General relativity, solution sheet 1.
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1. Stereographic projection

The coordinates (x,y) of a point p = (z1,x2,23) € Uy are
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1—1’3’1—1'3

and similarly for (z,y) of p € U_,
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The transition function (z,y) — (Z,7) is defined on the image of the overlap U, N U_ of
the two coordinate patches, i.e. on R?\ {(0,0)}. Since
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it is given by
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2. Tensors

a) Let {e; ... e,} be a basis for V. A general tensor T' € V@V is of the form T = T e; ®e;

with any n x n matrix (T%). f T = v; ® vz, with vy = v{;e;, then T = v{;,v], is a rank 1
matrix since each column vector is a multiple of v5. Thus it cannot be general.

b) Tensors T € V ® W* and linear maps T : W +— V are brought in one-to-one corre-
spondence through

(v, Twy =T(v,w), eV, weW).

3. On the Lie derivative

It follows from the transformation law
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Plugging this into
(LxR)*;=R's, X —R'sX" ,+ R X5,

one obtains, for the terms without second derivatives,
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The terms containing second derivatives
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vanish. Indeed, the first and third term cancel each other. The two others do as well

because , ,
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which is seen by taking the derivative of (3) w.r.t. Z°. Thus, the components of LxR

(defined in a chart) transform like a tensor.



