$HS \ 08$

Due: Fri, October 3, 2008

1. Stereographic projection

Consider the sphere

$$S^{2} = \{ p = (x_{1}, x_{2}, x_{3}) \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \}$$

and its covering $S^2 = U_+ \cup U_-$ by the two open sets

$$U_{\pm} = S^2 \setminus \{(0, 0, \pm 1)\}$$

obtained by removing the north, resp. south pole from S^2 . The stereographic projection shown in the figure provides a chart for U_+ with coordinate patch $\mathbb{R}^2 \ni (x, y)$; similarly there is one for U_- with patch $\mathbb{R}^2 \ni (\bar{x}, \bar{y})$. On which subset of \mathbb{R}^2 is the transition function $(x, y) \mapsto (\bar{x}, \bar{y})$ defined? Compute the function.

2. Tensors

a) Show that not all tensors in

$$V \otimes V = \{T \mid T \text{ is a bilinear form over } V^* \times V^* \}$$

= {linear combinations of tensors $v_1 \otimes v_2 \mid v_1, v_2 \in V \}$

are of the form $v_1 \otimes v_2$.

b) Identify $V \otimes W^*$ with the vector space $\mathcal{L}(W, V)$ of linear maps $W \to V$.

3. On the Lie derivative

In class the Lie derivative $L_X R$ of a tensor field R was defined in 'absolute terms', i.e. without reference to charts or to components. It was then shown that, for the case of R being of type $\binom{1}{1}$, the components of $L_X R$ are

$$(L_X R)^i{}_j = R^i{}_{j,k} X^k - R^k{}_j X^i{}_{,k} + R^i{}_k X^k{}_{,j}.$$
⁽¹⁾

By contrast adopt here the point of view according to which R is simply given by its components $R^i{}_j$ together with the transformation law

$$\bar{R}^{\alpha}{}_{\beta} = R^{i}{}_{j} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} \tag{2}$$

under any change $x \mapsto \bar{x}$ of coordinates. Then take (1) as a definition of $L_X R$. Make sure it is well-defined by showing that $(L_X R)_i^i$ also obeys (2).

 $\mathit{Hint:}$ Find first the transformation law of $R^i_{\ j,k}$ (it is not that of a tensor)