General relativity, exercise sheet 3 .

HS 08
Due: Fri, October 17, 2008

1. Parallel transport in polar coordinates

Consider the euclidean plane $\mathbb{R}^{2} \ni\left(x^{1}, x^{2}\right)=x$ as a manifold with chart: id : $x \mapsto x$. Define a cartesian parallel transport $T_{x}\left(\mathbb{R}^{2}\right) \ni v \mapsto v^{\prime} \in T_{x^{\prime}}\left(\mathbb{R}^{2}\right)$ along any curve by requiring that v and v^{\prime} have the same components. Compute the Christoffel symbols of this parallel transport in polar coordinates r, φ.

2. Affine connections

Show: given an affine connection ∇ on the manifold $M, \tilde{\nabla}$ is an affine connection iff the difference $B(X, Y):=\nabla_{X} Y-\tilde{\nabla}_{X} Y$ has the property that

$$
(\omega, X, Y) \longmapsto\langle\omega, B(W, Y)\rangle
$$

is a tensor field of type $\binom{1}{2}$ (i.e. the affine connections on M form an affine space over the vector space of these tensor fields).
What are the consequences of this fact for the Christoffel symbols?
Application: for every pair of affine connections $\nabla, \tilde{\nabla}$ the combination $(1-\alpha) \nabla+\alpha \tilde{\nabla}$ is also an affine connection.

3. Alternate view on parallel transport

The tangent bundle of a manifold M is the union of all its tangent spaces:

$$
T M=\bigcup_{p \in M} T_{p}(M)
$$

Let π be the projection $\pi: T M \rightarrow M, X \mapsto \pi(X)=p$ if $X \in T_{p}(M)$.

The tangent bundle becomes a differentiable manifold in its own right by means of charts
defined as follows: If $K: U \rightarrow \mathbb{R}^{n} p \mapsto x=\left(x^{1}, \ldots x^{n}\right)$ is a patch for $U \subset M$, then

$$
\begin{align*}
\tilde{K}: \pi^{-1}(U) & \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \tag{1}\\
X & \longmapsto(x, \underline{X}),
\end{align*}
$$

where $\underline{X}=\left(X^{1}, \ldots X^{n}\right)$ are the components of $X \in T_{p}(M)$ w.r.t. the coordinate basis, is a patch for $\pi^{-1}(U):=\bigcup_{p \in U} T_{p}(M) \subset T M$.
i) Let $\bar{x} \mapsto x$ be a coordinate change on $U \cap \bar{U} \subset M$. Compute the induced coordinate change on $\pi^{-1}(U \cap \bar{U})$. What is the matrix of its partial derivatives?

A parallel transport can be viewed as a map

$$
\sigma_{X}: T_{\pi(X)}(M) \longrightarrow T_{X}(T M), \quad Y \longmapsto \sigma_{X}(Y),(X \in T M)
$$

such that in any chart (1)

$$
\sigma_{X}(Y)^{\prime \prime}={ }^{\prime \prime}(\underline{Y},-\Gamma(\underline{Y}, \underline{X}))
$$

with Γ linear in $\underline{Y}, \underline{X}: \Gamma(\underline{Y}, \underline{X})^{i}=\Gamma^{i}{ }_{l k} Y^{l} X^{k}$ where $\Gamma^{i}{ }_{l k_{\tilde{\sim}}}$ are the Christoffel symbols of the parallel transport ($"=$ " is short for the tangent map \tilde{K}_{*}; we refrain from giving a more intrinsic definition).
ii) Show that a vector $X(t)$ parallel transported along a curve $\gamma(t)$ in M is characterized by

$$
\begin{aligned}
\pi(X(t)) & =\gamma(t) \\
\dot{X}(t) & =\sigma_{X(t)}(\dot{\gamma}(t)) .
\end{aligned}
$$

Hint: A family of vectors $X(t) \in T_{\gamma(t)}$ is a curve in $T M$. Hence $\dot{X}(t) \in T_{X(t)}(T M)$.
iii) Components of vectors in $T_{X}(T M)$ transform "tensorially" by means of the matrix found in i). Derive from that the non-tensorial transformation law for the Christoffel symbols.

