Quantum Field Theory I, Exercise Set 3.

HS 08
Due: 16/17 October 2008

1. Propagator of the Dirac Theory

Compute the Dirac propagator $\langle 0|\left\{\psi_{a}(x), \bar{\psi}_{b}(y)\right\}|0\rangle$ explicitly and show that it vanishes for spacelike $x-y$.

Hint: Work in the chiral representation of the Dirac algebra, show that

$$
\left(\begin{array}{cc}
\hat{P} & m \tag{1}\\
m & P
\end{array}\right) \gamma^{0}=\left(\gamma^{\mu} \partial_{\mu}+m\right)
$$

2. Non Relativistic Limit of the Dirac Theory and Landau Levels

In the lectures the non-relativistic limit of the Dirac equation with an electromagnetic field was discussed.
(i) Show that equations (45) and (46) in the appendix to Chapter 4 are identical, i.e.,

$$
\begin{equation*}
H^{0}=\frac{(\vec{\sigma} \cdot \vec{\pi})^{2}}{2 m}+e \phi=\frac{\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}}{2 m}+e \phi-\frac{e \hbar}{2 m c} \vec{\sigma} \cdot \vec{B} . \tag{2}
\end{equation*}
$$

The last term on the right side of the above equation should be compared with the Zeeman term in the Pauli Hamiltonian of a non-relativistic electron, i.e.,

$$
\begin{equation*}
-g \frac{e}{2 m c} \vec{S} \cdot \vec{B} \tag{3}
\end{equation*}
$$

where g is the gyromagnetic factor and $\vec{S}=\frac{\hbar}{2} \sigma$. The Dirac theory thus implies $g=2$.
(ii) We choose $\vec{B}=B \vec{e}_{3}$ and $\phi=0$. Then the Hamiltonian (2) reduces to

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\pi_{x}^{2}+\pi_{y}^{2}+\pi_{z}^{2}\right)-\frac{e \hbar B}{2 m c} \sigma_{3} \tag{4}
\end{equation*}
$$

Show that the spectrum of this Hamiltonian is given by

$$
\begin{equation*}
E_{n, s, k}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)+\hbar \omega_{c} s+\frac{(\hbar k)^{2}}{2 m} \tag{5}
\end{equation*}
$$

where $n=0,1,2 \ldots, s= \pm \frac{1}{2}, k \in \mathbb{R}$ and $\omega_{c}=\frac{|e B|}{m c}$ is the cyclotron frequency. This spectrum is named after Lev Landau.
Hint: Use that $\vec{A}=\frac{1}{2} \vec{B} \wedge \vec{x}$. Show that the π_{i} satisfy the Heisenberg commutation relations, i.e.,

$$
\begin{equation*}
\left[\pi_{x}, \pi_{y}\right]=i \frac{e B}{c} \hbar \mathbb{1}, \quad\left[\pi_{x}, \pi_{z}\right]=\left[\pi_{y}, \pi_{z}\right]=0 \tag{6}
\end{equation*}
$$

It follows that $\left[H, \pi_{z}\right]=0$. Define then the following operators

$$
\begin{equation*}
a:=\sqrt{\frac{c m}{2 e B}}\left(\pi_{x}+\mathrm{i} \pi_{y}\right), \quad a^{*}=\sqrt{\frac{c m}{2 e B}}\left(\pi_{x}-\mathrm{i} \pi_{y}\right) \tag{7}
\end{equation*}
$$

and rewrite the Hamiltonian using these operators and their commutation relations.
(iii)* Show that the eigenvalues $E_{n, s, k}$ have an infinite degeneracy.

3. Group action on a manifold

In this exercise we study some examples of a group acting on a manifold. A group G is said to act on a set X (from the left) if there is a mapping $G \times X \rightarrow X,(g, x) \mapsto g \cdot x$ that satisfies

$$
g \cdot(h \cdot x)=(g h) \cdot x, \quad e \cdot x=x
$$

for all $g, h \in G$ and $x \in X$. The orbit of a point $x \in X$ is defined as the set

$$
G \cdot x=\{g \cdot x: g \in G\} .
$$

(i) Consider the proper, orthochronous Lorentz group L_{+}^{\dagger} acting on Minkowski space \mathbb{M}^{4} through

$$
p \mapsto \Lambda p
$$

This clearly defines a group action. Determine all of its orbits.
(ii) Consider the two-dimensional torus \mathbb{T}^{2}, given by

$$
\mathbb{R}^{2} / \sim,
$$

where $x \sim y$ means $x-y \in \mathbb{Z}^{2}$. Let $a, b \in \mathbb{R}$ and define the action of the additive group \mathbb{R} on \mathbb{T}^{2} through

$$
t \cdot x=x+(a, b) t .
$$

Determine its orbits.
Hint: Consider the two cases $a / b \in \mathbb{Q}$ and $a / b \notin \mathbb{Q}$.
(iii) A projective unitary representation is a group action on the set of rays \mathcal{H} / \sim of a Hilbert space \mathcal{H}. Here $\Psi \sim \Phi$ means $\Psi=\mathrm{e}^{\mathrm{i} \alpha} \Phi$ for some $\alpha \in \mathbb{R}$. Consider the additive group \mathbb{R}^{2} projectively represented on \mathcal{H} :

$$
T_{a} T_{b}=\mathrm{e}^{\mathrm{i} \varphi(a, b)} T_{a+b} .
$$

Without loss of generality (why?), we assume that $T_{0}=\mathbb{1}$.
(a) Show that

$$
T_{a} T_{b}=\mathrm{e}^{\mathrm{i} \psi(a, b)} T_{b} T_{a},
$$

where $\psi(a, b)$ is antisymmetric.
(b) Assume that ψ is bilinear. Show that

$$
T_{a} T_{b}=\mathrm{e}^{-\mathrm{ic}\left(a_{1} b_{2}-a_{2} b_{1}\right)} T_{b} T_{a}
$$

for some $c \in \mathbb{R}$. These are the Weyl relations.
(c) Write the unitary operator T_{a} using the self-adjoint generators X and Y :

$$
T_{a}=\mathrm{e}^{-\mathrm{i}\left(a_{1} X+a_{2} Y\right)}
$$

Show that the Weyl relations imply the Heisenberg commutation relations

$$
[X, Y]=\mathrm{i} c .
$$

