Show that the following identity for time ordered products holds:

$$
\mathrm{T}\left[e^{A} e^{B}\right]=\mathrm{T} e^{A+B}
$$

Hint: Write the exponential as a series and exploit the time order operator to reshuffle the series.
(ii) Show that

$$
\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)=U_{W}\left(0, t_{1}\right) \varphi_{0}\left(x_{1}\right) U_{W}\left(t_{1}, t_{2}\right) \varphi_{0}\left(x_{2}\right) \cdots \varphi_{0}\left(x_{n}\right) U_{W}\left(t_{n}, 0\right)
$$

Hint: Remember the time evolution of operators in the Heisenberg picture.
(iii) Use $|\Omega\rangle=\lim _{t \rightarrow \pm \infty} c_{t} e^{i t H}|0\rangle$ and $U_{W}(t, \tau) U_{W}(\tau, s)=U_{W}(t, s)$ to show that

$$
\begin{aligned}
& \langle\Omega| \mathrm{T}\left[\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right]|\Omega\rangle \\
& \quad=\lim _{t \rightarrow \infty}\left|c_{t}\right|^{2}\langle 0| \mathrm{T}\left[e^{-\mathrm{i} t H_{0}} U_{W}\left(t, t_{1}\right) \varphi_{0}\left(x_{1}\right) \cdots \varphi_{0}\left(x_{n}\right) U_{W}\left(t_{n},-t\right) e^{-\mathrm{i} t H_{0}}\right]|0\rangle .
\end{aligned}
$$

(iv) Show that

$$
\langle\Omega| A|\Omega\rangle=\lim _{t \rightarrow \infty} \lim _{s \rightarrow-\infty} \frac{\langle 0| e^{\mathrm{i} H_{0} t} e^{-\mathrm{i} H t} A e^{\mathrm{i} H s} e^{-\mathrm{i} H_{0} s}|0\rangle}{\langle 0| U_{W}(t, s)|0\rangle}
$$

Hint: Start with $|\Omega\rangle=\lim _{t \rightarrow \pm \infty} \frac{e^{i H t}|0\rangle}{\langle\Omega \mid 0\rangle}$, then determine $|\langle\Omega \mid 0\rangle|^{2}$ by setting $A=\mathbb{1}$.
(v) Identify $\lim _{t \rightarrow \infty}\left|c_{t}\right|^{2}$ with $Z_{[-t, t]}^{-1}$ and conclude from (iv) that

$$
Z_{[-t, t]}=\langle 0| U_{W}(t,-t)|0\rangle
$$

Express $U_{W}(t, s)$ by its representation as time ordered exponential and show (1).

2. Wick's theorem

In class, Wick's theorem was introduced as a tool for expressing products of field operators as sums of Wick-ordered expressions. It was proven by induction. Here we discuss a different derivation.

We consider a free field theory, described by the field operators $\varphi_{0}(x)$, or, equivalently, by the free creation and annihilation operators. The free vacuum is denoted by $|0\rangle$. For simplicity, we consider bosonic fields (fermionic fields may be dealt with similarly with the additional complication of having to keep track of signs).

Let A_{1}, \ldots, A_{n} be linear combinations of creation and annihilation operators. For example, A_{i} could be of the form $\varphi_{0}\left(x_{i}\right)$. The Wick-ordered product : $A_{1} \cdots A_{n}$: is defined by multiplying out $A_{1} \cdots A_{n}$ and writing the creation operators on the left of the annihilation operators. Wickordered expressions have the important property

$$
\langle 0|: A_{1} \cdots A_{n}:|0\rangle=0
$$

(i) Let $0 \leq p \leq\lfloor n / 2\rfloor$ and denote by $P:\left(i_{1}<j_{1}\right) \cdots\left(i_{p}<j_{p}\right)$ a pairing, i.e. a choice of p disjoint pairs from the set $\{1, \ldots, n\}$. Show that

$$
A_{1} \cdots A_{n}=\sum_{P:\left(i_{1}<j_{1}\right) \cdots\left(i_{p}<j_{p}\right)}\left[\prod_{l=1}^{p}\langle 0| A_{i_{l}} A_{j_{l}}|0\rangle\right]: A_{1} \cdots \widehat{A}_{i_{1}} \cdots \widehat{A}_{j_{p}} \cdots A_{n}:
$$

where $\widehat{\text { denotes omission. }}$
Hint: Since both sides are multilinear in the variables A_{1}, \ldots, A_{n}, one can assume that each A_{i} is either a creation or annihilation operator.
(ii) One often needs to compute the Wick-ordered product of the product of Wick-ordered products. Show that
$: A_{1} \cdots A_{k}:: A_{k+1} \cdots A_{n}:=\sum_{P:\left(i_{1}<j_{1}\right) \cdots\left(i_{p}<j_{p}\right)}^{\prime}\left[\prod_{l=1}^{p}\langle 0| A_{i_{l}} A_{j_{l}}|0\rangle\right]: A_{1} \cdots \widehat{A}_{i_{1}} \cdots \widehat{A}_{j_{p}} \cdots A_{n}:$
where the primed sum means that one only sums over pairings where no pair $\left\{i_{l}, j_{l}\right\}$ originates from the same Wick-ordered product.
What is the generalisation to an arbitrary number of terms?
(iii) In perturbation theory one computes time-ordered products. Let T denote time-ordering. Generally, T may be expressed as

$$
\mathrm{T}\left(A_{1} \cdots A_{n}\right)=A_{\sigma(1)} \cdots A_{\sigma(n)}
$$

where σ is some permutation (the explicit expression for σ is not needed). Show that

$$
: \mathrm{T}\left(A_{1} \cdots A_{n}\right):=: A_{1} \cdots A_{n}:
$$

(iv) Show that

$$
\mathrm{T}\left(A_{1} \cdots A_{n}\right)=\sum_{P:\left(i_{1}<j_{1}\right) \cdots\left(i_{p}<j_{p}\right)}\left[\prod_{l=1}^{p}\langle 0| \mathrm{T}\left(A_{i_{l}} A_{j_{l}}\right)|0\rangle\right]: A_{1} \cdots \widehat{A}_{i_{1}} \cdots \widehat{A}_{j_{p}} \cdots A_{n}: .
$$

Hints: Use (i) and write $A_{\sigma(i)}=B_{i}$.
(v) Show that

$$
\begin{aligned}
& \mathrm{T}\left(: A_{1} \cdots A_{k}:: A_{k+1} \cdots A_{n}:\right) \\
&=\sum_{P:\left(i_{1}<j_{1}\right) \cdots\left(i_{p}<j_{p}\right)}^{\prime}\left[\prod_{l=1}^{p}\langle 0| \mathrm{T}\left(A_{i_{l}} A_{j_{l}}\right)|0\rangle\right]: A_{1} \cdots \widehat{A}_{i_{1}} \cdots \widehat{A}_{j_{p}} \cdots A_{n}: .
\end{aligned}
$$

Hints: Use (ii) and proceed like in (iv).
What is the generalisation to an arbitrary number of terms?

3. Feynman diagrams for φ^{4}

Consider the φ^{4}-QFT with Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4} .
$$

We consider two particle scattering of the form $b+b \rightarrow b+b$.
(i) Compute the differential cross section in the CoM frame for elastic scattering to lowest order in perturbation theory.
Hint: Replace $Z=1+O\left(\lambda^{2}\right)$ by 1 in the LSZ reduction formula.
(ii) Show that the Feynman diagram below is logarithmically divergent.

(iii) Find the symmetry factor for the following Feynman diagram.

