Quantum Field Theory I, Exercise Set 7.

HS 08
Due: 13/14 November 2008

1. Scattering matrix

In the lecture notes the asymptotic Hilbert spaces $\mathcal{H}_{\text {as }}$, where 'as' stands for 'in' or 'out', were constructed by applying the asymptotic creation operators $\alpha_{\text {as }}^{*}(\mathbf{p})$ to the vacuum state $|0\rangle_{\text {in }}=\Omega=|0\rangle_{\text {out }}$. The asymptotic completeness assumption states that

$$
\mathcal{H}_{\text {out }}=\mathcal{H}_{\text {in }}=\mathcal{H}_{\text {int }},
$$

where $\mathcal{H}_{\text {int }}$ is the Hilbert space of the interacting theory. The scattering amplitude is then of the form

$$
\left\langle\alpha_{\text {out }}^{*}\left(\mathbf{p}_{1}\right) \ldots \alpha_{\text {out }}^{*}\left(\mathbf{p}_{n}\right) \Omega, \alpha_{\text {in }}^{*}\left(\mathbf{k}_{1}\right) \ldots \alpha_{\text {in }}^{*}\left(\mathbf{k}_{m}\right) \Omega\right\rangle
$$

which can be computed using the LSZ reduction formula. The scattering matrix is defined as the map

$$
\begin{aligned}
S^{*}: \mathcal{H}_{\text {in }} & \rightarrow \mathcal{H}_{\text {out }} \\
\alpha_{\text {in }}^{*}\left(\mathbf{p}_{1}\right) \ldots \alpha_{\text {in }}^{*}\left(\mathbf{p}_{n}\right) \Omega & \mapsto \alpha_{\text {out }}^{*}\left(\mathbf{p}_{1}\right) \ldots \alpha_{\text {out }}^{*}\left(\mathbf{p}_{n}\right) \Omega
\end{aligned}
$$

and $S^{*} \Omega=\Omega$.
(i) Assuming asymptotic completeness, prove that S is unitary.
(ii) Show that

$$
S^{*} \alpha_{\mathrm{in}}^{\#}(\mathbf{p}) S=a_{\mathrm{out}}^{\#}(\mathbf{p})
$$

2. Asymptotic states and scattering of two particles

Consider a field theory with particle mass m.
(i) We take two incoming particles with momenta $\mathbf{k}_{1}, \mathbf{k}_{2}$ and look at scattering amplitudes corresponding to more than 2 outgoing particles, i.e.

$$
\begin{equation*}
\left\langle\alpha_{\text {out }}^{*}\left(\mathbf{p}_{1}\right) \cdots \alpha_{\text {out }}^{*}\left(\mathbf{p}_{n}\right) \Omega, \alpha_{\text {in }}^{*}\left(\mathbf{k}_{1}\right) \alpha_{\text {in }}^{*}\left(\mathbf{k}_{2}\right) \Omega\right\rangle, \tag{1}
\end{equation*}
$$

where $n \geq 3$. Show that the 'disconnected terms' in the LSZ reduction formula vanish.
Hint: By (10.19), one has to show that

$$
\left\langle\alpha_{\mathrm{out}}^{*}\left(\mathbf{p}_{2}\right) \cdots \alpha_{\mathrm{out}}^{*}\left(\mathbf{p}_{n}\right) \Omega, \alpha_{\mathrm{in}}^{*}\left(\mathbf{k}_{2}\right) \Omega\right\rangle
$$

vanishes. To this end, show that

$$
\sum_{i=2}^{n} \omega\left(\mathbf{p}_{i}\right)>\omega\left(\sum_{i=2}^{n} \mathbf{p}_{i}\right),
$$

where $\omega(\mathbf{p})=\sqrt{m^{2}+\mathbf{p}^{2}}$.
(ii) Show that

$$
\alpha_{\mathrm{in}}^{*}(\mathbf{p}) \Omega=\alpha_{\text {out }}^{*}(\mathbf{p}) \Omega .
$$

Hint: Consider projections onto states of the form $\alpha_{\mathrm{in}}^{*}\left(\mathbf{p}_{1}\right) \cdots \alpha_{\mathrm{in}}^{*}\left(\mathbf{p}_{n}\right) \Omega$. Treat the cases $n=0, n=1, n>1$ separately.

3. Phase space factor

In this exercise we consider $2 \rightarrow 2$ scattering. Starting from the expression for the differential cross section

$$
\mathrm{d} \sigma=(2 \pi) 4 \delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \frac{1}{4\left(\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right)^{\frac{1}{2}}}\left|\mathcal{M}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)\right|^{2} \frac{\mathrm{~d} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} \omega_{1}^{\prime}} \frac{\mathrm{d} \mathbf{p}_{2}^{\prime}}{(2 \pi)^{3} \omega_{2}^{\prime}}
$$

show that in a frame where \mathbf{p}_{1} and \mathbf{p}_{2} are parallel, e.g. in the center of mass frame,

$$
\mathrm{d} \sigma=M\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right) \delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \mathrm{d} \mathbf{p}_{1}^{\prime} \mathrm{d} \mathbf{p}_{2}^{\prime}
$$

with invariant transition amplitude

$$
M\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)=\frac{1}{16 \pi^{2}} \frac{1}{v_{\mathrm{rel}} \omega_{1} \omega_{2} \omega_{1}^{\prime} \omega_{2}^{\prime}}|\mathcal{M}|^{2} .
$$

Here we have used the notation $v_{\text {rel }}=\left|\frac{\mathbf{p}_{1}}{\omega_{1}}-\frac{\mathbf{p}_{2}}{\omega_{2}}\right|$ with $\omega_{i}=\omega\left(\mathbf{p}_{i}\right)$.

