
General Relativity
HS 08

G.M. Graf

ETH Zürich
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1. Manifolds and tensor fields

1. Differentiable manifolds

A differentiable manifold M is “locally homeomorphic to R
n”, meaning it is defined

by the following elements:
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x x̄

M : topological space

xn

covering of M

continuous

chart K ⊂ R
n

x1 x̄1

by open sets

maps

chart K ⊂ R
n

p

φ

x̄n

Within the shaded overlap region of two charts the change of coordinates x↔ x̄ (transition
functions) are differentiable any number of times. Definition: dimM = n.

Notions

• Differentiable functions f : M → R (algebra F = C∞(M))

• Fp: algebra of C∞-functions defined in any neighborhood of p (f = g means f(q) =
g(q) in some neighborhood of p)

• Differentiable curve γ : R→M

• Differentiable map: M →M ′

The notions are to be understood my means of a chart: e.g. f : M → R is differentiable
if x 7→ f(p(x)) ≡ f(x) is. This is independent of the chart representing a neighborhood
of p.

Tangent space Tp of the point p ∈M

A vector X ∈ Tp is a linear map Fp → R with the derivation property

X(fg) = (Xf)g(p) + f(p)(Xg) . (1.1)
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Tp is a linear space. In any chart (representing p) we have

Xf = X if,i(x) : X i = X(xi) ,

where ,i = ∂/∂xi and xi ∈ Fp denotes the coordinate function p 7→ xi.

Proof: For f ≡ 1 we have f 2 = f , whence Xf = 2Xf = 0. Thus Xf = 0, if f is constant.
Let p have coordinates x = 0. The identity

f(x) = f(0) + xi
∫ 1

0

dtf,i(tx)

︸ ︷︷ ︸
gi(x)

implies by (1.1) Xf = X(xi) · gi(0) = X if,i(0). �

Directional derivative

Let γ(t) ∈M be a curve through γ(0) = p. Then γ defines an X ∈ Tp through

Xf =
d

dt
f(γ(t))

∣∣∣∣
t=0

, (1.2)

denoted by X = γ̇(0). In components:

X i =
dγi

dt

∣∣∣∣
t=0

(γi = coordinates of γ). One can thus regard a tangent vector X as an equivalence class
of curves through p.

Basis of Tp

Tp has dimension n. In any basis (e1, . . . en) we have

X = X iei .

Change of basis:
ēi = φi

kek ; X̄ i = φikX
k (1.3)

6 6

inverse-transposed

In particular ei = ∂/∂xi is called coordinate basis (w.r.t. a chart). Upon change of chart,

φi
k =

∂xk

∂x̄i
; φik =

∂x̄i

∂xk
. (1.4)

The cotangent space T ∗
p

Dual space of Tp: a covector ω ∈ T ∗
p is a linear form

ω : X 7→ ω(X) ≡ 〈ω,X〉 ∈ R .
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In particular, for any f ∈ Fp
df : X 7→ Xf

is an element of T ∗
p . The elements df = f,idx

i form a linear space of dimension n, hence
all of T ∗

p .

Basis (e1, . . . en) of T ∗
p :

ω = ωie
i .

In particular the dual basis (of a basis (e1, . . . en) of Tp) is given by

〈ei, X〉 = X i , or 〈ei, ek〉 = δik .

Thus ωi = 〈ω, ei〉. Upon changing the basis the ωi transforms like the ei and the ei like
the X i (cf. (1.3)). In particular we have for the coordinate basis

ei =
∂

∂xi
; ei = dxi .

The change of basis then is

∂

∂x̄i
=
∂xk

∂x̄i
∂

∂xk
; dx̄i =

∂x̄i

∂xk
dxk .

Tensors on Tp

Tensors are multilinear forms on T ∗
p and Tp, e.g. a tensor T of type

(
1
2

)
(for short: T ∈

⊗1
2Tp): T (ω,X, Y ) is a trilinear form on T ∗

p × Tp × Tp. In particular ⊗0
1Tp = T ∗

p , ⊗
1
0Tp =

(T ∗
p )∗ ∼= Tp, as well as ⊗0

0Tp = R. The tensor product is defined between tensors of any
type, e.g.

T (ω,X, Y ) = R(ω,X) · S(Y ) : T = R⊗ S .

Components (w.r.t. a pair of dual bases)

T (ω,X, Y ) = T (ei, ej, ek)︸ ︷︷ ︸
≡T i

jk

ωiX
jY k

︸ ︷︷ ︸
ei(ω)ej(X)ek(Y )

,

hence
T = T ijkei ⊗ e

j ⊗ ek .

Any tensor of this type can therefore be obtained as a linear combination of tensor pro-
ducts X ⊗ ω ⊗ ω′ with X ∈ Tp, ω, ω

′ ∈ T ∗
p , denoted as ⊗1

2Tp = Tp ⊗ T
∗
p ⊗ T

∗
p .

Change of basis

T
i
jk = Tαβγφ

i
αφj

βφk
γ . (1.5)

Trace

Any bilinear form b ∈ T ∗
p⊗Tp determines a linear form l ∈ (Tp⊗T

∗
p )∗

such that

l(X ⊗ ω) = b(X,ω) .

Tp × T
∗
p

⊗

��

b //
R

Tp ⊗ T
∗
p

l

<<
x

x
x

x
x

x
x

x
x

Proof: The map l 7→ b is one-to-one and on grounds of dimension also onto. �
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In particular trT is a linear form on tensors T of type
(
1
1

)
defined by

tr(X ⊗ ω) = 〈ω,X〉 .

In components w.r.t. a dual pair of bases we have

trT = T ii .

Similarly,
T ijk 7→ Sk = T iik

defines for instance a map from tensors of type
(
1
2

)
to tensors of type

(
0
1

)
.

The tangent map

Let ϕ be a differentiable map M →M ; let p ∈M and p̄ = ϕ(p). Then ϕ induces a linear
map

ϕ∗ : Tp(M)→ Tp̄(M) ,

which we describe in two ways:

(a) For any f̄ ∈ Fp̄(M) set
(ϕ∗X)f̄ = X(f̄ ◦ ϕ) .

(b) Let γ be a representative of X (cf. (1.2)). Then let

γ = ϕ ◦ γ

be a representative of ϕ∗X. This agrees with (a), because

d

dt
f̄(γ(t))

∣∣
t=0

=
d

dt
(f̄ ◦ ϕ)(γ(t))

∣∣
t=0

.

W.r.t. bases (e1, . . . en) of Tp, (ē1, . . . , ēn̄) of Tp̄ reads X = ϕ∗X

X
i
= (ϕ∗)

i
kX

k

with (ϕ∗)
i
k = 〈ei, ϕ∗ek〉 or, in case of coordinate bases,

(ϕ∗)
i
k =

∂xi

∂xk
.

The adjoint map ϕ∗ of ϕ∗ is

ϕ∗ : T ∗

p̄ → T ∗

p ; ω 7→ ϕ∗ω

with
〈ϕ∗ω,X〉 = 〈ω, ϕ∗X〉 .

The same result is obtained from the definition

ϕ∗ : df̄ 7→ d(f̄ ◦ ϕ) , (f̄ ∈ F(M)) . (1.6)

In components, ω = ϕ∗ω reads
ωk = ωi(ϕ∗)

i
k .
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From now on we limit ourselves to (local) diffeomorphisms, i.e. maps ϕ such that ϕ−1

exists in an neighborhood of p̄.

dimM = dimM ; det
( ∂xi
∂xk

)
6= 0 .

Then ϕ∗ and ϕ∗ are invertible and may be extended to tensors of arbitrary type.

Example. Type
(
1
1

)
:

(ϕ∗T )(ω,X) = T (ϕ∗ω, ϕ−1
∗ X) ,

(ϕ∗T )(ω,X) = T (ϕ∗−1ω, ϕ∗X) .

Here, ϕ∗, ϕ
∗ are each other’s inverse and we have

ϕ∗(T ⊗ S) = (ϕ∗T )⊗ (ϕ∗S) ,

tr(ϕ∗T ) = ϕ∗(trT )
(1.7)

(tr = any trace) and similarly for ϕ∗. In components T = ϕ∗T reads

T
i
k = Tαβ

∂xi

∂xα
∂xβ

∂xk
(1.8)

(coordinate basis). This is formally the same as the transformation (1.5) when changing
basis.

2. Tensor fields

A vector field on M is a linear map X : F → F with the derivation property

X(fg) = (Xf)g + f(Xg) . (1.9)

This implies that (Xf)(p) depends only on the equivalence class f ∈ Fp. Proof: From
f = 0 in a neighborhood U of p we conclude by means of a function g with supp g ⊂
U, g(p) = 1, that (Xf)(p) = 0. �

Hence, for any p ∈M
Xp : f 7→ (Xf)(p)

is a vector in Tp. In a chart we thus have

(Xf)(x) = X i(x)f,i(x) , d.h. X = X i(x)
∂

∂xi

with smooth components X i(x): vector fields are linear differential operators of first order.
The vector fields on M form a linear space on which the following operations are defined
as well

X 7→ fX (multiplication by f ∈ F) ,

X, Y 7→ [X,Y ] = XY − Y X (commutator) .
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Indeed, [X,Y ], unlike XY , satisfies (1.9):

[X,Y ](fg) = X((Y f)g + f(Y g))− Y ((Xf)g + f(Xg))

= ([X,Y ]f)g + f([X,Y ]g) .

Moreover the Jacobi identity holds true

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 . (1.10)

1-forms are “f -linear” maps
ω : X 7→ ω(X) ∈ F

from the space of vector fields to F , i.e.,

ω(fX) = fω(X) ,

besides of linearity. This implies that ω(X)(p) depends only on Xp Proof: chart: p ∈
U → R

n, p 7→ x = 0. Let supp f ⊂ U , f(p) = 1. If Xp = 0, then ω(X)(p) = ω(f 2X)(p) =
(fX i)(0)ω(f∂/∂xi) = 0, since X i(0) = 0. �

Thus, for any p ∈M a covector ωp ∈ T
∗
p is defined through

ω(X)(p) = 〈ωp, Xp〉

In any chart we then have

ω(X) = ωi(x)X
i(x) , i.e. ω = ωi(x)dx

i

(dxi : X 7→ X i, locally) with smooth components ωi(x).

Tensor fields

Example: A tensor field R of type
(
1
2

)
is a function R(ω,X, Y ) of: ω (1-form), X,Y (vector

fields), taking values in F , which is f -linear in each variable. A tensor field can also be
viewed as a function

R : p ∈M 7→ Rp : tensor on Tp ,

which is smooth in terms of its components: In any chart we have

R(ω,X, Y ) = Ri
jk(x)ωi(x)X

j(x)Y k(x)

with smooth components Ri
jk(x). They transform according to (1.5, 1.4) under coordinate

changes.

Tangent map

(ϕ : M →M differentiable)

1-forms: ω 7→ ϕ∗ω. The 1-form ϕ∗ω onM is defined by (1.6) and f -linearity. Equivalently,

(ϕ∗ω)p = ϕ∗ωϕ(p) .

Let henceforth ϕ be a diffeomorphism.
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Vector fields: X 7→ ϕ∗X, a vector field on M :

(ϕ∗X)f = [X(f ◦ ϕ)] ◦ ϕ−1 ,

hence (ϕ∗X)p̄ = ϕ∗Xϕ−1(p̄). We have

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ]

Tensor fields: R→ ϕ∗R, (ϕ∗ = ϕ∗−1), e.g. R of type
(
1
1

)
:

(ϕ∗R)(ω,X) = R(ϕ∗−1ω, ϕ∗X) ◦ ϕ ,

resp.
(ϕ∗R)p = ϕ∗Rϕ(p) ,

i.e. ϕ∗ acts pointwise on the tensors of the field.

Flows and generating vector fields

A flow is a 1-parameter group of diffeomorphisms ϕt : M →M , t ∈ R with

ϕt ◦ ϕs = ϕt+s .

In particular ϕ0 = id. Moreover the orbits (or integral curves) of any point p ∈M

t 7→ ϕt(p) ≡ γ(t)

shall be differentiable. A flow determines a vector field X by means of

Xf =
d

dt
(f ◦ ϕt)

∣∣∣∣
t=0

, (1.11)

d.h. Xp =
d

dt
γ(t)

∣∣∣∣
t=0

= γ̇(0) ,

where γ̇(0) is the tangent vector to γ at the point p = γ(0). At the point γ(t) we then
have

γ̇(t) =
d

dt
ϕt(p) =

d

ds
(ϕs ◦ ϕt)(p)

∣∣∣∣
s=0

= Xϕt(p) .

i.e. γ(t) solves the ordinary differential equations

γ̇(t) = Xγ(t) ; γ(0) = p . (1.12)

The generating vector field thus determines the flow uniquely. (In general a vector field
many not generate a flow, because (1.12) may not admit global solutions (i.e. for all
t ∈ R). For most purposes “local flows” suffice, though.)
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3. The Lie derivative

The derivative of a vector field V rests on the comparison of Vp and Vp′ at nearly points
p, p′. Since Vp ∈ Tp, Vp′ ∈ Tp′ belong to different spaces their difference can be taken only
after Vp′ has been transported to Tp. This can be achieved by means of the tangent map
ϕ∗ (Lie transport).

The Lie derivative LXR of a tensor field R in direction of a vector field X is defined by

LXR =
d

dt
ϕ∗

tR
∣∣∣
t=0

(1.13)

or, somewhat more explicitely,

(LXR)p =
d

dt
ϕ∗

tRϕt(p)

∣∣∣
t=0

.

Here, ϕt is the (local) flow generated by X, whence ϕ∗
tRϕt(p) is a tensor on Tp depending

out. In order to express LX in components we write ϕt in a chart

ϕt : x 7→ x̄(t, x)

and linearize in small t:

x̄i = xi + tX i(x) + . . . , xi = x̄i − tX i(x̄) + . . . ,

hence
∂2x̄i

∂xk∂t
= −

∂2xi

∂x̄k∂t
= X i

,k

at t = 0. As an example, let R be of type
(
1
1

)
. By (1.8) we then have

(ϕ∗

tR)ij(x) = Rα
β(x̄)

∂xi

∂x̄α
∂x̄β

∂xj
.

Taking a derivative w.r.t. t at t = 0 yields:

(LXR)ij = Ri
j,kX

k −Rα
jX

i
,α +Ri

βX
β
,j . (1.14)

Properties of LX

(a) LX is a linear map from tensor field to tensor fields of the same type
(b) LX(trT ) = tr(LXT ), (tr any trace)
(c) LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS)
(d) LXf = Xf, (f ∈ F)
(e) LXY = [X,Y ], (Y : vector field)

Proof: (a) follows from (1.13), (b,c) from (1.7), (d) from (1.11) and (e) from

(LXY )f =
( d
dt
ϕ∗

tY
∣∣∣
t=0

)
f =

d

dt
(ϕ−t∗Y )f

∣∣∣
t=0

=
d

dt
Y (f ◦ ϕ−t) ◦ ϕt

∣∣∣
t=0

= Y
( d
dt
f ◦ ϕ−t

∣∣∣
t=0

)
+
d

dt
(Y (f) ◦ ϕt)

∣∣∣
t=0

= −Y Xf +XY f .
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Alternate definition of LX: For a given vector field X the properties (a–e) (which
do not refer to flows) determine LXR uniquely for any tensor field R. In particular, this
definition agrees with (1.13).

Proof: Because of (c) we just need to show that LXω is defined for 1-forms ω. This follows
from

(LXω)(Y ) = tr(LXω ⊗ Y ) = trLX(ω ⊗ Y )− trω ⊗ LXY = Xω(Y )− ω([X,Y ]) .

�

Further properties of LX

LX is linear in X (but not f -linear!) and

L[X,Y ] = LXLY − LYLX .

Proof: The r.h.s. satisfies (a–c) and agrees with the l.h.s. on f ∈ F , as well as on vector
fields Z, the latter because of (1.10).

On the meaning of [X,Y ] = 0

Let ϕt be the flow generated by X. If [X,Y ] = 0, then

ϕt∗Y = Y , i.e. Yϕt(p) = ϕt∗Yp , (1.15)

since
d

dt
ϕ∗

tY =
d

ds
ϕ∗

t+sY
∣∣∣
s=0

= ϕ∗

t

( d

ds
ϕ∗

sY
∣∣∣
s=0

)
= ϕ∗

t ([X,Y ]) = 0 .

Let now ψs be the flow generated by Y . By (1.15) we have

d

ds
ϕt(ψs(p)) = ϕt∗Yψs(p) = Yϕt(ψs(p)) ,

i.e. ϕt(ψs(p)) satisfies the ODE and the initial value for ψs(ϕt(p)). Hence they are the
same. The result is:

[X,Y ] = 0 ⇐⇒ ϕt ◦ ψs = ψs ◦ ϕt (1.16)

(if X,Y generate global flows).

4. Differential forms

A p-form Ω is a totally antisymmetric tensor field of type
(
0
p

)
:

Ω(Xπ(1), . . . , Xπ(p)) = (sgnπ)Ω(X1, . . . Xp)

for any permutation π of {1, . . . , p} : π ∈ Sp, with sgnπ being its parity. In particular,
Ω ≡ 0 for p > dimM . Any tensor field of type

(
0
p

)
can be antisymmetrized by means of

the operation A:

(AT )(X1, . . . , Xp) =
1

p!

∑

π∈Sp

(sgnπ)T (Xπ(1), . . . , Xπ(p)) . (1.17)

9



We have A2 = A. The exterior product of a p1-form Ω1 with a p2-form Ω2 is the
(p1 + p2)-form

Ω1 ∧ Ω2 =
(p1 + p2)!

p1!p2!
A(Ω1 ⊗ Ω2). (1.18)

Properties:

Ω1 ∧ Ω2 = (−1)p1p2 Ω2 ∧ Ω1

Ω1 ∧ (Ω2 ∧ Ω3) = (Ω1 ∧ Ω2) ∧ Ω3 =
(p1 + p2 + p3)!

p1!p2!p3!
A(Ω1 ⊗ Ω2 ⊗ Ω3)

Components: in a (local) basis of 1-forms (e1, . . . en)

Ω = Ωi1...ip e
i1 ⊗ . . .⊗ eip = AΩ

= Ωi1...ip A(ei1 ⊗ . . .⊗ eip)

= Ωi1...ip

1

p!
ei1 ∧ . . . ∧ eip (1.19)

= Ωi1...ip e
i1 ∧ . . . ∧ eip (when restricting the sum to i1 < . . . < ip).

Examples:

For 1-forms A,B we have
(A ∧B)ik = AiBk − AkBi .

For a 2-form A and 1-form B,

(A ∧B)ikl = AikBl + AklBi + AliBk , (1.20)

because

A ∧B = AikBl
1

2
ei ∧ ek ∧ el = (AikBl + zykl.)︸ ︷︷ ︸

(A ∧B)ikl

1

6
ei ∧ ek ∧ el ,

since the bracket is totally antisymmetric.

The exterior derivative of a differential form

The derivative df of a 0-form f ∈ F is the 1-form df(X) = Xf : the argument X acts as
a derivation. The derivative dΩ of a 1-form Ω is

dΩ(X1, X2) = X1Ω(X2)−X2Ω(X1)− Ω([X1, X2]) .

The last term ensures that dΩ is a 2-form, being f -linear in X1, X2:

dΩ(fX1, X2) = fX1Ω(X2)−X2Ω(fX1)− Ω([fX1, X2])

= fX1Ω(X2)−
(
(X2f)Ω(X1) + fX2Ω(X1)

)
− Ω(f [X1, X2] + (X2f)X1)

= fdΩ(X1, X2) . (1.21)

On Ω ∧ f = fΩ the product rule d(Ω ∧ f) = dΩ ∧ f − Ω ∧ df applies, since

d(Ω ∧ f)(X1, X2) = X1(fΩ)(X2)−X2(fΩ)(X1)− (fΩ)(X1, X2)

= fdΩ(X1, X2)− Ω(X1)f(X2) + Ω(X2)f(X1) . (1.22)
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Moreover we have d2f = 0, because

d2f(X1, X2) = X1df(X2)−X2df(X1)− df([X1, X2])

= X1X2f −X2X1f − [X1, X2]f = 0 . (1.23)

The generalization of the definition to p-forms Ω is

dΩ(X1 . . . Xp+1) =

p+1∑

i=1

(−1)i−1Ω(X1 . . . X̂i, . . . Xp+1)

+
∑

i<j

(−1)i+jΩ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . Xp+1) , (1.24)

where ̂ denotes omission. Analogously to (1.21-1.23) one shows the

Properties of d

(a) d is a liner map from p-forms to (p+ 1)-forms
(b) d(Ω1 ∧ Ω2) = dΩ1 ∧ Ω2 + (−1)p1Ω1 ∧ dΩ2

(c) d2 = 0, d.h d(dΩ) = 0
(d) df(X) = Xf , (f ∈ F)

Alternate definition of d: By means of (a–d), hence without reference to commutators.

Proof: We need to show that d is defined on all p-forms Ω. By (1.19) we have w.r.t. a
coordinate basis

Ω =
1

p!
Ωi1...ip dx

i1 ∧ . . . ∧ dxip , (1.25)

hence

dΩ =
1

p!
dΩi1...ip ∧ dx

i1 ∧ . . . ∧ dxip .

�

Components: (,i = ∂/∂xi)

p!dΩ = Ωi1i2...ip,i0dx
i0 ∧ . . . ∧ dxip

= −Ωi0i2...ip,i1dx
i0 ∧ . . . ∧ dxip

= (−1)kΩi0...̂ik...ip,ik
dxi0 ∧ . . . ∧ dxip , (k = 0, . . . p) ,

dΩ =

p∑

k=0

(−1)kΩi0...̂ik...ip,ik

︸ ︷︷ ︸
(dΩ)i0...ip

1

(p+ 1)!
dxi0 ∧ . . . ∧ dxip . (1.26)

Examples:

p = 1 :

p = 2 :

(dΩ)ik =Ωk,i − Ωi,k , (1.27)

(dΩ)ikl =Ωik,l + Ωkl,i + Ωli,k . (1.28)

Further properties: For any map ϕ : M → N ,

ϕ∗ ◦ d = d ◦ ϕ∗ . (1.29)
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Proof: Because of (1.25, 1.7) and property (b) it suffices to verify (1.29) on:

0-forms f̄ : (1.29) is identical to (1.6);
1-forms, which are differentials df̄ : because of (c) we have

(ϕ∗ ◦ d)(df̄) = 0 , (d ◦ ϕ∗)(df̄) = d(ϕ∗ ◦ df̄) = (d2 ◦ ϕ∗)(f̄) = 0 .

�

Setting ϕ = ϕt (the flow generated by X) and forming d/dt
∣∣
t=0

, one obtains the infinite-
simal version of (1.29):

LX ◦ d = d ◦ LX . (1.30)

Definition: A p-Form ω with

• ω = dη is exact;
• dω = 0 is closed.

The implication “ω exact ⇒ ω closed” holds true, but the converse generally not. A local
converse is the Poincaré lemma:

Lemma: Let G ⊂M be an open domain in a “star-shaped” chart. Any point in the chart
is connected to the origin by a straight line lying in the chart. Let ω be a p-form with
dω = 0 in G. Then there exists a (p− 1)-form η such that

ω = dη .

Proof: see p. 15.
Remark: Obviously, η is not unique, since “gauge transformations” η → η + dρ, with ρ
any (p− 2)-form, leave dη unchanged.

The integral of an n-form

Let an orientation be given on M : an atlas of “positively oriented” charts, i.e.

det

(
∂x̄i

∂xj

)
> 0 (1.31)

for any change of coordinates. (Not every manifold is orientable; example: the Möbius
strip). An n-form ω, (n = dimM),

ω = ωi1...in
1

n!
dxi1 ∧ . . . ∧ dxin = ω1...n︸︷︷︸

ω(x)

dx1 ∧ . . . ∧ dxn

is determined by the single component ω(x); under a change of coordinates it transforms
as

ω̄(x̄) = ω̄1...n = ωi1...in
∂xi1

∂x̄1
. . .

∂xin

∂x̄n
= ω(x) det

(
∂xi

∂x̄j

)
. (1.32)

The integral of an n-form is defined as follows. If suppω is contained in a (positive)
chart, we set ∫

M

ω =

∫
dx1 . . . dxnω(x1 . . . xn) .

12



For suppω in the intersection of two charts,
∫
ω is independent of the one used by (1.31,

1.32) and ∫
dx1 . . . dxnω(x) =

∫
dx̄1 . . . dx̄nω(x)

∣∣∣∣ det
(∂xi
∂x̄j

)∣∣∣∣ .

For arbitrary ω of compact support we define
∫

M

ω =
∑

k

∫
hkω . (1.33)

Here {hk} is a partition of unity on M :

hk ∈ F ; hk ≥ 0 ;
∑

k

hk = 1

such that each supphk is contained in some chart (such partitions do exist). The indepen-
dence of (1.33) on the choice of the partition is seen by considering the refinement {hkgl}
of two partitions {hk}, {gl}.

Remark: Upon reversing the orientation,
∫
M
ω changes sign.

The Stokes Theorem

A(n-dimensional) manifold with boundary is a locally homeomorphic to R
n− = {(x1 . . .

xn) ∈ R
n | x1 ≤ 0}:

x

x1 x1

x2, . . . xn

M

∂M

p

p̃

x̃

x2, . . . xn

The boundary ∂M consists of those p ∈ M ,
whose image x in some (and hence any) chart
satisfies x1 = 0.

Orientation of the boundary: an orienta-
tion on M induces one on ∂M : If (x1 . . . xn)
is a positive chart for U ⊂M , then (x2 . . . xn)
is one on ∂M ∩ U . (Show the consistency of
this definition.)

Stokes Theorem: Let M , (dimM = n), be an oriented manifold with boundary. Then,
for any (n− 1)-form ω: ∫

M

dω =

∫

∂M

ω . (1.34)

Proof: Let {hk} be a partition of unity on M . We decompose ω =
∑

k hkω. We then need
to prove (1.34) in two special cases:

(a) suppω lies in a chart without boundary. Then (cf. (1.26))

∫

M

dω =

∫
dx1 . . . dxn

n∑

k=1

(−1)k−1ω1...k̂...n,k = 0 .

13



(b) suppω lies in a chart with boundary. Then

∫

M

dω =

∫
dx1 . . . dxn

n∑

k=1

(−1)k−1ω1...k̂...n,k =

∫
dx1 . . . dxnω2...n,1

=

∫
dx2 . . . dxnω(0, x2, . . . xn) =

∫

∂M

ω ,

since (x2 . . . xn) is a positively oriented chart of ∂M . �

The inner product of a p-form

Let X be a vector field on M . For any p-form Ω let

(iXΩ)(X1, . . . , Xp−1) = Ω(X,X1, . . . , Xp−1) ,

(= 0 if p = 0).

Properties

(a) iX is a linear map from p-forms to (p− 1)-forms
(b) iX(Ω1 ∧ Ω2) = (iXΩ1) ∧ Ω2 + (−1)p1Ω1 ∧ iXΩ2

(c) i2X = 0
(d) iXdf = Xf , (f ∈ F)
(e) LX = iX ◦ d+ d ◦ iX

Proof: (a–d) are straightforward. It suffices to verify (e) on:

0-forms f : both sides equal Xf .
1-form, which are differentials df : both sides equal d(Xf) because of (1.30). �

Applications:

1) The Gauss Theorem:
The manifold M is oriented iff there is an n-form η with ηp 6= 0 for all p ∈ M (“volume
form”). Let X be a vector field. Then d(iXη) is a n-form and a function divηX ∈ F is
defined through

(divηX)η = d(iXη)

(also = LXη, because of (e)). The Stokes Theorem immediately implies the Gauss Theo-
rem: ∫

M

(divηX)η =

∫

∂M

iXη .

In a chart:

(iXη)i2...in = Xaηa i2...in

d(iXη)1...n =
n∑

k=1

(−1)k−1
(
Xaηa 1...k̂...n︸ ︷︷ ︸

(−1)k−1Xkη1...n

)
,k

=
(
Xkη1...n

)
,k

hence, setting again η(x) ≡ η1...n(x),

divηX =
1

η
(ηXk),k .
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For the integral
∫
∂D
iXη (only boundary charts contribute, see figure on p. 13) we obtain:

∫

∂M

iXη =

∫
dx2 . . . dxn(iXη)2...n (0, x2, . . . , xn) =

∫
dx2 . . . dxn(ηX1)(0, x2, . . . , xn)

because (x2, . . . , xn) is a positively oriented chart of ∂M .

2) Proof of the Poincaré lemma: By using a chart we may assume U ⊂ R
n and thus

identify Tx ∼= R
n. We shall construct a map T from p- to (p− 1)-forms on U with

(T ◦ d+ d ◦ T )ω = ω

(ω: arbitrary p-form). For dω = 0 this implies dη = ω for η = Tω, as claimed. Construction
of T :

(Tω)x =

∫ 1

0

tp−1(iXω)txdt , (x ∈ U) ,

where X is the vector field with components X i(x) = xi. Then (e) implies

[(Td+ dT )ω]x =

∫ 1

0

tp−1(LXω)tx dt . (1.35)

Here LXω = (x∇)ω + pω because by (1.14) we have

(LXω)i1...ip = xkωi1...ip,k +

p∑

p=1

ωi1...k...ip X
k
ij︸︷︷︸

δkij

.

6

j-th position

Moreover we have [(x∇)ω]tx = tx(∇ω)tx = t d
dt
ωtx, hence

tp−1(LXω)tx = tp
d

dt
ωtx + ptp−1ω =

d

dt
(tpωtx)

and (1.35) equals ωx. �
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2. Affine connections

1. Parallel transport and covariant derivative

Definition: Any curve γ in M is equipped with a parallel transport of vectors.

γ

γ(t)

γ(s)

τ(t, s)
τ(t, s) : Tγ(s) → Tγ(t)

is a linear map with

τ(t, t) = 1, τ(t, s)τ(s, r) = τ(t, r) . (2.1)

In any chart we have

∂

∂t
τ ik(t, s)

∣∣∣
t=s

= −Γilk(γ(s))γ̇
l(s) . (2.2)

Remarks: 1) The Lie transport ϕt∗ along an orbit of Y is not of the form (2.2):

d

dt
(ϕt∗)

i
k

∣∣∣
t=0

= Y i
,k .

2) A parallel transported vector X(t) = τ(t, s)X(s) ∈ Tγ(t) solves, in a chart, the diffe-
rential equation

Ẋ i(s) = −Γilk(γ(s))γ̇
l(s)Xk(s) . (2.3)

The Ẋ i are not the components of a vector, hence the Christoffel symbols Γilk(x) not
those of a tensor (s. below).

3) Equation (2.3) states, that the Ẋ i are linear in γ̇l, Xk. Because of this property (which
is independent of the chart) τ(t, s) does not depend on the parameterization of γ (but
also not just on the endpoints γ(s), γ(t)).

4) Because of (2.1) we also have

∂

∂s
τ ik(t, s)

∣∣∣
s=t

= Γilk(γ(t))γ̇
l(t) . (2.4)

5) Upon changing chart,

τ ik(t, s) = τ pq(t, s)
∂x̄i

∂xp

∣∣∣
γ(t)

∂xq

∂x̄k

∣∣∣
γ(s)

.

Applying ∂
∂s

∣∣
s=t

and (2.4) implies

Γ
i
lk ˙̄γl = Γprq γ̇r︸︷︷︸

∂xr

∂x̄l
˙̄γl

∂x̄i

∂xp
∂xq

∂x̄k
+ δpq

∂x̄i

∂xp
∂2xq

∂x̄k∂x̄l
˙̄γl ,

hence:

Γ
i
lk(x) = Γprq(x)

∂x̄i

∂xp
∂xq

∂x̄k
∂xr

∂x̄l
+
∂x̄i

∂xp
∂2xp

∂x̄k∂x̄l
. (2.5)
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Conversely, a field Γilk(x) with this transformation law determines a parallel transport
along any curve γ(t) by means of the differential equation (2.2).

The parallel transport is extended to tensors by means of the requirements

τ(t, s)(T ⊗ S) = (τ(t, s)T )⊗ (τ(t, s)S) ,

τ(t, s)(trT ) = tr(τ(t, s)T ) , (tr = any trace)

τ(t, s)c = c , (c ∈ R) ,

so e.g. for a covector ω
〈τ(t, s)ω, τ(t, s)X〉γ(t) = 〈ω,X〉γ(s)

and for a tensor T of type
(
1
1

)

(τ(t, s)T )(τ(t, s)ω, τ(t, s)X) = T (ω,X) . (2.6)

In components:
(τ(t, s)T )ik = Tαβτ

i
α(t, s)τk

β(t, s)

with (τi
k) the inverse-transposed of (τ ik) .

The covariant derivative ∇X (X: vector field, R: tensor field) associated to τ is

(∇XT )p =
d

dt
τ(0, t)Tγ(t)

∣∣∣
t=0

, (2.7)

where γ(t) is any curve through p = γ(0) with γ̇(0) = Xp.

Properties

(a) ∇X is a linear map from tensor fields to tensor fields of the same type
(b) ∇Xf = Xf
(c) ∇X(trT ) = tr(∇XT ), (tr = any trace)
(d) ∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗∇XS

They follow from the corresponding properties of τ(t, s). For a 1-form ω we have

(∇Xω)(Y ) = tr(∇Xω ⊗ Y ) = tr∇X(ω ⊗ Y )− tr(ω ⊗∇XY )

= ∇X tr(ω ⊗ Y )− ω(∇XY ) = Xω(Y )− ω(∇XY ) . (2.8)

We write the general differentiation rule for a tensor field of type
(
1
1

)

(∇XT )(ω, Y ) = XT (ω, Y )− T (∇Xω, Y )− T (ω,∇XY ) . (2.9)

This is obvious from (2.8, 2.9) that due to (a–d) the operation ∇X is completely deter-
mined by its action on vector fields Y . The latter is called an affine connection:

(i) ∇XY is a vector field depending linearly on X,Y
(ii) ∇XY is f -linear in X:

∇fXY = f∇XY , (f ∈ F) . (2.10)

(iii) ∇X(fY ) = f∇XY + (Xf)Y
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Proof: (iii) is a special case of (d); (ii) is verified by means of its representation in a chart

(∇XY )i =
d

dt
τ ik(0, t)Y

k(x1 + tX1 +O(t2), . . .)
∣∣∣
t=0

= (Y i
,l + ΓilkY

k)X l (2.11)

where we used (2.4). �

Conversely any affine connection entails a parallel transport (bijectively): In any chart
with coordinate basis (ei, . . . en) we have

∇XY = ∇X(Y iei) = (XY i)ei + Y k(∇Xek)

= Y i
,lX

lei + Y kX l∇el
ek

which, after defining
Γilk(x) = 〈ei,∇el

ek〉 (2.12)

agrees with (2.11). One can show that (2.12) transforms according to (2.5), and hence
defines a parallel transport.

The covariant derivative ∇

Example: By (2.9) (∇XT )(ω, Y ) is f -linear in all 3 variables ω, Y , X, and this defines
a tensor field of type

(
1
2

)
through

(∇T )(ω, Y,X) = (∇XT )(ω, Y ) .

The notation
T ik;l ≡ (∇T )ikl

for its components is customary, but a bit dangerous: for fixed i, k T ik;l is not determined
by the sole component T ik(x)! Examples:

Y i
;k = Y i

,k + ΓiklY
l ,

ωi;k = ωi,k − ωlΓ
l
ki ,

T ik;r = T ik,r + ΓirlT
l
k − ΓlrkT

i
l .

2. Torsion and curvature

Let an affine connection be given on M , let X,Y, Z be vector fields. Definitions:

T (X,Y ) = ∇XY −∇YX − [X,Y ] ,

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] .

To begin with, the torsion T (X,Y ) is a vector field and the curvature R(X,Y ) a linear
map from tensor fields to tensor fields of the same type. They have however tensorial
character:

• T (X,Y ) is antisymmetric and f -linear in X,Y and thus defines a tensor of type
(
1
2

)

through
(ω,X, Y ) 7→ 〈ω, T (X,Y )〉 .
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• R(X,Y ) is antisymmetric in X,Y . The vector field R(X,Y )Z is f -linear in X,Y, Z.
Therefore R determines a tensor of type

(
1
3

)
(Riemann-Tensor):

(ω,Z,X, Y ) 7→ 〈ω,R(X,Y )Z〉 ≡ Ri
jklωiZ

jXkY l .

Proof: We have
[fX, Y ] = f [X,Y ]− (Y f)X .

Thus

T (fX, Y ) = f∇XY − f∇YX − (Y f)X − f [X,Y ] + (Y f)X = fT (X,Y ) ,

R(fX, Y ) = f∇X∇Y −∇Y f∇X︸ ︷︷ ︸
−f∇Y∇X − (Y f)∇X

−f∇[X,Y ] + (Y f)∇X = fR(X,Y )

with cancellation of the underlined terms. The f -linearity in Z of R(X,Y )Z follows from
(d) of the next proposition. �

Proposition:

(a) R(X,Y )f = 0
(b) R(X,Y )(S ⊗ T ) = (R(X,Y )S)⊗ T + S ⊗ (R(X,Y )T )
(c) trR(X,Y )T = R(X,Y ) trT , (tr without contraction involving X or Y )
(d)

〈ω,R(X,Y )Z〉 = −〈R(X,Y )ω,Z〉 (2.13)

Proof: (a) R(X,Y )f = X(Y f)−Y (Xf)− [X,Y ]f = 0; (b) follows from the product rule
for ∇X (property (d)); (c) from (c) for ∇X ; (d) From (a–c) we have

0 = R(X,Y )〈ω,Z〉 = R(X,Y ) tr(Z ⊗ ω〉 = trR(X,Y )(Z ⊗ ω)

= tr(R(X,Y )Z ⊗ ω) + tr(Z ⊗R(X,Y )ω) = 〈ω,R(X,Y )Z〉+ 〈R(X,Y )ω,Z〉 .

�

Components (w.r.t. a coordinate basis ei = ∂/∂xi, ei = dxi). From [ei, ej] = 0 we have

T kij = 〈ek,∇ei
ej −∇ej

ei〉 = Γkij − Γkji . (2.14)

In particular we have

T = 0⇐⇒ Γkij = Γkji ,

Ri
jkl = 〈ei, (∇ek

∇el
−∇el

∇ek
)ej〉 = 〈ei,∇ek

(Γsljes)−∇el
(Γskjes)〉

= Γilj,k − Γikj,l + ΓsljΓ
i
ks − ΓskjΓ

i
ls . (2.15)

Bianchi identities for the special case torsion = 0:

1)

2)

R(X,Y )Z + cycl. = 0 , (2.16)

(∇XR)(Y, Z) + cycl. = 0 .
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Proof: 1) Let us write X1 = X, X2 = Y, X3 = Z and suppress the sum over i = 1, 2, 3
from the notation:

R(Xi, Xi+1)Xi+2 = ∇Xi
∇Xi+1

Xi+2︸ ︷︷ ︸−∇Xi+1
∇Xi

X1+2︸ ︷︷ ︸−∇[Xi,Xi+1]X1+2

cyclic permutation ∇Xi+2
∇Xj

Xi+1 ∇Xi+2
∇Xi+1

Xi︸ ︷︷ ︸
T = 0 : ∇Xi+2

[Xi, Xi+1]

hence, because of (1.2), R(Xi, Xi+1)Xi+2 = [Xi+2, [Xi, Xi+1]] = 0.

2)

(∇Xi
R)(Xi+1, Xi+2) = ∇Xi

R(Xi+1, Xi+2)−R(Xi+1, Xi+2)∇Xi

−R(∇Xi
Xi+1, Xi+2)−R(Xi+1,∇Xi

Xi+2) ,

∣∣∣∣∣
I

II

where, through cyclic permutation,

I = ∇Xi
∇Xi+1

∇Xi+2
−∇Xi

∇Xi+2
∇Xi+1

−∇Xi
∇[Xi+1,Xi+2]

−∇Xi+1
∇Xi+2

∇Xi
+∇Xi+2

∇Xi+1
∇Xi

+∇[Xi+1,Xi+2]∇Xi

= R([Xi+1, Xi+2], Xi) +∇[[Xi+1,Xi+2],Xi]︸ ︷︷ ︸
=0

,

II = −R(∇Xi+1
Xi+2, Xi) +R(∇Xi

Xi+2, Xi+1)

= −R(∇Xi+1
Xi+2, Xi) +R(∇Xi+2

Xi+2, Xi) = −R([Xi+1, Xi+2], Xi) .

�

In component notation:

1)

2)

Ri
jkl + cycl. (jkl) = 0 ,

Ri
jkl;m + cycl. (klm) = 0 .

On the meaning of curvature

Let X, Y be vector fields with correspon-
ding flows ϕt, ψs satisfying [X,Y ] = 0. Then
R(X,Y ) = ∇X∇Y−∇Y∇X and ϕt◦ψs = ψs◦ϕt,
see (1.16). Let τX(t) : Tp → Tϕt(p) be the paral-
lel transport along the orbit ϕt′(p), (0 ≤ t′ ≤ t),
of X, and similarly for τY (s). By (2.7) we have
(d/dt)τX(t)Z|t=0 = −∇XZ for a vector field Z.
We transport Z along a small loop consisting of
orbits and obtain

t
XZ

s Z(t, s)
Y

Z(t, s) := τY (−s)τX(−t)τY (s)τX(t)Z .
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Since Z(t, s) = Z for t = 0 or s = 0, the lowest order term of the Taylor expansion
Z(t, s)− Z is proportional to ts. With

∂

∂t
Z(t, s)

∣∣∣
t=0

= τY (−s)∇XτY (s)Z −∇XZ ,

∂2

∂s∂t
Z(t, s)

∣∣∣
t=s=0

= (∇Y∇X −∇X∇Y )Z = −R(X,Y )Z .

we find
Z(t, s) = Z − tsR(X,Y )Z +O(|(t, s)|3) :

The curvature measures the deviation of a vector, before and after the transport around
the loop.

3. The Cartan structure equations

Let (e1, . . . en), (e1, . . . en) be any pair of dual bases of (local) vector fields, resp. 1-forms.
For a given connection ∇ we define the connection forms ωik by

ωik(X) = 〈ei,∇Xek〉 , (2.17)

resp. ∇Xek = ωik(X)ei. The ωik are 1-forms because of (2.10). Conversely, any set of
1-forms ωik defines a connection through

∇XY = ∇X(Y kek) =
[
XY i + Y kωik(X)︸ ︷︷ ︸

(∇XY )i

]
ei . (2.18)

From ∇X〈e
i, ek〉 = ∇Xδ

i
k = 0 we have

〈∇Xe
i, ek〉 = −ωik(X) .

These equations allow to express the components w.r.t that basis of the covariant deriva-
tive of any tensor field, e.g. of a 1-form Ω

(∇XΩ)i = XΩi − ω
i
k(X)Ωk .

Remarks: 1) To the pair of bases ēi = φi
kek, ē

i = φike
k there corresponds the connection

forms
ω̄ik = φi

lφk
rωlr + φi

ldφk
l .

2) In a coordinate basis we have (cf. (2.12))

ωik(el) = Γilk , (2.19)

hence
ωik(X) = ΓilkX

l , d.h. ωik = Γilkdx
l .

Definition

T i(X,Y ) = 〈ei, T (X,Y )〉 , (Torsion forms) ,

Ωi
k(X,Y ) = 〈ei, R(X,Y )ek〉 , (Curvature forms) .
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These 2-forms are determined by the connection forms:

Cartan structure equation

T i = dei + ωik ∧ e
k ,

Ωi
k = dωik + ωil ∧ ω

l
k .

(2.20)

Proof: From (1.24) we have

dei(X,Y ) = Xei(Y )− Y ei(X)− ei([X,Y ]) ,

whereas (2.18), i.e.,
ei(∇XY ) = Xei(Y ) + ωik ⊗ e

k(X,Y ) ,

implies
T i(X,Y ) = (ωik ∧ e

k)(X,Y ) +Xei(Y )− Y ei(X)− ei([X,Y ])︸ ︷︷ ︸
dei(X,Y )

since ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1 for 1-forms (cf. (1.18)). The 2nd structure equations
follows similarly from (2.17), i.e.,

∇Y ek = ωlk(Y )el ,

and from (2.18), giving

ei(∇X∇Y ek) = Xωik(Y ) + ωil(X)ωlk(Y )

and hence

Ωi
k(X,Y ) = ei((∇X∇Y −∇Y∇X −∇[X,Y ])ek)

= (ωil ∧ ω
l
k)(X,Y ) +Xωik(Y )− Y ωik(X)− ωik([X,Y ])︸ ︷︷ ︸

dωik(X,Y )

.

�

Components
T ijk = T i(ej, ek) ; Ri

jkl = Ωi
j(ek, el) , (2.21)

resp.

T i =
1

2
T ijke

j ∧ ek ; Ωi
j =

1

2
Ri

jkle
k ∧ el .

Remark: In a coordinate basis (i.e., ei = dxi, dei = 0, eqs. (2.21, 2.20, 2.19) allow to
recover (eq5.2, 2.15).

Finally we write once more the Bianchi identities, again for the case of torsion = 0,
but this time in the Cartan formalism

1)

2)

Ωi
k ∧ e

k = 0 ,

dΩi
k = Ωi

l ∧ ω
l
k − ω

i
l ∧ Ωl

k .

Proof: 1) The exterior derivative of the first eq. (2.20) yields, because of T i = 0,

0 = d(ωik ∧ e
k) = dωik︸︷︷︸

(2.20): Ωi
k − ω

i
l ∧ ω

l
k

∧ek − ωik ∧ dek︸︷︷︸
−ωkl ∧ e

l
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hence
Ωi

k ∧ e
k = ωil ∧ ω

l
k ∧ e

k − ωik ∧ ω
l
k ∧ e

l = 0 .

2) The exterior derivative of the second eq. (2.20) yields

dΩi
k = dωil︸︷︷︸
Ωi

l − ω
i
j ∧ ω

j
k

∧ωlk − ω
i
l ∧ dωlk︸︷︷︸

Ωl
k − ω

l
j ∧ ω

j
k

= Ωi
l ∧ ω

l
k − ω

i
l ∧ Ωl

k .

�

One checks, e.g. by using a coordinate basis, that the above form of the Bianchi identities
agrees with the one seen previously.
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3. Pseudo-Riemannian manifolds

1. Metric

Let M be equipped with a pseudo-Riemannian metric: a symmetric, non-degenerate
tensor field

g(X,Y ) ≡ (X,Y )

of type
(
0
2

)
. Non-degenerate means, that for any p ∈M and (X,Y ∈ Tp) one has

gp(X,Y ) = 0 , ∀Y ∈ Tp ⇒ X = 0 .

In components:
(X,Y ) = gikX

iY k

with gik = gki and det(gik) 6= 0. Positivity (and hence a Riemannian metric) will not be
assumed.

The metric allows to identify vector fields with 1-forms:

X 7→ gX , ω 7→ g−1ω (3.1)

by means of
〈gX, Y 〉 = (X,Y ) , (g−1ω, Y ) = 〈ω, Y 〉 .

The maps (3.1) are called lowering, resp. raising indices, because for X̃ = gX, ω̃ =
g−1ω we have

X̃i = gikX
k , ω̃i = gikωk ,

where (gik) denotes the inverse of the matrix (gik). By the same token we can identify
different types of tensor fields having the same number of indices. In components (e.g.):

T ik = Tlkg
il = T ilglk .

Given a basis (e1, . . . en) of Tp, the covectors of the dual basis (e1, . . . en) become themselves
vectors; indeed, ei = gije

j.

2. The Riemann connection

The metric distinguishes an affine connection, called Riemann (or Levi-Civita) connec-
tion.

Theorem: There is a unique connection with vanishing torsion and

∇g = 0 . (3.2)

It is given by

2(∇XY, Z) = X(Y, Z)+Y (Z,X)−Z(X,Y )−([Y, Z]X)+([Z,X], Y )+([X,Y ], Z) . (3.3)

Proof: uniqueness: because of (3.2) we have

0 = ∇g(Xi, Xi+1, Xi+2) = (∇Xi+2
g)(Xi, Xi+1)

= Xi+2g(Xi, Xi+1)− g(∇Xi+2
Xi, Xi+1)− g(Xi,∇Xi+2

Xi+1)︸ ︷︷ ︸
g(∇Xi+2

Xi+1, Xi)

(3.4)
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By taking the combination (3.4)i+1 + (3.4)i+2 − (3.4)i, we obtain

0 = Xig(Xi+1, Xi+2) +Xi+1g(Xi+2Xi)−Xi+2g(Xi, Xi+1)

− g(∇Xi+1
Xi+2 −∇Xi+2

Xi+1︸ ︷︷ ︸
[Xi+1,Xi+2]

, Xi) + g(∇Xi+2
Xi −∇Xi

Xi+2︸ ︷︷ ︸
[Xi+2,Xi]

, Xi+1)

− g(∇Xi
Xi+1 +∇Xi+1

Xi︸ ︷︷ ︸
2∇Xi

Xi+1−[Xi,Xi+1]

, Xi+2) , (3.5)

(underbracing uses torsion = 0), which for X1 = X, Y2 = Y, X3 = Z agrees with (3.3).
That determines ∇XY since g is non-degenerate.

Existence: By (3.3) a vector field ∇XY is defined. One verifies that it enjoys the pro-
perties of a connection, e.g. the f -linearity in X:

2(∇fXY, Z) = fX(Y, Z) + Y (fX,Z)︸ ︷︷ ︸
fY (X,Z)+(Y f)(X,Z)

− Z(fX, Y )︸ ︷︷ ︸
fZ(X,Y )+(Zf)(X,Y )

−([Y, Z], fX) + ( [Z, fX]︸ ︷︷ ︸
f [Z,X]+(Zf)X

, Y ) + ( [fX, Y ]︸ ︷︷ ︸
f [X,Y ]−(Y f)X

, Z)

= 2f(∇XY, Z) ,

i.e. ∇fXY = f∇XY . The vanishing of the torsion is manifest from

2(∇XY −∇YX,Z) = 2([X,Y ], Z) .

Finally (3.3), or its equivalent form (3.5), implies, by taking (3.5)i+1 + (3.5)i+2, the
equation (3.4)i, which is in turn equivalent to (3.2). �

In a chart the Riemann connection reads

Γilk =
1

2
gij(glj,k + gkj,l − glk,j) , (3.6)

since for X = ∂/∂xl, Y = ∂/∂xk, Z = ∂/∂xj = gijdx
i (3.3) reads (cf. (2.12))

2gijΓ
i
lk = gkj,l + gjl,k − glk,j .

Geodesics:

We define geodesics x(λ) by the variational principle

δ

∫ (2)

(1)

dλ (ẋ, ẋ) = 0

with fixed endpoints.

(1)

(2)

x

λ

(Here ẋ = dx/dλ denotes the tangent vector). In any chart the geodesics satisfy the
Euler-Lagrange equations corresponding to the Lagrangian

L(x, ẋ) =
1

2
glk(x)ẋ

lẋk , (3.7)
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namely:

0 =
d

dλ

∂L

∂ẋj
−
∂L

∂xj
=

d

dλ
(gljẋ

l)−
1

2
glk,jẋ

lẋk

= glj,kẋ
lẋk︸ ︷︷ ︸

(1/2)(glj,k + gkj,l)ẋ
lẋk

+gijẍ
i −

1

2
glk,jẋ

lẋk

i.e.

gijẍ
i +

1

2
(glj,k + gkj,l − glk,j)ẋ

lẋk = 0 ,

or
ẍi + Γilkẋ

lẋk = 0 (3.8)

(Geodesic equation). It states that the vector ẋ is parallel transported along the geo-
desic (cf. (2.3)).

Moreover, (3.8) is invariant under reparameterization λ 7→ λ′ only if d2λ′/dλ2 = 0. The
parameterization is thus fixed by (3.8) up to λ 7→ aλ + b (with a, b constants): λ is then
called an affine parameter.

Properties of the Riemann connection

(a) The inner product of any two vectors remains constant upon parallel transporting
them along any curve γ:

(X(t), Y (t))γ(t) = (X,Y )γ(0) (3.9)

with X(t) = τ(t, 0)X, Y (t) = τ(t, 0)Y and X, Y ∈ Tγ(0). Indeed, because of ∇g = 0 we
have gγ(t) = τ(t, 0)gγ(0), so that (3.9) is equivalent to

(τ(t, 0)gγ(0))(τ(t, 0)X, τ(t, 0)Y ) = gγ(0)(X,Y ) ,

which holds true by (2.6).

(b) The covariant derivative commutes with raising and lowering indices, e.g.

T ik;l = (gkmT
im);l = gkmT

im
;l

because gkm;l = 0. The same without reference to coordinates:

∇X ◦ g = g ◦ ∇X , (3.10)

where g denotes the map (3.1). Proof: By (2.8, 3.4) we have

〈∇XgY, Z〉 = X〈gY, Z〉 − 〈gY,∇XZ〉 = 〈g∇XY, Z〉

for arbitrary vector fields Y, Z.

(c) Riemann tensor

The following symmetries apply:

(W,R(X,Y )Z) = −(Z,R(X,Y )W ) , (3.11)

(W,R(X,Y )Z) = (X,R(W,Z)Y ) . (3.12)
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Proof: From (3.10) we have R(X,Y )g = gR(X,Y ) and, together with (2.13), also (3.11).
Because of the 1st Bianchi identity (2.16) the l.h.s. of (3.12) equals

−(W,R(Y, Z)X)− (W,R(Z,X)Y )

as well as, in view of (3.11),

(Z,R(Y,W )X) + (Z,R(W,X)Y ) .

The sum of the two expressions is symmetric in (X,Y )↔ (W,Z). �

We summarize all symmetries of the Riemann tensor:

Ri
jkl = −Ri

jlk always
∑

(jkl)R
i
jkl = 0 1. Bianchi id.∑

(klm)R
i
jkl;m = 0 2. Bianchi id.

}
vanishing torsion

Rijkl = −Rjikl

Rijkl = Rklij

}
Riemann connection

Here
∑

(jkl) means the sum over the cyclic permutations of j, k, l.

(d) Ricci and Einstein tensors

Definition:

Rik = Rj
ijk (Ricci tensor)

R = Ri
i (scalar curvature)

Gik = Rik −
1

2
Rgik (Einstein tensor)

We have:

Rik = Rki , Gik = Gki

Ri
k
;k = 1

2
R;i

Gi
k
;k = 0

}
(contracted 2nd Bianchi identity) (3.13)

Proof: Rik = gjlRlijk = gilRjkli = Rki.

2nd Bianchi identity:
Ri

jkl;m +Ri
jlm;k +Ri

jmk;l = 0 .

(ik)-trace:

Rjl;m + Ri
jlm;i︸ ︷︷ ︸

−gikRjklm;i

−Rjm;l = 0 ,

Rj
l;m − g

ikRj
klm;i −R

j
m;l = 0 ,

(jm)-trace:
Rj

l;j + gikRkl;i︸ ︷︷ ︸
2Rj

l;j

−R;l = 0 .

�
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3. Supplementary material

Normal coordinates

The signature of the metric gp is the same for all p ∈M (if M is connected). Let

ηij =

{
0 , (i 6= j)
±1 , (i = j)

be its normal form.

Theorem: In some neighborhood of any point p ∈ M there is a chart such that xi = 0
at p and

gij(0) = ηij ,

gij,l(0) = 0 , i.e. Γilj(0) = 0 . (3.14)

Proof: We first pick local coordinates xi near p such that xi = 0 at p and gij . . . (0) = ηij,
where the latter condition can be achieved by means of a linear transformation. Then we
construct the exponential map from Tp(M) to M :

Let e ∈ Tp. The curve t 7→ x(t) is the solution of the geode-
sic equation (3.8) with ẋ(0) = e. The map exp : y = te 7→
x(t) is uniquely defined, i.e. independent of the factorizati-
on y = te. Thereby a neighborhood of the origin in Tp(M)
is mapped differentiably to M . By the geodesic equation
we then have

xi(t) = tẋi(0) +
1

2
t2ẍi(0) +O(t3)

= yi −
1

2
Γilk(0)ylyk +O(y3) ,

e ∈ Tp

p

y = te
x(t)

and in particular ∂xi/∂yj = δij at y = 0. Hence exp is a local diffeomorphism and we
can take the yi as new local coordinates. Since the geodesics through y = 0 then become
straight lines, we have in the new coordinates

Γilk(te)e
lek = 0

for all e ∈ Tp. Because of the symmetry Γilk = Γikl we have

Γilk(0) = 0 .

This is equivalent to gij,l(0) = 0, since then 0 = gij;l = gij,l, while converse is evident from
(3.6).

The volume element

The metric, first defined on vector fields and 1-forms generalizes to tensor fields of type(
0
p

)
by means of

(ω1 ⊗ . . .⊗ ωp, w1 ⊗ . . .⊗ wp)p :=
1

p!

p∏

i=1

(ωi, wi)

28



and bilinearity. It remains non-degenerate. In particular, it is defined on n-forms (with
signature σ = ±1). On an orientable manifold there is an n-form η, unique up to the sign,
with

(η, η)n = σ .

η is called the volume form of the metric g. W.r.t. a basis of 1-forms we have

η = ±|g|1/2e1 ∧ . . . ∧ en ,

where
g = det(gij) , gij = g(ei, ej) .

Indeed,

(η, η)n = |g|
(
e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en

)
n

= |g|
∑

π∈Sn

sgn π
n∏

i=1

(
ei, eπ(i)

)

= |g| det(gij)︸ ︷︷ ︸
g−1

= sgn g = σ .

In components
ηi1...in = ±|g|1/2 εi1...in ,

where

εi1...in = sgn

(
1 . . . n

i1 . . . in

)
.

The structure equations of the Riemann connection

Theorem: In any basis (not necessarily a coordinate basis) the connection coefficients
ωik, cf. (2.17), are uniquely determined by

ωik + ωki = dgik , (∇g = 0) (3.15)

dei + ωik ∧ e
k = 0 , (torsion zero) (3.16)

where we set
ωik = gilω

l
k .

Proof: For all X, ei, ek one has

0 = (∇Xg)(ei, ek) = X g(ei, ek)︸ ︷︷ ︸
gik

−g(∇Xei︸ ︷︷ ︸
ωl

i(X)el

, ek)− g(ei, ∇Xek︸ ︷︷ ︸
ωl

k(X)ek

)

= dgik(X)− ωli(X)glk − ω
l
k(X)gik .

Thus (3.15) is equivalent to ∇g = 0. According to (2.19), eq. (3.16) means T = 0.
Conversely, these two equations determine, by the theorem on p. 24 the connection (and
hence the connection forms) uniquely. �
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4. Time, space and gravitation

1. The classical relativity principle

Rigid frames are at the basis of the classical idea of time and space. Newtonian Mechanics
distinguishes a special class of trajectories: those of free particles. The 1st Law postulates
the existence of special rigid frames, so-called inertial frames (IF), in which all such
trajectories take the simple form

~̈x = 0 .

The classical relativity principle (or equivalence principle) postulates that the equa-
tions of motion of any isolated system read the same in all IF. The 2nd Law specifies the
deviation from a free trajectory

mi~̈xi = ~Fi (~x1, . . . , ~xN) ,

where the inertial mass mi is a property of the i-th particle, and ~Fi are given by force
laws, such as

~F = e ~E , (e : electric charge)

for a particle in an electric field ~E, or

~F = m̃~g , (m̃ : gravitational mass)

for a particle in a gravitational field ~g. Remarkable and without explanation in the present
context is the fact that

m = m̃ ,

whence
~̈x = ~g (4.1)

for all freely falling particles.

2. The Einstein equivalence principle

(EP) Einstein interprets (4.1) in the sense that the “standard of motion” is not given
by trajectories of free, but rather of freely falling particles. In this sense gravity is not a
proper force, but appears as an inertial force, whose proportionality to m is obvious. A
strengthening of this point of view is the EP (1911).

“All freely falling, non-rotating local inertial frames (for short: local IF) are
equivalent w.r.t. all local experiments therein.”

Remarks: 1) A (local) reference frame is non-rotating, if freely falling particles do not
experience any velocity-dependent (Coriolis-) acceleration, locally.

2) The above formulation of the EP is heuristic, because the notion of local experiment
is vague. We stress that the relative deviation of nearby freely falling particles does not
constitute a local experiment.
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Application: The gravitational redshift

We take the classical idea of space and time for granted and consider two reference frames:
O, where we have a homogeneous gravitational field ~g, and O′ which is in free fall. At
time t = 0 the two coincide and are instantaneously at rest to one another.

O

O′

h t > 0

g

O′

O

h t = 0

g

At t = 0 and at ~x = ~x
′

= 0 light of frequency ν is emitted upwards. It reaches height h
w.r.t. O after time t = h/c. According to the EP the frequency measured in O′ is still ν.
But since O′ has then acquired the velocity O′ relatively to O, the latter finds the Doppler
shifted frequency

ν̄ = ν
(
1 +

v

c

)
= ν

(
1−

gh

c2

)
. (4.2)

Upon raising in the gravitational field the frequency decreases (or: it is shifted towards
the red).

3. The postulates of general relativity (GR)

The postulates (Einstein 1915) clarify the EP:

1. Time and space form a 4-dimensional pseudo-Riemannian manifold M : Its points p
represent events and the metric g of signature (1,−1,−1,−1) describes measurements by
means of (ideal) clocks and rods.

2. Physical laws are relations among tensors.

3. With the exception of the metric g physical laws only contain quantities already present
in special relativity (SR).

4. In normal coordinates (see p. 28) about an event p ∈ M (local inertial frame) the
laws of SR hold true.

Remarks:

About 1: An ideal clock of world line x = x(λ) measures (infinitesimally) the time ∆τ

c2(∆τ)2 = g(ẋ, ẋ)(∆λ)2 .
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An ideal (infinitesimal) rod is represented by the world line x(λ) of one of its endpoints
and by a vector ∆x(λ) with g(ẋ,∆x) = 0. Its length ∆l is

(∆l)2 = −g(∆x,∆x) .

In particular, if in some coordinates the world line of the clock is x = (ct, 0, 0, 0), then

(∆τ)2 = g00(x)(∆t)
2 . (4.3)

One should thus distinguish between measurements by means of clocks and rods on one
hand and coordinates of a chart on the other. They agree however locally in the neigh-
borhood of an event, if they are represented as being at rest in the chart and the metric
at the event is the Minkowski metric ηµν .

In principle it is to be decided on the basis of the physical laws whether a given clock or
rod is ideal.

About 2: The physical laws read the same in all coordinates (provided the physical quan-
tities are transformed suitably): general covariance.

About 4: Gravity can be transformed away locally.

Thanks to the above postulates the physical laws in presence of an external (i.e., given)
gravitational field are essentially determined. The climax of GR are however the field
equations of gravitation, which will be introduced in the next chapter.

4. Transition SR → GR

a) Law of inertia

SR

ẍµ = 0 ,

(ẋ, ẋ) = c2 ,

“free particle”

−→

GR

ẍµ + Γµνσẋ
ν ẋσ = 0 ,

(ẋ, ẋ) = c2 ,

“free falling particle”

(4.4)

(4.5)

( ˙ = d/dτ, τ : proper time). The equations on the right agree with those on the left in a
local inertial frame, but are generally covariant. The geodesic equation (4.4) describes the
effect of the “gravitational field” on an otherwise free particle: the r.h.s. in

ẍµ = −Γµνσẋ
ν ẋσ (4.6)

can be viewed as gravitational force, hence actually the Γµνσ (not the gµν) as components
of the gravitational field. That one can be transformed away by (3.14) at any point
of spacetime. The “equivalence of gravitational and inertial mass” is now automatic: the
mass just does not appear.

Remark: Postulate 3 can be weakened, to the extent that one allows for a connection
∇, which is a priori independent of the metric. The existence of normal coordinates
(Γµνσ(0) = 0) requires that ∇ is torsion-free. Since there the laws of SR are presumed
valid, we also have gµν(0) = ηµν . That suffices in order to justify eqs. (4.4, 4.5). Their
compatibility implies ∇g = 0, cf. (3.9), i.e. ∇ is after all the Riemann connection.
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b) For light rays we analogously have:

SR

ẍµ = 0 ,

(ẋ, ẋ) = 0 ,
−→

GR

ẍµ + Γµνσẋ
ν ẋσ = 0 ,

(ẋ, ẋ) = 0 ,

(null geodesics)

(4.7)

Here (4.7) describes the light deflection in a gravitational field. Actually the full Maxwell
theory can be formulated covariantly: it suffices to replace partial derivatives (of 1st order)
by covariant ones. We view the electromagnetic field tensor F as an antisymmetric tensor
field of type

(
0
2

)
. The homogeneous Maxwell equations then read

Fµν,σ + cycl. = 0←→ Fµν;σ + cycl. = 0 , (4.8)

because the second form reduces to the first one in a local reference frame. The inhomo-
geneous equations read

F µν
;µ =

1

c
jν . (4.9)

Eq. (4.9) again implies charge conservation

jν ;ν = 0 ,

because by F µν = −F νµ we have

F µν
;µν = F µν

;νµ︸ ︷︷ ︸
−F νµ

;νµ

+Rµ
τµν︸ ︷︷ ︸

Rτν

F τν +Rν
τµν︸ ︷︷ ︸

−Rτµ

F µτ

︸ ︷︷ ︸
(Rτν−Rντ )F τν=0

= −F µν
;µν .

The energy-momentum tensor is

T µν = F µ
σF

σν −
1

4
FρσF

σρgµν (4.10)

and for a “freely falling” field we have

T µν ;ν = 0 .

The representation of the electromagnetic field in terms of the potentials is

Fµν = Aν,µ − Aµ,ν = Aν;µ − Aµ;ν .

c) The equations of motion of a charged particles (charge e, mass m) in an electro-
magnetic field and in presence of gravity now read

ẍµ + Γµνσẋ
ν ẋσ =

e

mc
F µν ẋν , (4.11)

because they are generally covariant (the l.h.s. is ∇ẋẋ, hence a vector) and reduce to
the equations of SR in a local reference frame. Moreover, one verifies that (4.11) are the
Euler-Lagrange equations corresponding to the manifestly covariant Hamilton principle

δ

(2)∫

(1)

dτ
(
c2 +

e

mc
(ẋ, A)

)
= 0

with fixed endpoints (1), (2) in M .
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5. Transition geodesic equation → Newton’s equation of motion

Newton’s equation of motion appears on an approximation under certain assumptions.
We use coordinates which in the immediate (infinitesimal) neighborhood of the observer
have the meaning of lengths and times:

gµν = ηµν for x = (ct, 0, 0, 0),

ηµν =




1
−1 0

0 −1
−1


 .

We follow trajectories within a region where the gravitational field is weak in the sense
that

gµν = ηµν + hµν , |hµν | ≪ 1 . (4.12)

In particular we have hµν,0 = 0 at the origin ~x = 0. At first, let the particle be nearly at
rest

ẋµ = (c,~0) , ( ˙=
d

dτ
=

d

dt
up to O(v2) +O(h)) .

Then (4.4) reads
ẍi = −c2Γi00 ,

where in linear approximation in h

Γi00 =
1

2
ηik(h0k,0 + h0k,0 − h00,k) =

1

2
h00,i − hi0,0 =

1

2
h00,i , (4.13)

(i = 1, 2, 3); in the last step we evaluated at ~x = 0. Thus

~̈x = −~∇ϕ , ϕ =
1

2
c2h00 .

Put differently: In a weak gravitational field we have

g00 = 1 +
2ϕ

c2
; ϕ : Newtonian potential. (4.14)

We now retain terms ∝ ~v (i.e., we neglect only terms O(v2)); then ẋµ = (c, ~v) and (4.4)
becomes

ẍi = −c2Γi00 − 2cΓi0jẋ
j (4.15)

with

Γi0j =
1

2
ηik(h0k,j + hjk,0 − h0j,k) =

1

2
(h0j,i − h0i,j) .

Correspondingly we keep terms O(~x) in (4.13), since ~x ∼ ~vt. For comparison, the classical
equation of motion of a freely falling particle in an accelerated reference frame (not an
IS) is

~̈x = −~∇ϕ− 2~ω ∧ ~̇x− ~ω ∧ (~ω ∧ ~x)− ~̇ω ∧ ~x , (4.16)

where the inertial acceleration is included in ~∇ϕ. Now (4.15, 4.16) agree locally for

g00 =1 +
2

c2
(ϕ+

1

2
(~ω ∧ ~x)2) .

g0i =−
1

c
(~ω ∧ ~x)i .
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This follows from c(h0j,i−h0i,j) = εjikωk, cΓ
i
0jẋ

j = (~ω∧~̇x)i, ~ω∧(~ω∧~x) = −(1/2)~∇(~ω∧~x)2

and c2hi0,0 = (~̇ω ∧ ~x)i.

Redshift

t

(1)

~x(t)

~x(t− t0)

~x(2)

We consider a metric which is independent of time in suitable
coordinates (ct, ~x):

gµν,0 = 0 .

If (t, ~x(t)), (t1 ≤ t ≤ t2), is a (null-) geodesic, then so is
(t, ~x(t−t0)), (t1+t0 ≤ t ≤ t2+t0). In particular, the difference
∆t between consecutive minima of a light wave is constant
along the ray. The proper time τ of an observer resting at ~x
is related to coordinate time according to (4.3)

(∆τ)2 = g00(~x)(∆t)
2 .

Hence we have for the frequency ν at the positions (1), (2) of a light ray.

ν2

ν1

=
(∆τ)1

(∆τ)2

=

√
g00(~x1)

g00(~x2)
. (4.17)

Remarks: 1) In the situation of (4.14) (and hence with 2ϕ≪ c2) we have

ν2

ν1

=

√
1− 2

∆ϕ

c2
≈ 1−

∆ϕ

c2

with ∆ϕ = ϕ|21. This agrees with (4.2) (∆ϕ = gh).

2) The EP is incompatible with SR, at least if its metric ηµν is supposed to describe time
measurements, see (4.3): With any light ray, a time translate thereof is one too (even, if
it weren’t a null geodesic). With gµν = ηµν we would always get ν2/ν1 = 1 (no redshift).
Gravitation can thus not be accommodated within SR.

6. Geodesic deviation

p

ϕτ (q)

ϕτ (p)

γ(s) {τ = 0}q

Family of geodesics x(τ) with 4-velocity field u
(cf. (4.4)):

dx

dτ
= u(x(τ)) , ∇uu = 0 , g(u, u) = c2 .

Let ϕτ be the flow generated by u. We investi-
gate the relative displacement of the trajectories
ϕτ (p), ϕτ (q) of two (eventually infinitesimally
close) nearby points p, q ∈ γ in the “surface”
{τ = 0} :

p, q ∈ {τ = 0} 7→ ϕτ (p), ϕτ (q) ,

γ ⊂ {τ = 0} 7→ ϕτ ◦ γ .
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Vector fields n = dγ/ds (“infinitesimal displacements”) in the surface {τ = 0} are mapped
according to

np 7→ ϕτ∗np =: nϕτ (p)

(Lie transport) and thus extended to vector fields n = ϕτ∗n on M . In particular we have

[u, n] =
d

dτ
ϕτ∗n

∣∣∣
τ=0

= 0 .

This implies ∇un = ∇nu (torsion = 0) and

∇2
un = ∇u∇nu = [R(u, n) +∇n∇u]u ,

i.e. we have the equation of geodesic deviation

∇2
un = R(u, n)u . (4.18)

The curvature describes the relative acceleration of nearby freely falling particles.

Remarks: 1) The choice of the surface {τ = 0} is irrelevant, since an infinitesimal change
amounts to the replacement n ; u + λn with uλ = 0; then we have ∇u(λu) = 0 and
R(u, λu) = 0.

2) If the surface {τ = 0} is perpendicular to u, then we have

g(u, n) = 0

there, and hence everywhere, since by ∇g = 0 one has

u[g (u, n)] = g( ∇uu︸︷︷︸
= 0

, n) + g(u, ∇un︸︷︷︸
= ∇nu

) =
1

2
n[g(u, u)︸ ︷︷ ︸

= c2

] = 0 .

3) Let eµ be a basis of vector fields with [eµ, u] = 0 and e0 = 0. The relative acceleration in
direction i, (i = 1, 2, 3) of particles, whose separation is in the same direction, is 〈ei,∇2

uei〉.
Summed over directions we obtain

3∑

i=1

〈ei,∇2
uei〉 = 〈eµ,∇2

ueµ〉 = 〈eµ, R(u, eµ)u〉 = −Ric(u, u) . (4.19)

4) The geodesic deviation in Newtonian mechanics is found by differentiating ẍi = −ϕ,i(x)
w.r.t. s, where ni = ∂xi/∂s|s=0. This yields

n̈i = −ϕ,ikn
k . (4.20)

36


