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1. Energy conditions

The dual basis is e0 = e0, ei = −ei. We have therefore T00 = T 0
0 = T 00, T0i = −T 0i, Tik =

−T i
k = T ik and in particular T = T α

α = T00 −
∑

3

i=1
Tii.

i) T00 in the rest frame of an observer with 4-velocity u is written in general covariant
form as T00 = (Tu, u), because in his rest frame u = e0, i.e. (Tu, u) = T (e0, e0) = T00.
The weak energy condition is then (Tu, u) ≥ 0 for every timelike vector u.

ii) (Tαβ − (1/2)gαβT )uαuβ is invariant and in the rest frame of the observer it is equal to

T00 −
1

2
η00T =

1

2
(T00 +

3
∑

i=1

Tii) .

The strong energy condition is therefore (Tαβ − (1/2)gαβT )uαuβ ≥ 0 for every timelike
vector u. According to the calculations done at page 36 we have ∇2
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000 = 0,
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η00T ) ≥ 0 .

iii) The cone of timelike or lightlike vectors is V̄ + := {v | (v, v) ≥ 0, v0 ≥ 0}. In the
rest frame of the observer we have (Tu)α = T αβuβ = T α0, therefore the dominant energy
condition is equivalent to

(Tu, u) ≥ 0 , (Tu, Tu) ≥ 0

for every timelike vector u.

We note that v ∈ V̄ + iff (v, w) ≥ 0 for all w ∈ V̄ + (such vectors are of the form (v0, ~v)
with v0 ≥ |~v|, therefore (v, w) = v0w0 − ~v · ~w ≥ 0 by |~v||~w| ≥ |~v · ~w|). Applying this to
v = Tu, the dominant energy condition states (w, Tu) ≥ 0 for any timelike vectors u, w.
Taking them with u0 = w0 = 1, and hence |~u|, |~w| ≤ 1, yields

(w, Tu) = T00 + T0k(u
k + wk) + wiTiku

k ≥ 0 ,

(Tk0 = T0k). In particular for ~u = ~w = 0 the weak energy condition follows; picking
~u = ±~ei, ~w = 0 implies T00 ± T0i ≥ 0, i.e. |T0i| ≤ T00; by setting instead ~w = ±~ek we get

T00 ± (T0i + T0k) + Tik ≥ 0 ,

and T00 + Tik ≥ 0 by the sum of the two inequalities. In the same way T00 − Tik ≥ 0
(and therefore the claim) follows from the choice ~w = ∓~ek. Conversely: by a rotation of



ea, (a = 1, 2, 3) with e0 fixed, T 00 does not change and (T a0)3
a=1 transforms as a Euclidean

vector, with no consequences on the property (T µ0)3
µ=0 ∈ V̄ +; we may therefore assume

T 10 = T 20 = 0 and the dominant energy condition follows then from |T 30| ≤ T 00.

iv) As a preliminary we consider tensors of the form T = au⊗u−b(u, u)g with (u, u) > 0.
We have

(v, Tv) = a(v, u)2 − b(u, u)(v, v) = a
(

(v, u)2 − (u, u)(v, v)
)

+ (a − b)(u, u)(v, v) .

In both terms the factors containing v are ≥ 0 for (v, v) ≥ 0. Indeed, ~u = 0 without loss
by invariance; then the first factor is (u0)2 = (u, u) times (v0)2 − (v, v) = ~v 2. The two
terms can however be made = 0 independently of one another. Thus (v, Tv) ≥ 0 for all
v ∈ V̄ + iff a − b ≥ 0 and a ≥ 0.

Let us put c = 1. For the ideal fluid, a = ρ + p and b = p. The condition (i) thus implies
ρ ≥ 0 and ρ + p ≥ 0. Since trT = ρ− 3p the tensor T − (1/2)(trT )g is of the same form,
with the same a but with b = p + (1/2)(ρ − 3p) = (1/2)(ρ − p). Thus (ii) amounts to
ρ + 3p ≥ 0 and ρ + p ≥ 0. Finally (T 2)µν := T µ

σT σν is still of the same form:

T 2 = (a2(u, u)u⊗ u − 2ab(u, u)u⊗ u + b2(u, u)2g = (u, u)
(

a′u ⊗ u − b′(u, u)g
)

with a′ = a2 − 2ab, b′ = −b2. The condition 0 ≤ a′ − b′ = (a − b)2 is trivial and (iii) asks
for 0 ≤ a′ = ρ2 − p2. In view of ρ ≥ 0, this is |p| ≤ ρ. One can reinstate c by p ; pc−2.

Alternatively the same conclusions may be obtained from the formulations of the energy
conditions in terms of matrix elements. We have

T 00 = (ρ + p)(u0)2 − p = (ρ + p)((u0)2 − 1) + ρ ,

T00 +

3
∑

i=1

Tii = (ρ + p)((u0)2 + ~u 2) − p + 3p = 2(ρ + p)((u0)2 − 1) + ρ + 3p

by using (u0)2−~u 2 = 1. Both expression are linear in (u0)2 ∈ [1,∞), hence the conclusion

about (i,ii). The condition (iii), i.e. |~T | ≤ T 00 for ~T = (T i0), is equivalent to T 00 ≥ 0 and

|~T |2 ≤ (T 00)2. The latter inequality is, after some rearrangement, 0 ≤ (ρ2 − p2)((u0)2 −
1) + ρ2, whence the conclusion.

For the electromagnetic field we have T 00 = (1/2)( ~E2 + ~B2) ≥ 0. Therefore (i,ii) are
satisfied (the difference between the two disappears because of tr T = 0). Also (iii) is

satisfied because T 0i = ( ~E ∧ ~B)i and | ~E ∧ ~B| ≤ | ~E|| ~B| ≤ T00.

For the cosmological term T µν = (Λ/κ)gµν with Λ > 0 we have: (i) is satisfied, (ii) is not
(T µν − (1/2)Tgµν = −(Λ/κ)gµν) and (iii) again is. Less directly, this also follows from the
fluid with p = −ρ.

The strong energy condition plays a role in Hawking’s singularity theorem described below.

Let (M, g) be a pseudo-Riemannian manifold of signature (+,−,−,−) and Σ ⊂ M be a
spacelike 3-surface having normal u: g(u, u) = 1, g(u, X) = 0 for any vector field X on Σ.
Conventionally call the side of Σ distinguished by u its future side. Define a (symmetric)
tensor K of type

(

0

2

)

on Σ, called extinsic curvature, by

K(X, Y ) = g(∇Xu, Y ) ,



where X, Y are vector fields on Σ.

Theorem (roughly). Suppose Σ is compact and tr K ≤ C < 0 on Σ. Suppose

Rµνξ
µξν ≥ 0 (1)

for any timelike vector field ξ on M . Then there is a timelike geodesic starting from the
past side of Σ, such that it ends in a singularity of M . In fact, it reaches it within proper
time 3/|C|.

Remarks. 1) For g a solution of the field equations (5.9), eq. (1) amounts to the strong
energy condition.

2) Example: Let Σ be a time slice in a Friedmann model (it is compact for k = +1). Then
u = (1, 0, 0, 0) in chart A on p. 41 of the lecture notes. At (t, 0, 0, 0),

Kij = a2Γj
i0 = δijaȧ .

In particular, trK = −3ȧa−1 < 0 during expansion. Indeed, there is a singularity (the
big bang) in the past of Σ, as the theorem claims. The theorem however shows that
homogeneity and isotropy are not essential for that.


