General relativity, exercise sheet 1 .

HS 08
Due: Fri, October 3, 2008

1. Stereographic projection

Consider the sphere

$$
S^{2}=\left\{p=\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

and its covering $S^{2}=U_{+} \cup U_{-}$by the two open sets

$$
U_{ \pm}=S^{2} \backslash\{(0,0, \pm 1)\}
$$

obtained by removing the north, resp. south pole from S^{2}. The stereographic projection shown in the figure provides a chart for U_{+}with coordinate patch $\mathbb{R}^{2} \ni(x, y)$; similarly there is one for U_{-}with patch $\mathbb{R}^{2} \ni(\bar{x}, \bar{y})$. On which subset of \mathbb{R}^{2} is the transition function $(x, y) \mapsto(\bar{x}, \bar{y})$ defined? Compute the function.

2. Tensors

a) Show that not all tensors in

$$
\begin{aligned}
V \otimes V & =\left\{T \mid T \text { is a bilinear form over } V^{*} \times V^{*}\right\} \\
& =\left\{\text { linear combinations of tensors } v_{1} \otimes v_{2} \mid v_{1}, v_{2} \in V\right\}
\end{aligned}
$$

are of the form $v_{1} \otimes v_{2}$.
b) Identify $V \otimes W^{*}$ with the vector space $\mathcal{L}(W, V)$ of linear maps $W \rightarrow V$.

3. On the Lie derivative

In class the Lie derivative $L_{X} R$ of a tensor field R was defined in 'absolute terms', i.e. without reference to charts or to components. It was then shown that, for the case of R being of type $\binom{1}{1}$, the components of $L_{X} R$ are

$$
\begin{equation*}
\left(L_{X} R\right)^{i}{ }_{j}=R_{j, k}^{i} X^{k}-R^{k}{ }_{j} X^{i}{ }_{, k}+R_{k}^{i} X_{, j}^{k} . \tag{1}
\end{equation*}
$$

By contrast adopt here the point of view according to which R is simply given by its components R_{j}^{i} together with the transformation law

$$
\begin{equation*}
\bar{R}_{\beta}^{\alpha}=R_{j}^{i} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} \tag{2}
\end{equation*}
$$

under any change $x \mapsto \bar{x}$ of coordinates. Then take (1) as a definition of $L_{X} R$. Make sure it is well-defined by showing that $\left(L_{X} R\right)^{i}{ }_{j}$ also obeys (2).

Hint: Find first the transformation law of $R_{j, k}^{i}$ (it is not that of a tensor)

