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1. Parallel transport in polar coordinates
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The coordinate transformation is ' = r cos ¢, 22 = rsin ¢, and we have

da' = cospdr —rsinpdy | de* = sindr +rcospdy .

Let (v, v?) be the cartesian components of a vector, and (v, v¥) the ones w.r.t. the basis
{0/0r,0/0¢}. As (v!,v?) transform in the same way as (dz!, dz?) does, we have
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We have defined the parallel transport along the curve (r(t), ¢(t)) by requiring that the
cartesian components remain constant, which implies for v,, v, (" = d/dt):
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We now look at equation (2.2), i.e. at 9 = —(pI'*,5 + 7['%,5)v”, and obtain

I, =0, I, =I", =0, [y =—1,
e, =0, %, =0%,=r", [%,,=0.

Other solution: start from I";; = 0 in cartesian coordinates and transform according to
equation (2.5):
- oz 9t

a
be ™ Ol 9zeoTt

which can be calculated as matrix multiplication between
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2. Affine connections

Let V be an affine connection, and VxY — VxY = B(X,Y). The first claim is proven
through (i-iii), which relate to the definition of an affine connection (pg. 17-18):

i) In view of the linearity of V,y w.r.t. X, Y, that of the vector fields VY, B(X,Y) w.r.t.
X, Y are equivalent.

ii) It follows from

VixY = VixY = B(fX,Y),

fVxY — fVxY = fB(X,Y) (2)
and V;xY = fVxY, that the f-linearity w.r.t. X of VxY and of B(X,Y) are equivalent.

iii) It follows from .
Vx(fY) = Vx(fY) = B(X, fY),

equation (2) and the product rule Vx(fY) = (X f)Y + fVxY, that the product rule for
V is equivalent to the f-linearity of B(X,Y) w.r.t. Y.

For the Christoffel symbols I';; = (e?, V,,e;) it follows I%); — I'l, = Bi;: differences of
Christoffel symbols transform as tensors, see also (2.5).

Application: For V(®) := (1—a)V+aV we have VXY—Vg?)Y =aB(X,Y),ie V@ isan
affine connection. In particular it is possible to interpolate between two affine connections
V,V (with 0 <a <1).

3. Alternate view on parallel transport

i) Let J: U — R, p 7 be the coordinate map on U, hence K o.J™! : & + x the given
transition function. We want to compute the transition function

KoJ™':(z,X)r— (2,X), (3)

where .J is defined by the corresponding eq. (1). Since X € T,(M) is a vector, we have
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and the matrix of partial derivatives of (3) is
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ii) The lift condition 7(X (t)) = (t) is equivalent to X (t) € Ty .

Let the curve (t) have coordinates x(t) under K, hence 4(t) € T, (M) has @(t) (under
K.). The curve X(t) € TM has coordinates (x(t), X(t)) under K, hence its tangent
vector X (t) € Tx(TM) has (#(t), X(¢)) (under K.). The condition X () = ox (¥(t))
thus states



1.e.

X'(t) = ~I'y(a(t)a' ()X (),

which is just eq. (2.3) characterizing a parallel transported vector.

iii) Let T € Tx(TM) have coordinates (V, W) under K,. They transform by the matrix
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Suppose T = ox(Y), ie., (V,W) = (Y,-I'(Y, X)) and similarly in the barred coordina-
tes. Then
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which is (2.5).



