Exercises for "Phenomenology of Particle Physics I"

Prof. Dr. A. Gehrmann	sheet 1	handed out:	23.9.2008
M. Ritzmann		handed in:	30.9.2008
http://www.itp.phys.ethz.ch/education	/lectures_hs08/PPPI	returned:	7.10.2008

Exercise 1

Discuss the use of "natural units":

- (i) Find the connection between energy (GeV) and time (sec), length (cm) and gramme (g).
- (ii) Calculate the ratio $a_{\text{Bohr}} : \lambda_{\text{Compton}} : r_0$ for an electron in "natural units" (in cgs units: $a_{\text{Bohr}} = \hbar^2/m_e e^2$, $\lambda_{\text{Compton}} = \hbar/m_e c$, $r_0 = \alpha \hbar/m_e c$, "classical" electron radius, $\alpha = e^2/\hbar c$).
- (iii) Often one does also set $k_B = 1$ (k_B is the Boltzmann constant). What is the relation between temperature (K) and energy (GeV)?

Exercise 2

A photon γ $(k^2 = 0)$ with four-momentum $k^{\mu} = (E, E, 0, 0)$ is scattered off an electron e at rest $(p_e^{\mu} = (m_e, 0, 0, 0))$. After the scattering the γ has the four-momentum $k'^{\mu} = (E', E' \cos \Theta, E' \sin \Theta, 0)$. Show that the energy E' after the scattering is given by

$$E' = \frac{E}{1 + \frac{E}{m_e}(1 - \cos\Theta)}$$