General relativity, solution sheet 6.
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1. An ideal fluid

Energy density and pressure can be obtained from the 4-momentum (E/c, p) = m~(c, V),
with v = (1 —v?/c?)~1/%
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where n is the particle density. In the two limiting cases, the energy-momentum tensor
TH = (p+ p/c)uru” — pg" reduces to
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In the second case, T%, = 0, which is consistent with the interpretation of a photon gas
as radiation field: The electromagnetic energy-momentum tensor satisfies indeed 7%, =

FreF,, — (1/4)FPC,FUP5“# =0.
2. A variational principle

Following the hint, we parametrize the curve by a new parameter A such that its values A,
resp. Ag at spacetime points (1), resp. (2), remain fixed under variations. Let 2’ = dz/dA\.
Since cd7/d\ = (', 2')Y/2, the variational principle reads
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On the other hand,
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Thus, the Euler-Lagrange equations are
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Reparametrizing the trajectory with the proper time 7, one obtains the equation of motion
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