
Quantum Field Theory I, Exercise Set 3.

HS 08 Due: 16/17 October 2008

1. Propagator of the Dirac Theory

Compute the Dirac propagator 〈0|{ψa(x), ψb(y)}|0〉 explicitly and show that it vanishes for
spacelike x− y.

Hint: Work in the chiral representation of the Dirac algebra, show that
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γ0 = (γµ∂µ +m) . (1)

2. Non Relativistic Limit of the Dirac Theory and Landau Levels

In the lectures the non-relativistic limit of the Dirac equation with an electromagnetic field was
discussed.

(i) Show that equations (45) and (46) in the appendix to Chapter 4 are identical, i.e.,
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The last term on the right side of the above equation should be compared with the Zeeman
term in the Pauli Hamiltonian of a non-relativistic electron, i.e.,
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where g is the gyromagnetic factor and ~S = ~

2σ. The Dirac theory thus implies g = 2.

(ii) We choose ~B = B~e3 and φ = 0. Then the Hamiltonian (2) reduces to
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Show that the spectrum of this Hamiltonian is given by
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where n = 0, 1, 2 . . ., s = ±1
2 , k ∈ R and ωc = |eB|

mc
is the cyclotron frequency. This

spectrum is named after Lev Landau.

Hint: Use that ~A = 1
2
~B∧~x. Show that the πi satisfy the Heisenberg commutation relations,

i.e.,

[πx, πy] = i
eB

c
~1 , [πx, πz] = [πy, πz] = 0 . (6)

It follows that [H, πz] = 0. Define then the following operators
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and rewrite the Hamiltonian using these operators and their commutation relations.



(iii)* Show that the eigenvalues En, s, k have an infinite degeneracy.

3. Group action on a manifold

In this exercise we study some examples of a group acting on a manifold. A group G is said to
act on a set X (from the left) if there is a mapping G×X → X, (g, x) 7→ g · x that satisfies

g · (h · x) = (gh) · x , e · x = x ,

for all g, h ∈ G and x ∈ X. The orbit of a point x ∈ X is defined as the set

G · x = {g · x : g ∈ G} .

(i) Consider the proper, orthochronous Lorentz group L↑
+ acting on Minkowski space M4

through
p 7→ Λp .

This clearly defines a group action. Determine all of its orbits.

(ii) Consider the two-dimensional torus T2, given by

R2/ ∼ ,

where x ∼ y means x− y ∈ Z2. Let a, b ∈ R and define the action of the additive group R

on T2 through
t · x = x+ (a, b)t .

Determine its orbits.
Hint: Consider the two cases a/b ∈ Q and a/b /∈ Q.

(iii) A projective unitary representation is a group action on the set of rays H/ ∼ of a Hilbert
space H. Here Ψ ∼ Φ means Ψ = eiαΦ for some α ∈ R. Consider the additive group R2

projectively represented on H:

TaTb = eiϕ(a,b) Ta+b .

Without loss of generality (why?), we assume that T0 = 1.

(a) Show that
TaTb = eiψ(a,b) TbTa ,

where ψ(a, b) is antisymmetric.

(b) Assume that ψ is bilinear. Show that

TaTb = e−ic (a1b2−a2b1) TbTa

for some c ∈ R. These are the Weyl relations.

(c) Write the unitary operator Ta using the self-adjoint generators X and Y :

Ta = e−i(a1X+a2Y ) .

Show that the Weyl relations imply the Heisenberg commutation relations

[X,Y ] = ic .


