Quantum Field Theory I, Exercise Set 5

1. Gupta-Bleuler formalism and physical Hilbert space

Complete the proof of the Lemma on page 164 in the lecture notes.
Hint: Convince yourself that any state in the (unphysical) Fock space \mathcal{F} can be written as a linear combination of vectors of the form

$$
\psi=\prod_{j=1}^{m} a_{r_{j}}^{*}\left(f_{j}\right) \prod_{i=1}^{n}\left(a_{3}^{*}\left(g_{i}\right)+a_{0}^{*}\left(h_{i}\right)\right)|0\rangle,
$$

where $r_{j}=1$ or 2 , and f_{i}, g_{i}, h_{i} are test functions on \mathbb{R}^{3}. The vector ψ is in the physical Fock space $\mathcal{F}_{\text {phys }}$ if and only if

$$
\left[a_{3}(\mathbf{k})-a_{0}(\mathbf{k})\right] \psi=0, \quad \forall \mathbf{k} .
$$

Proceeding by induction on n, show that this implies $g_{i}=-h_{i}, i \leq n$.

2. Hamiltonian formulation of the EM field in the Coulomb gauge

In class the electromagnetic field was quantised in the Lorenz gauge (Gupta-Bleuler). The goal of this exercise is to work through the quantisation of the electromagnetic field in the Coulomb gauge.
(i) A vector field \mathbf{X} on \mathbb{R}^{3} may be decomposed into its transverse and longditudinal parts: $\mathbf{X}=\mathbf{X}_{\mathrm{T}}+\mathbf{X}_{\mathrm{L}}$, where $\nabla \cdot \mathbf{X}_{\mathrm{T}}=0$ and $\nabla \wedge \mathbf{X}_{\mathrm{L}}=0$. Find explicit expressions for \mathbf{X}_{T} and \mathbf{X}_{L} and show that

$$
\left(X_{\mathrm{T}}\right)_{i}(\mathbf{x})=\sum_{j} \int \mathrm{~d} \mathbf{y} \delta_{i j}^{T}(\mathbf{x}-\mathbf{y}) X_{j}(\mathbf{y}),
$$

where δ^{T} is the transverse delta function

$$
\delta_{i j}^{T}(\mathbf{x}-\mathbf{y}):=\left(\delta_{i j}-\partial_{i} \partial_{j} \Delta^{-1}\right) \delta(\mathbf{x}-\mathbf{y}),
$$

and the operator Δ^{-1} is defined by

$$
\left(\Delta^{-1} f\right)(\mathbf{x}):=\frac{1}{4 \pi} \int \mathrm{~d} \mathbf{y} \frac{f(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} .
$$

Hint: Use the identity $\Delta \mathbf{X}=\nabla(\nabla \cdot \mathbf{X})-\nabla \wedge(\nabla \wedge \mathbf{X})$.
(ii) Introduce the scalar and vector potentials ϕ and \mathbf{A}, which satisfy $\mathbf{E}=-\nabla \phi-\partial_{t} \mathbf{A}$ and $\mathbf{B}=\nabla \wedge \mathbf{A}$. Show that, in the Coulomb gauge $\nabla \cdot \mathbf{A}=0$, the Maxwell equations read

$$
-\Delta \phi=\rho, \quad \square \mathbf{A}=\mathbf{j}-\partial_{t} \nabla \phi
$$

Hence ϕ is determined by $\phi=-\Delta^{-1} \rho$. All that remains is a wave equation for \mathbf{A}, whose solution is uniquely determined by \mathbf{A} and $\partial_{t} \mathbf{A}$ at $t=0$.
(iii) Let us first consider the free electromagnetic field, $\rho=0$ and $\mathbf{j}=0$. The phase space of the electromagnetic field is given by

$$
\Gamma_{\mathrm{EM}}:=\{(\mathbf{A}, \mathbf{E}): \nabla \cdot \mathbf{A}=\nabla \cdot \mathbf{E}=0\} .
$$

We introduce a Poisson bracket $\{\cdot, \cdot\}$ on Γ through

$$
\begin{equation*}
\left\{A_{i}(\mathbf{x}), E_{j}(\mathbf{y})\right\}=\delta_{i j}^{T}(\mathbf{x}-\mathbf{y}), \tag{1}
\end{equation*}
$$

(all other brackets vanish). Imposing the usual properties of $\{\cdot, \cdot\}$ - bilinearity, Jacobi identity and the Leibniz rule in both arguments - determines $\{\cdot, \cdot\}$ uniquely. Show that

$$
\begin{equation*}
\left\{\int \mathrm{d} \mathbf{x} \mathbf{u}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}), \int \mathrm{d} \mathbf{x} \mathbf{v}(\mathbf{x}) \cdot \mathbf{E}(\mathbf{x})\right\}=\int \mathrm{d} \mathbf{x} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}), \tag{2}
\end{equation*}
$$

if $\nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{v}=0$.
(iv) The Hamilton function is defined by

$$
\begin{equation*}
H=\frac{1}{2} \int \mathrm{~d} \mathbf{x}\left(\mathbf{E}^{2}(\mathbf{x})+\mathbf{B}^{2}(\mathbf{x})\right) \tag{3}
\end{equation*}
$$

Show that the Hamiltonian equations of motion are equivalent to the Maxwell equations.
(v) In order to quantise the electromagnetic field, it is more convenient to work in momentum space:

$$
\mathbf{A}(\mathbf{x})=\int \frac{\mathrm{d} \mathbf{k}}{(2 \pi)^{3 / 2}} \mathbf{q}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \quad \mathbf{E}(\mathbf{x})=-\int \frac{\mathrm{d} \mathbf{k}}{(2 \pi)^{3 / 2}} \mathbf{p}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

Show that the conditions $\nabla \cdot \mathbf{A}=\nabla \cdot \mathbf{E}=0$ and \mathbf{A}, \mathbf{E} real imply that

$$
\begin{aligned}
& \mathbf{A}(\mathbf{x})=\sum_{\lambda=1,2} \int \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2|\mathbf{k}|}}\left(\varepsilon_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}+\bar{\varepsilon}_{\lambda}(\mathbf{k}) \bar{a}_{\lambda}(\mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right), \\
& \mathbf{E}(\mathbf{x})=\mathrm{i} \sum_{\lambda=1,2} \int \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{3 / 2}} \frac{\sqrt{|\mathbf{k}|}}{\sqrt{2}}\left(\varepsilon_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}-\bar{\varepsilon}_{\lambda}(\mathbf{k}) \bar{a}_{\lambda}(\mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right),
\end{aligned}
$$

where $\varepsilon_{1}(\mathbf{k})$ and $\varepsilon_{2}(\mathbf{k})$ are orthonormal complex vectors, both orthogonal to \mathbf{k}, and $a_{\lambda}(\mathbf{k})$ is a complex function.
(vi) Show that the Hamilton function (3) in the new coordinates $a_{\lambda}(\mathbf{k}), \bar{a}_{\lambda}(\mathbf{k})$ is given by

$$
H=\sum_{\lambda=1,2} \int \mathrm{~d} \mathbf{k}|\mathbf{k}|\left|a_{\lambda}(\mathbf{k})\right|^{2}
$$

(vii) Show that the Poisson bracket is given by

$$
\left\{a_{\lambda}(\mathbf{k}), \bar{a}_{\lambda^{\prime}}\left(\mathbf{k}^{\prime}\right)\right\}=\mathrm{i} \delta_{\lambda \lambda^{\prime}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

(all other brackets vanish). Compute the Hamiltonian equations of motion for $a_{\lambda}(\mathbf{k}), \bar{a}_{\lambda}(\mathbf{k})$.
(viii) Quantise the free electromagnetic field as follows. Replace $a_{\lambda}(\mathbf{k}) \rightarrow \widehat{a}_{\lambda}(\mathbf{k})$ and $\bar{a}_{\lambda}(\mathbf{k}) \rightarrow \widehat{a}_{\lambda}^{*}(\mathbf{k})$ in the classical expressions and write creation operators to the left of annihilation operators in products. Here $\widehat{a}_{\lambda}^{*}(\mathbf{k})$ and $\widehat{a}_{\lambda}(\mathbf{k})$ are bosonic creation and annihilation operators satisfying

$$
\left[\widehat{a}_{\lambda}(\mathbf{k}), \widehat{a}_{\lambda^{\prime}}^{*}\left(\mathbf{k}^{\prime}\right)\right]=\delta_{\lambda \lambda^{\prime}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

Calculate $\widehat{\mathbf{A}}(t, \mathbf{x})$, defined as the solution of the Heisenberg equation of motion

$$
\mathrm{i} \partial_{t} \widehat{\mathbf{A}}(t, \mathbf{x})=[\widehat{H}, \widehat{\mathbf{A}}(t, \mathbf{x})] .
$$

(ix) Calculate

$$
\langle 0| \widehat{A}_{i}(t, \mathbf{x}) \widehat{A}_{j}(s, \mathbf{y})|0\rangle .
$$

(x)* Let us now introduce N charged particles with masses m_{i}, charges e_{i}, positions \mathbf{x}_{i} and momenta \mathbf{p}_{i}, for $i=1, \ldots, N$. The phase space is $\Gamma=\Gamma_{\mathrm{EM}} \times \mathbb{R}^{6 N}$. From now on we call the divergence-free field \mathbf{E} of part (iii) \mathbf{E}_{T}. The Poisson bracket is defined by (1) for \mathbf{A} and \mathbf{E}_{T}, as well as

$$
\left\{p_{i a}, x_{j b}\right\}=\delta_{i j} \delta_{a b}
$$

All other brackets vanish. The Hamilton function is given by

$$
H=\sum_{i=1}^{N} \frac{1}{2 m_{i}}\left(\mathbf{p}_{i}-e_{i} \mathbf{A}\left(\mathbf{x}_{i}\right)\right)^{2}+\sum_{1 \leq i<j \leq N} \frac{e_{i} e_{j}}{4 \pi\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|}+\frac{1}{2} \int \mathrm{~d} \mathbf{x}\left(\mathbf{E}_{\mathrm{T}}^{2}(\mathbf{x})+\mathbf{B}^{2}(\mathbf{x})\right) .
$$

Show that the Hamiltonian equations of motion are equivalent to Maxwell's equations (in the Coulomb gauge) coupled with Newton's equations, where:

$$
\rho(\mathbf{x})=\sum_{i=1}^{N} e_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right), \quad \mathbf{j}(\mathbf{x})=\sum_{i=1}^{N} e_{i} \dot{\mathbf{x}}_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right)
$$

as well as

$$
\mathbf{B}=\nabla \wedge \mathbf{A}, \quad \mathbf{E}=\mathbf{E}_{\mathrm{T}}+\mathbf{E}_{\mathrm{L}}
$$

and

$$
\mathbf{E}_{\mathrm{L}}=-\nabla \phi, \quad \phi=-\Delta^{-1} \rho
$$

