Quantum Field Theory I, Exercise Set 2

HS 08
Due: 9/10 October 2008

1. Contour integral representation of propagators

Prove equations (3.35), (3.36) and (3.37) in the lecture notes.

2. Properties of the free scalar field

Consider a scalar field given by

$$
\varphi(x)=\int \mathrm{d}^{3} p\left\{f(\vec{p}) a^{*}(\vec{p}) \mathrm{e}^{\mathrm{i}(\omega(\vec{p}) t-\vec{p} \cdot \vec{x})}+\text { h.c. }\right\},
$$

where $a^{*}(\vec{p})$ and $a(\vec{p})$ satisfy the canonical commutation relations, and f and ω are some functions on \mathbb{R}^{3}.
(i) We require the field to describe a free particle of mass m, i.e. φ should satisfy the Klein-Gordon equation

$$
\left(\square+m^{2}\right) \varphi(x)=0 .
$$

What does this imply for ω ?
(ii) We additionally require the field to satisfy Poincaré covariance:

$$
\begin{equation*}
U(\Lambda, a) \varphi(x) U(\Lambda, a)^{-1}=\varphi(\Lambda(x+a)) . \tag{1}
\end{equation*}
$$

Show that this implies that

$$
\mathrm{i} \Delta(x-y)=[\varphi(x), \varphi(y)]
$$

is Lorentz invariant.
(iii) Show that the Lorentz invariance of Δ implies that, up to a phase, f is equal to $\frac{c}{\sqrt{2 \omega(\vec{p})}}$, where $c>0$ is some constant.
(iv) Show that $c=1$ if we impose the canonical commutation relations (3.31)

$$
[\pi(0, \vec{x}), \varphi(0, \vec{y})]=-\mathrm{i} \delta(\vec{x}-\vec{y}) .
$$

(v) In class it was shown that the propagator Δ satisfies causality, i.e. vanishes for space-like arguments. Replace now the bosonic creation and annihilation operators $a(\vec{p})^{*}, a(\vec{p})$ by fermionic creation and annihilation operators, which satisfy the canonical anticommutation relations

$$
\left\{a(\vec{p}), a\left(\vec{p}^{\prime}\right)\right\}=\left\{a^{*}(\vec{p}), a^{*}\left(\vec{p}^{\prime}\right)\right\}=0, \quad\left\{a(\vec{p}), a^{*}\left(\vec{p}^{\prime}\right)\right\}=\delta\left(\vec{p}-\vec{p}^{\prime}\right) .
$$

Show that causality cannot hold, i.e. the anticommutator $\{\varphi(x), \varphi(y)\}$ does not vanish for spacelike arguments. Thus, the free scalar field describes bosons. This is a special case of the celebrated spin-statistics theorem.
(vi) Using the Poincaré invariance (1) of the scalar field $\varphi(x)$ and

$$
\varphi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{\mathrm{~d}^{3} p}{\sqrt{2 \omega(\vec{p})}}\left\{a^{*}(\vec{p}) \mathrm{e}^{\mathrm{i}\left(\omega(\vec{p}) x^{0}-\vec{p} \cdot \vec{x}\right)}+a(\vec{p}) \mathrm{e}^{-\mathrm{i}\left(\omega(\vec{p}) x^{0}-\vec{p} \cdot \vec{x}\right)}\right\}
$$

(equation (3.21) in the lecture notes), derive the explicit expression for the action of the Poincaré group on Fock space:

$$
U(\Lambda, a) a^{*}(\vec{p}) U(\Lambda, a)^{-1}=\mathrm{e}^{\mathrm{i}\left(\omega(\vec{p}) a^{0}-\vec{p} \cdot \vec{a}\right)} a^{*}(\overrightarrow{\Lambda p}) \sqrt{\frac{\omega(\overrightarrow{\Lambda p})}{\omega(\vec{p})}}
$$

(equation (3.20) in the lecture notes).

3. Representations of the Dirac algebra

Consider the Dirac algebra generated by the elements $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ satisfying the anticommutation relations

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}
$$

Here g is the Minkowski metric $g=\operatorname{diag}(1,-1,-1,-1)$.
(i) We choose a new basis of the Dirac algebra, $\left\{a_{0}, a_{1}, a_{0}^{*}, a_{1}^{*}\right\}$, defined through

$$
\gamma_{0}=a_{0}^{*}+a_{0}, \quad \gamma_{1}=\mathrm{i}\left(a_{1}^{*}+a_{1}\right), \quad \gamma_{2}=a_{0}-a_{0}^{*}, \quad \gamma_{3}=a_{1}-a_{1}^{*} .
$$

Show that the elements $a_{0}, a_{1}, a_{0}^{*}, a_{1}^{*}$ satisfy the canonical anticommutation relations

$$
\left\{a_{\mu}, a_{\nu}\right\}=\left\{a_{\mu}^{*}, a_{\nu}^{*}\right\}=0, \quad\left\{a_{\mu}, a_{\nu}^{*}\right\}=\delta_{\mu \nu}, \quad(\mu=0,1) .
$$

(ii) Define the "particle number operator" $n_{\mu}=a_{\mu}^{*} a_{\mu}$ for $\mu=0,1$. Show that n_{0} and n_{1} commute, and that

$$
n_{\mu}=n_{\mu}^{2} .
$$

(iii) Show that the only irreducible representation of the Dirac algebra is four-dimensional.

Hint: Diagonalise n_{0} and n_{1}, and pick a vector $|0,0\rangle$ with eigenvalues 0 . Study the action of the Dirac algebra on $|0,0\rangle$.

4. Discrete symmetries of the Dirac equation

Consider the Dirac equation in the presence of an external electromagnetic field A_{μ} :

$$
\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e A_{\mu}\right)-m\right) \psi=0 .
$$

We work in the "chiral representation"

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \sigma_{0} \\
\sigma_{0} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & -\sigma_{i} \\
\sigma_{i} & 0
\end{array}\right),
$$

where $\sigma_{0}=\mathbb{1}$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the Pauli matrices. The goal of this exercise is to determine explicit expressions for the three discrete symmetries $\mathbb{P}, \mathbb{T}, \mathbb{C}$ of the Dirac equation.
(i) The parity transformation \mathbb{P} is of the form

$$
(\mathbb{P} \psi)(x)=U_{\mathbb{P}} \psi(P x),
$$

where $P(t, \vec{x})=(t,-\vec{x})$, and $U_{\mathbb{P}}$ is an operator on \mathbb{C}^{4}. Determine \mathbb{P} from the requirement that

$$
\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e A_{\mu}\right)-m\right) \psi=0 \quad \Longleftrightarrow \quad\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e \tilde{A}_{\mu}\right)-m\right) \mathbb{P} \psi=0
$$

where $\tilde{A}(x)=P A(P x)$.
(ii) The time-reversal transformation \mathbb{T} is of the form

$$
(\mathbb{T} \psi)(x)=U_{\mathbb{T}} \psi(T x),
$$

where $T(t, \vec{x})=(-t, x)$. Determine \mathbb{T} from the requirement that

$$
\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e A_{\mu}\right)-m\right) \psi=0 \quad \Longleftrightarrow \quad\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e \hat{A}_{\mu}\right)-m\right) \mathbb{T} \psi=0
$$

where $\hat{A}(x)=P A(T x)$.
(iii) The charge conjugation \mathbb{C} is of the form

$$
(\mathbb{C} \psi)(x)=U_{\mathbb{C}} \psi(x)
$$

Determine \mathbb{C} from the requirement that

$$
\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-e A_{\mu}\right)-m\right) \psi=0 \quad \Longleftrightarrow \quad\left(\gamma^{\mu}\left(\mathrm{i} \partial_{\mu}+e A_{\mu}\right)-m\right) \mathbb{C} \psi=0
$$

