General relativity, exercise sheet 4 .

HS 08
Due: Fri, October 24, 2008

1. Euclidean metric in polar coordinates

Consider the Euclidean plane as a Riemannian manifold $M=\mathbb{R}^{2} \ni\left(x^{1}, x^{2}\right)=x$ with metric $g=d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}$. Compute the metric in polar coordinates r, φ and the Christoffel symbols (3.6) of the Riemann connection. Verify that they agree with those computed in Exercise 3.1.

2. Geodesics in the hyperbolic plane

Consider the hyperbolic plane: $\mathbb{H}^{2}=\{(x, y) \mid y>0\}$ with the metric $g=y^{-2}(d x \otimes d x+$ $d y \otimes d y)$.
a) Write the geodesic equation.
b) Find the quantities which are conserved along the geodesics.
c) Show that the geodesics are the Euclidean half-circles, centered on the line $y=0$.

Hint: Show that the curvature

$$
\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}}
$$

is constant.

3. An affine connection on Lie groups

Consider a Lie Group (see Exercise 2.2).
a) Show that there is a unique affine connection ∇ on G with the properties that
i) for any left-invariant vector field V on G, the tangent vectors $d \gamma / d t=V_{\gamma(t)}$ to any of its orbits $\gamma(t)$ are parallel transported along it;
ii) the torsion vanishes.

To define a connection ∇ is tantamount to prescribing its coefficients $\left\langle e^{\alpha}, \nabla_{e_{\beta}} e_{\gamma}\right\rangle$, see (4.12), w.r.t. vector fields e_{α}, resp. 1 -forms e^{β} forming dual bases $\left(e_{1}, \ldots e_{n}\right),\left(e^{1}, \ldots e^{n}\right)$, but not necessarily coordinate bases.
b) Show that the connection of part (a) has coefficients

$$
\begin{equation*}
\left\langle e^{\gamma}, \nabla_{e_{\alpha}} e_{\beta}\right\rangle=\frac{1}{2} C^{\gamma}{ }_{\alpha \beta}, \tag{1}
\end{equation*}
$$

where the e_{α} are left-invariant basis fields and $C^{\gamma}{ }_{\alpha \beta}=-C^{\gamma}{ }_{\beta \alpha}$ their structure constants (see Exercise 2.2 iv)).

Hints:

- What are the equations for ∇ expressing (i,ii)? Rewrite them in terms of a leftinvariant basis.
- Consider the parts of (1) which are symmetric, resp. antisymmetric in α, β.
- Prove (a, b) at once by showing that the equations in the two first hints are equivalent.

