General relativity, exercise sheet 2.

HS 08
Due: Fri, October 10, 2008

1. Jacobi identity

i) Let X, Y, Z be vector fields on a manifold M. Verify that the commutator satisfies the Jacobi identity:

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0 .
$$

ii) Let $Y_{1} \ldots Y_{m}$ be vector fields on an n-dimensional manifold M such that at each $p \in M$ they form a basis of the tangent space $T_{p}(M)$. Then, at each point, we may expand each commutator $\left[Y_{\alpha}, Y_{\beta}\right]$ in this basis, thereby defining the functions $C^{\gamma}{ }_{\alpha \beta}=-C^{\gamma}{ }_{\beta \alpha}$ by

$$
\begin{equation*}
\left[Y_{\alpha}, Y_{\beta}\right]=C^{\gamma}{ }_{\alpha \beta} Y_{\gamma} . \tag{1}
\end{equation*}
$$

Use the Jacobi identity to derive an equation satisfied by $C^{\gamma}{ }_{\alpha \beta}$.

2. Lie groups and Lie brackets

Consider the group of regular, real $n \times n$ matrices:

$$
\mathrm{GL}(n, \mathbb{R})=\left\{m=\left(m_{i j}\right)_{i, j=1}^{n} \mid m_{i j} \in \mathbb{R}, \operatorname{det} m \neq 0\right\}
$$

equipped with matrix multiplication. The unit element is $e=\left(\delta_{i j}\right)_{i, j=1}^{n} . \operatorname{GL}(n, \mathbb{R})$ is a differentiable manifold of dimension n^{2}.

The tangent space at e consists of tangents $\dot{m}(0)$ to curves $m(t)$ with $m(0)=e$ and is denoted by

$$
\mathfrak{g l}(n, \mathbb{R})=T_{e}(\operatorname{GL}(n, \mathbb{R}))=\left\{x=\left(x_{i j}\right)_{i, j=1}^{n} \mid x_{i j} \in \mathbb{R}\right\}
$$

A (matrix) Lie group G is a subgroup and a submanifold of GL(n, \mathbb{R}). Examples (besides of the trivial $G=\mathrm{GL}(n, \mathbb{R})$) are
a) the orthogonal group

$$
\mathrm{O}(n)=\left\{r \in \mathrm{GL}(n, \mathbb{R}) \mid r^{T} r=e\right\},
$$

where r^{T} is the transpose of r;
b) the Lorentz group

$$
\mathrm{SO}(1,3)=\left\{l \in \mathrm{GL}(4, \mathbb{R}) \mid l^{T} \eta l=\eta\right\},
$$

where $\eta=\operatorname{diag}(1,-1,-1,-1)$.
The tangent space at $e \in G$ consists of matrices:

$$
\operatorname{Lie}(G):=T_{e}(G) \subset \mathfrak{g l}(n, \mathbb{R})
$$

i) Find $\operatorname{Lie}(G)$ for G in the examples (a), (b).
ii) Show that for any $x_{1}, x_{2} \in \operatorname{Lie}(G)$

$$
\begin{align*}
& \alpha_{1} x_{1}+\alpha_{2} x_{2} \in \operatorname{Lie}(G), \quad\left(\alpha_{1}, \alpha_{2} \in \mathbb{R}\right), \tag{2}\\
& {\left[x_{1}, x_{2}\right]:=x_{1} x_{2}-x_{2} x_{1} \in \operatorname{Lie}(G),} \tag{3}
\end{align*}
$$

moreover,

$$
\begin{equation*}
\left[\alpha_{1} x_{1}+\alpha_{2} x_{2}, x\right]=\alpha_{1}\left[x_{1}, x\right]+\alpha_{2}\left[x_{2}, x\right] . \tag{4}
\end{equation*}
$$

Hint: If $m_{1}(t), m_{2}(t) \in G$ are curves through e, so are $m_{i}\left(\lambda_{i} t\right)(i=1,2), m_{1}(t) m_{2}(t)$ and, for any $s, m_{1}(t) m_{2}(s) m_{1}(t)^{-1} m_{2}(s)^{-1}$.

A linear space equipped with a bilinear, antisymmetric bracket $[,, \cdot]$ satisfying the Jacobi identity is called a Lie algebra. Lie (G) is the Lie algebra of G.

For any $g \in G$, let λ_{g} be the left-multiplication on G :

$$
\lambda_{g}: G \longrightarrow G \quad h \longmapsto g h .
$$

It is a diffeomorphism. Among the vector fields X on G, consider those which are leftinvariant

$$
X=\left(\lambda_{g}\right)_{*} X
$$

Clearly, they form a linear space. Show that
iii) They also form a Lie algebra w.r.t. the Lie bracket.
iv) If the vector fields in (1) are left-invariant, then the functions $C^{\gamma}{ }_{\alpha \beta}$ are constants (called structure constants).
v) The left-invariant vector fields are in bijective relation to the tangent vectors at e

$$
X \longleftrightarrow x \in T_{e}(G)=\operatorname{Lie}(G)
$$

such that $X_{e}=x$.
vi) The bijection is a Lie algebra isomorphism:

$$
\begin{aligned}
\alpha_{1} X_{1}+\alpha_{2} X_{2} & \longleftrightarrow \alpha_{1} x_{1}+\alpha_{2} x_{2} \\
{\left[X_{1}, X_{2}\right] } & \longleftrightarrow\left[x_{1}, x_{2}\right]
\end{aligned}
$$

