Exercises for "Phenomenology of Particle Physics I"

$\begin{array}{lllr}\text { Prof. Dr. A. Gehrmann } & \text { sheet } 7 & \text { handed out: } & 4.11 .2008 \\ \text { M. Ritzmann } & & \text { handed in: } & 11.11 .2008\end{array}$
http://www.itp.phys.ethz.ch/education/lectures_hs08/PPPI returned: 18.11.2008

Exercise 18

Show the following distribution identity:

$$
\left.\int d^{3} x f_{p}(x)^{*} i \overleftrightarrow{\partial_{0}} f_{q}(x)\right|_{t=0, p^{0}=E_{\vec{p}}, q^{0}=E_{\vec{q}}}=\delta^{3}(\vec{p}-\vec{q})
$$

where we define $f(x) \overleftrightarrow{\partial_{x}} g(x):=-g(x) \partial_{x} f(x)+f(x) \partial_{x} g(x)$ and we have $f_{p}(x)=$ $\frac{1}{\sqrt{(2 \pi)^{3}}} \frac{1}{\sqrt{2 E_{\vec{p}}}} e^{-i p x}$.

Exercise 19

Starting from the fourier transform of the real Klein-Gordon field and the canonical momentum density conjugate to it (in the Heisenberg picture)

$$
\begin{aligned}
& \phi(x)=\left.\int d^{3} p \frac{1}{\sqrt{(2 \pi)^{3}}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(f_{p}(x) a(\vec{p})+f_{p}(x)^{*} a(\vec{p})^{\dagger}\right)\right|_{p^{0}=E_{\vec{p}}} \\
& \Pi(x)=\partial_{0} \phi(x)=\left.\int d^{3} p \frac{1}{\sqrt{(2 \pi)^{3}}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(i E_{\vec{p}}\right)\left(-f_{p}(x) a(\vec{p})+f_{p}(x)^{*} a(\vec{p})^{\dagger}\right)\right|_{p^{0}=E_{\vec{p}}}
\end{aligned}
$$

with $E_{\vec{p}}=\left(|\vec{p}|^{2}+m^{2}\right)^{1 / 2}$, derive the expressions for $a(\vec{p})$ and $a(\vec{p})^{\dagger}$ by inversion. The result is

$$
\begin{aligned}
a(\vec{p}) & =\sqrt{(2 \pi)^{3}} \sqrt{2 E_{\vec{p}}} \int d^{3} x f_{p}(x)^{*} i \overleftrightarrow{\partial_{0}} \phi(x) \\
a(\vec{p})^{\dagger} & =\sqrt{(2 \pi)^{3}} \sqrt{2 E_{\vec{p}}} \int d^{3} x \phi(x) i \overleftrightarrow{\partial_{0}} f_{p}(x)
\end{aligned}
$$

Exercise 20

Show that if we postulate the commutation relations

$$
\begin{gathered}
{\left[a(\vec{p}), a(\vec{q})^{\dagger}\right]=\delta^{3}(\vec{p}-\vec{q})(2 \pi)^{3} 2 E_{\vec{p}}} \\
{[a(\vec{p}), a(\vec{q})]=\left[a(\vec{p})^{\dagger}, a(\vec{q})^{\dagger}\right]=0}
\end{gathered}
$$

for a and a^{\dagger} we arrive at the following commutation relations for the field and the canonical momentum density conjugate to it

$$
\begin{gathered}
{\left[\phi(\vec{x}, t), \Pi\left(\overrightarrow{x^{\prime}}, t\right)\right]=i \delta^{3}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)} \\
{\left[\phi(\vec{x}, t), \phi\left(\overrightarrow{x^{\prime}}, t\right)\right]=\left[\Pi(\vec{x}, t), \Pi\left(\overrightarrow{x^{\prime}}, t\right)\right]=0}
\end{gathered}
$$

Exercise 21 (corrected)

We define

$$
\Delta^{ \pm}(x)=-\int_{C^{ \pm}} \frac{d p^{0}}{2 \pi} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{-i p x}}{p^{2}-m^{2}}
$$

where C^{+}and C^{-}are contours in the complex p^{0}-plane, C^{+}goes around $p^{0}=E_{\vec{p}}$ once in counterclockwise direction, C^{-}goes around $p^{0}=-E_{\vec{p}}$ once in counterclockwise direction.

- Use the residue theorem and the formula

$$
\int \frac{d^{3} p}{2 E_{\vec{p}}}=\int d^{4} p \delta\left(p^{2}-m^{2}\right) \Theta\left(p^{0}\right)
$$

to show

$$
\Delta^{ \pm}(x)=\mp i \int \frac{d^{4} p}{(2 \pi)^{3}} \delta\left(p^{2}-m^{2}\right) e^{\mp i p x} \Theta\left(p^{0}\right) .
$$

- Show that $[\phi(x), \phi(y)]=i \Delta(x-y)=i\left(\Delta^{+}(x-y)+\Delta^{-}(x-y)\right)$ vanishes for spacelike $\left((x-y)^{2}<0\right)$ separation $x-y$.

