
Quantum Field Theory I, Exercise Set 1

HS 08 Due: 2/3 October 2008

1. Representations of SU(2) and particle physics

(i) Show that SU(2) is isomorphic to the 3-sphere S3.
Hint: Show that every A ∈ SU(2) is of the form A = a01 +

∑3

i=1 iaiσi, with
∑3

i=0 a
2
i = 1, ai ∈ R. Here σ1, σ2, σ3 are the Pauli matrices.

(ii) The fundamental representation of SU(2) is given by ρ : SU(2) → GL(C2), A 7→ A.
The complex conjugate representation is given by A 7→ A. Show that these two
representations are unitarely equivalent.
Hint: Cramer’s rule for A−1 = A∗.

(iii) Show that the statement of (ii) is not true for SU(3).
Hint: Look at the character Tr ρ of a representation.

In the standard model of particle physics, hadronic matter consists of quarks, which are
spin-1/2 particles. The lightest quarks, u and d, have nearly the same mass. Furthermore,
the strong interaction seems not to depend on the flavour (u or d) of the quarks. This led
Heisenberg and Wigner to the postulate that there is an SU(2)-symmetry between u and
d quarks called isospin. By convention, u has isospin 1/2 and d has isospin −1/2. Mesons
are bound states of of a quark-antiquark pair. Baryons are bound states of three quarks.

(iv) Classify the mesons consisting of u, d, ū and d̄ quarks according to their total isospin.
Hint: Use the Clebsch-Gordan decomposition of D1/2 ⊗ D1/2. The singlet is the η
meson, the triplet is formed by the π mesons.

(v) The ∆++ baryon is a bound state of three u-quarks with total spin 3/2. Its wave
function is of the form

ψ∆++ = ψspin ⊗ ψflavour ⊗ ψspatial . (1)

Argue that the spin and flavour wavefunctions are symmetric. The orbital part
of the wavefunction is also symmetric, since the minimisation of the total energy
requires that the total angular momentum vanishes. Thus ψ∆++ is symmetric.

(vi) The spin-statistics theorem requires that spin-1/2 particles, such as quarks, be
fermions, and consequently have an antisymmetric wavefunction. This contradiction
was solved by introducing an additional quantum number, the colour.

Show that there must be at least three different colours.
Hint: The antisymmetric colour wavefunction ψcolour can be identified with an an-
tisymmetric tensor Tc1c2c3, where c1, c2, c3 label the colours of the three quarks.

(vii) Show that the colour gauge group SU(3) acts according to the trivial representation
on ψcolour. Thus ∆++ is “colourless” in agreement with the confinement hypothesis.



2. Direct integrals

In the representation theory of noncompact groups, one often needs to generalise the
concept of direct sums of Hilbert spaces to direct integrals of Hilbert spaces, i.e. to replace
expressions of the type

⊕

i∈I Hi with
∫ ⊕

M
dρ(x) Hx.

The goal of this exercise is to outline the definition of a direct integral and consider some
examples.

Let ρ be a measure on a set M . Let {Hx}x∈M be a family of Hilbert spaces (“fibres”).
Formally, the direct integral H =

∫ ⊕

M
dρ(x) Hx is defined as the set of functions f on M

satisfying f(x) ∈ Hx and
∫

dρ(x) ‖f(x)‖2
Hx

< ∞ .

(i) Show that H is a Hilbert space. In particular, give the scalar product 〈· , ·〉H.

(ii) Show that the direct sum is a special case. More specifically, let I be a finite or
countable index set and consider the direct sum H =

⊕

i∈I Hi. Show that H can
be written as a direct integral.

(iii) For general (M, ρ) consider the case where the fibres are all identical: Hx = C
n for

all x. Show that
∫ ⊕

M

dρ(x) C
n = L2(M, dρ) ⊗ C

n .

3. Representations of compact groups

(i) Let G be a compact group, H a Hilbert space, and U a unitary irreducible represen-
tation of G on H that is strongly continuous, i.e. the map g 7→ U(g)ψ is continuous
for all ψ ∈ H. Show that H is finite dimensional.
Hint: Use the facts that the image of a compact set under a continuous map is
compact, and the unit sphere of a Hilbert space H if compact if and only if H is
finite dimensional.

(ii) Show that it is enough to assume that U is weakly continuous, i.e. the map g 7→
〈ψ , U(g)φ〉 is continous for all ψ, φ ∈ H.
Hint: Show that, in this case, weak continuity implies strong continuity (the con-
verse is trivially true).

4. Lie groups and Lie algebras

Recall that a Lie group G is a smooth manifold that is also a group, such that the group
operations are continuous. The Lie algebra g = Lie(G) of G is by definition the tangent
space of G at its identity 1. Elements X ∈ g are called generators of G. Generators
are conveniently specified by paths: γ(λ) ∈ G satisfying γ(0) = 1 defines a generator X
trough X = d

dλ
γ(λ)

∣

∣

λ=0
. Let X1 and X2 be derivatives at 0 of the paths γ1 and γ2. Then

the linear combination

α1X1 + α2X2 =
d

dλ
γ1(α1λ) γ2(α2λ)

∣

∣

∣

λ=0



and the Lie bracket

[X1, X2] =
∂

∂λ1

∂

∂λ2

γ1(λ1)γ2(λ2)γ1(λ1)
−1γ2(λ2)

−1

∣

∣

∣

∣

λ1=λ2=0

are elements of g and independent of the choice of paths. Moreover, [·, ·] is bilinear and
antisymmetric, and satisfies the Jacobi identity.

(i) Suppose that G ⊂ GL(Cn) is a matrix Lie group. Show that the Lie bracket defined
above is equal to the commutator of matrices.

A representation L of a Lie algebra g on Cn is a linear map from g into the set of complex
n× n matrices, such that

L([X1, X2]) = L(X1)L(X2) − L(X2)L(X1) .

(ii) Let G be a Lie group and U : G→ GL(Cn) be a representation. Define the map U̇
on g through

U̇(X) =
d

dλ
U(γ(λ))

∣

∣

∣

λ=0
, for X =

d

dλ
γ(λ)

∣

∣

∣

λ=0
.

Show that U̇ is a representation of g on Cn. Inother words, to every representation
of a Lie group corresponds a representation of its Lie algebra.

5. The Poincaré group

The Poincaré group, P↑
+ = L↑

+ ⋉ R4, consists of elements (Λ, a) with multiplication

(Λ1, a1) (Λ2, a2) = (Λ1Λ2, a1 + λ1a2) .

(i) Show that the Lie algebra g of P↑
+ is the linear space {(ε, τ)}, where τ ∈ R4 and

ε = εµ
ν satisfies εµν + ενµ = 0. What is the dimension of g?

It is convenient to define a basis {Jµν , Pσ} of g through

ε = −
i

2
εµνJ

µν , τ = −iτσPσ, ,

where

J01 =









0 i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0









, P0 =









i
0
0
0









,

etc.

(ii) In the lecture the vector ~J was defined through J jk = εijkJi. Show that Ji =
−1

2
εijkJ

jk.



(iii) Compute the following Lie brackets: [Jµν , Jρσ], [Jµν , Pσ], [Pσ, Pρ] .
Hint: Use the definition of [·, ·] from exercise 4. Alternatively, you can work in the
representation described in (v) below.

(iv) The Pauli-Ljubanski vector is defined (in any representation) asWµ = −1
2
εµνρσJ

νρP σ.
Show that

(Wµ) =
(

~P · ~J, P0
~J + ~P ∧ ~K

)

;

~J and ~K were defined in class (lecture notes p. 49).

(v) Compute the commutators [Pµ, Wσ] and [Jµν , Wσ].
Hint: You will have to work in a representation. A convenient one is the space of
functions f : R4 → C with

((Λ, a)f)(x) = f(Λ−1(x− a)) .

Show first that, in this representation, Pµ = i∂µ and Jµν = xµP ν − xνP µ .


