General relativity, exercise sheet 11.

HS 08
Due: Fri, December 12, 2008

1. Time delay in the Schwarzschild metric

Consider a ray passing near the Sun at minimal distance r_{0}.

Non relativistically it takes light a time $t=\sqrt{r^{2}-r_{0}^{2}},(c=1)$ to reach radius r_{0} from r (or vice versa).
i) Show that in Schwarzschild coordinates this time is

$$
\begin{equation*}
t=\int_{r_{0}}^{r} \frac{d r}{1-\frac{2 m}{r}}\left(1-\frac{1-2 m / r}{1-2 m / r_{0}}\left(\frac{r_{0}}{r}\right)^{2}\right)^{-1 / 2} \tag{1}
\end{equation*}
$$

Hint: Use the radial eq. $\dot{r}^{2}+V(r)=\mathcal{E}^{2}$ and express $\dot{r}=d r / d \tau$ by $d r / d t$ using the conservation of \mathcal{E}. Establish a relation between l / \mathcal{E} and r_{0}.
ii) Compute (1) for small m / r_{0} and conclude that the Shapiro time delay $\Delta t=t-\sqrt{r^{2}-r_{0}^{2}}$ is

$$
\Delta t(r)=2 m \log \left(\frac{r+\sqrt{r^{2}-r_{0}^{2}}}{r_{0}}\right)+m\left(\frac{r-r_{0}}{r+r_{0}}\right)^{1 / 2}+O\left(m^{2}\right) .
$$

iii) Let the ray join two planets, e.g. Earth and Venus, at radii r_{1} and r_{2} on opposite sides of r_{0}. The round trip delay,

$$
\Delta t=2\left(\Delta t\left(r_{1}\right)+\Delta t\left(r_{2}\right)\right),
$$

of a radar signal is measurable. Compute it for $r_{1}, r_{2} \gg r_{0}$.

2. Radial free fall

i) Find the motion $r(\tau)$ of a particle falling radially inward from $r=R$ towards a black hole and starting from rest in Schwarzschild coordinates. Note that $r(\tau)$ can not be expressed in closed form, but there is a parametric representation $r=r(\eta), \tau=\tau(\eta)$ which can.

Hint: The radial equation has been encountered before in another context.

