$HS \ 08$

Due: Fri, October 17, 2008

1. Parallel transport in polar coordinates

Consider the euclidean plane $\mathbb{R}^2 \ni (x^1, x^2) = x$ as a manifold with chart: id : $x \mapsto x$. Define a cartesian parallel transport $T_x(\mathbb{R}^2) \ni v \mapsto v' \in T_{x'}(\mathbb{R}^2)$ along any curve by requiring that v and v' have the same components. Compute the Christoffel symbols of this parallel transport in polar coordinates r, φ .

2. Affine connections

Show: given an affine connection ∇ on the manifold M, $\tilde{\nabla}$ is an affine connection iff the difference $B(X,Y) := \nabla_X Y - \tilde{\nabla}_X Y$ has the property that

$$(\omega, X, Y) \longmapsto \langle \omega, B(W, Y) \rangle$$

is a tensor field of type $\binom{1}{2}$ (i.e. the affine connections on M form an affine space over the vector space of these tensor fields).

What are the consequences of this fact for the Christoffel symbols?

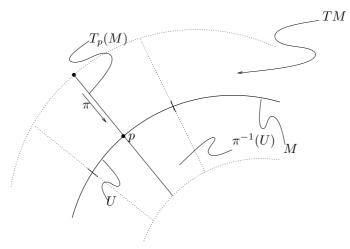
Application: for every pair of affine connections $\nabla, \tilde{\nabla}$ the combination $(1 - \alpha)\nabla + \alpha \tilde{\nabla}$ is also an affine connection.

3. Alternate view on parallel transport

The tangent bundle of a manifold M is the union of all its tangent spaces:

$$TM = \bigcup_{p \in M} T_p(M)$$

Let π be the projection $\pi: TM \to M, X \mapsto \pi(X) = p$ if $X \in T_p(M)$.



The tangent bundle becomes a differentiable manifold in its own right by means of charts

defined as follows: If $K: U \to \mathbb{R}^n \ p \mapsto x = (x^1, \dots, x^n)$ is a patch for $U \subset M$, then

$$\tilde{K} : \pi^{-1}(U) \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$$

$$X \longmapsto (x, \underline{X}),$$
(1)

where $\underline{X} = (X^1, \ldots, X^n)$ are the components of $X \in T_p(M)$ w.r.t. the coordinate basis, is a patch for $\pi^{-1}(U) := \bigcup_{p \in U} T_p(M) \subset TM$.

i) Let $\bar{x} \mapsto x$ be a coordinate change on $U \cap \bar{U} \subset M$. Compute the induced coordinate change on $\pi^{-1}(U \cap \bar{U})$. What is the matrix of its partial derivatives?

A parallel transport can be viewed as a map

$$\sigma_X: T_{\pi(X)}(M) \longrightarrow T_X(TM), \qquad Y \longmapsto \sigma_X(Y), \ (X \in TM)$$

such that in any chart (1)

$$\sigma_X(Y) "=" (\underline{Y}, -\Gamma(\underline{Y}, \underline{X}))$$

with Γ linear in $\underline{Y}, \underline{X} : \Gamma(\underline{Y}, \underline{X})^i = \Gamma^i_{\ lk} Y^l X^k$ where $\Gamma^i_{\ lk}$ are the Christoffel symbols of the parallel transport ("=" is short for the tangent map \tilde{K}_* ; we refrain from giving a more intrinsic definition).

ii) Show that a vector X(t) parallel transported along a curve $\gamma(t)$ in M is characterized by

$$\pi (X(t)) = \gamma(t) ,$$

$$\dot{X}(t) = \sigma_{X(t)} (\dot{\gamma}(t)) .$$

Hint: A family of vectors $X(t) \in T_{\gamma(t)}$ is a curve in TM. Hence $\dot{X}(t) \in T_{X(t)}(TM)$.

iii) Components of vectors in $T_X(TM)$ transform "tensorially" by means of the matrix found in i). Derive from that the non-tensorial transformation law for the Christoffel symbols.