Quantum Field Theory I, Exercise Set 5

HS 08 Due: 30/31 October 2008

1. Gupta-Bleuler formalism and physical Hilbert space
Complete the proof of the Lemma on page 164 in the lecture notes.

Hint: Convince yourself that any state in the (unphysical) Fock space F can be written as a linear combination

of vectors of the form
n

1/J=H ar, (f5) H a3(g:) + ag(hi)) 0),
Jj=1 i=1

where r; =1 or 2, and f;, g;, h; are test functions on R3. The vector 9 is in the physical Fock space Fpnys if

and only if
laz(k) —ao(k)]yy =0, Vk.

Proceeding by induction on n, show that this implies g; = —h;, i < n.

2. Hamiltonian formulation of the EM field in the Coulomb gauge

In class the electromagnetic field was quantised in the Lorenz gauge (Gupta-Bleuler). The goal of this exercise
is to work through the quantisation of the electromagnetic field in the Coulomb gauge.

(i) A vector field X on R may be decomposed into its transverse and longditudinal parts: X = Xt + X,
where V - Xp =0 and V A X1, = 0. Find explicit expressions for Xt and Xy, and show that

= Z/dy o(x—y)X;(y),

where 67 is the transverse delta function
5£(X — y) = (5” — 81-8]-A*1) 5(X — y) y
and the operator A~! is defined by

(A f)(x) = % d Ij(—}’)yl'

Hint: Use the identity AX = V(V-X) - VA (VAX).

(ii) Introduce the scalar and vector potentials ¢ and A, which satisfy E = —V¢ — 9;A and B = V A A.
Show that, in the Coulomb gauge V - A = 0, the Maxwell equations read

~Ap = p, DA = j-8Vo.

Hence ¢ is determined by ¢ = —A~!p. All that remains is a wave equation for A, whose solution is
uniquely determined by A and 9;A at ¢t = 0.

(iii) Let us first consider the free electromagnetic field, p = 0 and j = 0. The phase space of the electromagnetic
field is given by

We introduce a Poisson bracket {-,-} on I" through

{Ai(x), B;(y)} = 0i;(x~y), (1)

(all other brackets vanish). Imposing the usual properties of {-,-} — bilinearity, Jacobi identity and the
Leibniz rule in both arguments — determines {-, -} uniquely. Show that

{ [axuto a0, [axveo B0} = [axuto-vix). )

ifV-u=V-v=0.



(iv)

(vii)

(viii)

The Hamilton function is defined by

1
w=l / dx (E2(x) + B2(x)) . 3)
Show that the Hamiltonian equations of motion are equivalent to the Maxwell equations.

In order to quantise the electromagnetic field, it is more convenient to work in momentum space:

A(X) = /ﬁ q(k) eik-x7 E(x) = /(2;.1% p(k) olkx

Show that the conditions V-A = V-E = 0 and A, E real imply that

AR = 3 [ o (e 0m B0 21097 097,

E(x) = Z/ e VI (sx(k)a,\(k)eik'xfEA(k)aA(k)e*ik'x),

where €1 (k) and e2(k) are orthonormal complex vectors, both orthogonal to k, and ay(k) is a complex
function.

Show that the Hamilton function (3) in the new coordinates ay(k),ax (k) is given by

= Y [k ko

A=1,2

Show that the Poisson bracket is given by
{ax(k), an (k/)} = idw ok — k'),
(all other brackets vanish). Compute the Hamiltonian equations of motion for ay(k),ax (k).

Quantise the free electromagnetic field as follows. Replace ax(k) — a@x(k) and @x(k) — a@}(k) in the
classical expressions and write creation operators to the left of annihilation operators in products. Here
a3 (k) and @y (k) are bosonic creation and annihilation operators satisfying

[ax(k),a} (k)] = ook —X).
Calculate K(t, x), defined as the solution of the Heisenberg equation of motion
i0A(t,x) = [H,A(t,x)].
Calculate
<0|A txA (s,y) ‘0>

Let us now introduce NV charged particles with masses m;, charges e;, positions x; and momenta p;, for
i=1,...,N. The phase space isI' = T'gy x R%". From now on we call the divergence-free field E of
part (iii) Er. The Poisson bracket is defined by (1) for A and Er, as well as

{p’iav'rjb} = 5ij5ab-

All other brackets vanish. The Hamilton function is given by

H = 22;1_ (pi—eAx) + Y /dx (B2(x) + B2(x))

i=1 1<i<j<N dmx; 7XJ|

Show that the Hamiltonian equations of motion are equivalent to Maxwell’s equations (in the Coulomb
gauge) coupled with Newton’s equations, where:

N

N
p(x) = D eidx—xi), Jx) =D ekd(x—x),

=1 =1

~.

as well as
ZV/\A, E:ET+EL)

and
EL = 7v¢7 ¢ = 7A71p'



