General relativity, solution sheet 11.
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1. Time delay in the Schwarzschild metric
i) For null geodesics, the Lagrangian vanishes,
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Hence, the effective potential is V(1) = (1 — 2m/r)(I?/r?) and, since 7 = 0 at r = 7y,
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Moreover, 7 = tdr/dt = £(1 — 2m/r)~' dr/dt, so that the radial equation is
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ii) To first order in m/r,

Thus,
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and the Shapiro time delay is
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iii) Finally, to lowest order in ro/71 2,
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so that
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2. Radial free fall

The particle being initially at rest at r(0) = R, it has £2 = 1 — 2m/R and [ = 0. In this
case, the radial equation



is of the same form as the Friedmann equation for £ = 1 but with different boundary
conditions. In fact in terms of s = y/2m/R 7 the equation is
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with the particular (expanding) cycloid solution (6.25)

r(n) = = (1 —cosn),
s(n) = - (n —sinn).
The endpoints n = 0,7 correspond to r = 0, R and s = 0, (R/2)r. However we seek

the infalling solution, preferably parametrized forward in time. We thus replace s ~»
(R/2)m — s, n~ m —n and obtain

r(n) = (1 4 cosn),

T(n) = (f—;) " (n +sinn),

where 0 < 7 < 7. Note that the total proper time to reach r = 0 is finite, 7(7) =

(rR/2)\/R/2m.



