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1. Parallel transport in polar coordinates

The coordinate transformation is x1 = r cos ϕ, x2 = r sin ϕ, and we have

dx1 = cos ϕ dr − r sin ϕ dϕ , dx2 = sin ϕ dr + r cos ϕ dϕ .

Let (v1, v2) be the cartesian components of a vector, and (vr, vϕ) the ones w.r.t. the basis
{∂/∂r, ∂/∂ϕ}. As (v1, v2) transform in the same way as (dx1, dx2) does, we have

(

v1

v2

)

=

(

cos ϕ −r sin ϕ
sin ϕ r cos ϕ

) (

vr

vϕ

)

,

(

vr

vϕ

)

=

(

cos ϕ sin ϕ
−r−1 sin ϕ r−1 cos ϕ

) (

v1

v2

)

.

We have defined the parallel transport along the curve γ(r(t), ϕ(t)) by requiring that the
cartesian components remain constant, which implies for vr, vϕ (˙ = d/dt):

(

v̇r

v̇ϕ

)

=

[

ϕ̇

(

− sin ϕ r cos ϕ
−r−1 cos ϕ −r−1 sin ϕ

)

−
ṙ

r2

(

0 0
− sin ϕ cos ϕ

)](

v1

v2

)

=

[

ϕ̇

(

0 r
−r−1 0

)

+ ṙ

(

0 0
0 −r−1

)](

vr

vϕ

)

.

We now look at equation (2.2), i.e. at v̇α = −(ϕ̇Γα
ϕβ + ṙΓα

rβ)vβ, and obtain

Γr
rr = 0 , Γr

rϕ = Γr
ϕr = 0 , Γr

ϕϕ = −r ,

Γϕ
rr = 0 , Γϕ

rϕ = Γϕ
ϕr = r−1 , Γϕ

ϕϕ = 0 .

Other solution: start from Γi
jk = 0 in cartesian coordinates and transform according to

equation (2.5):

Γ̄a
bc =

∂x̄a

∂xd

∂2xd

∂x̄c∂x̄b
,

which can be calculated as matrix multiplication between

(

D

(

r cos ϕ
r sin ϕ

))

−1

=

(

cos ϕ sin ϕ
−r−1 sin ϕ r−1 cos ϕ

)

,

and the matrices

(
∂2xi

∂x̄j∂r
) =

(

0 − sin ϕ
0 cos ϕ

)

(
∂2xi

∂x̄j∂ϕ
) =

(

− sin ϕ −r cos ϕ
cos ϕ −r sin ϕ

)

,

producing the result

(

Γr
rr Γr

rϕ

Γϕ
rr Γϕ

rϕ

)

=

(

cos ϕ sin ϕ
−r−1 sin ϕ r−1 cos ϕ

) (

0 − sin ϕ
0 cos ϕ

)

=

(

0 0
0 r−1

)

(

Γr
ϕr Γr

ϕϕ

Γϕ
ϕr Γϕ

ϕϕ

)

=

(

cos ϕ sin ϕ
−r−1 sin ϕ r−1 cos ϕ

) (

− sin ϕ −r cos ϕ
cos ϕ −r sin ϕ

)

=

(

0 −r
r−1 0

)

.



2. Affine connections

Let ∇ be an affine connection, and ∇XY − ∇̃XY = B(X, Y ). The first claim is proven
through (i-iii), which relate to the definition of an affine connection (pg. 17-18):

i) In view of the linearity of ∇xy w.r.t. X, Y , that of the vector fields ∇̃XY, B(X, Y ) w.r.t.
X, Y are equivalent.

ii) It follows from

∇fXY − ∇̃fXY = B(fX, Y ) ,

f∇XY − f∇̃XY = fB(X, Y ) (2)

and ∇fXY = f∇XY , that the f -linearity w.r.t. X of ∇̃XY and of B(X, Y ) are equivalent.

iii) It follows from
∇X(fY ) − ∇̃X(fY ) = B(X, fY ) ,

equation (2) and the product rule ∇X(fY ) = (Xf)Y + f∇XY , that the product rule for
∇̃ is equivalent to the f -linearity of B(X, Y ) w.r.t. Y .

For the Christoffel symbols Γi
lj = 〈ei,∇el

ej〉 it follows Γi
lj − Γ̃i

lj = Bi
lj : differences of

Christoffel symbols transform as tensors, see also (2.5).

Application: For ∇(α) := (1−α)∇+α∇̃ we have ∇XY −∇
(α)
X Y = αB(X, Y ), i.e. ∇(α) is an

affine connection. In particular it is possible to interpolate between two affine connections
∇, ∇̃ (with 0 ≤ α ≤ 1).

3. Alternate view on parallel transport

i) Let J : Ū → R
n , p 7→ x̄ be the coordinate map on Ū , hence K ◦ J−1 : x̄ 7→ x the given

transition function. We want to compute the transition function

K̃ ◦ J̃−1 : (x̄, X̄) 7−→ (x, X) , (3)

where J̃ is defined by the corresponding eq. (1). Since X ∈ Tp(M) is a vector, we have

X i =
∂xi

∂x̄j
X̄j

and the matrix of partial derivatives of (3) is

Dt̃(x̄, X̄) =











∂x
∂x̄

∂x
∂X̄

∂X

∂x̄

∂X

∂X̄











=









∂xi

∂x̄j 0

(

∂2xi

∂x̄j∂x̄k X̄k
)

∂xi

∂x̄j









. (4)

ii) The lift condition π(X(t)) = γ(t) is equivalent to X(t) ∈ Tγ(t).
Let the curve γ(t) have coordinates x(t) under K, hence γ̇(t) ∈ Tγ(t)(M) has ẋ(t) (under

K∗). The curve X(t) ∈ TM has coordinates (x(t), X(t)) under K̃, hence its tangent
vector Ẋ(t) ∈ TX(t)(TM) has (ẋ(t), Ẋ(t)) (under K̃∗). The condition Ẋ(t) = σX(t)(γ̇(t))
thus states

(ẋ(t), Ẋ(t)) =
(

ẋ(t),−Γ(ẋ(t), X(t))
)

,



i.e.
Ẋ i(t) = −Γi

lk(x(t))ẋl(t)Xk(t) ,

which is just eq. (2.3) characterizing a parallel transported vector.

iii) Let Υ ∈ TX(TM) have coordinates (V , W ) under K̃∗. They transform by the matrix
(4):

W p =
∂2xp

∂x̄l∂x̄k
X̄kV̄ l +

∂xp

∂x̄i
W̄ i .

Suppose Υ = σX(Y ), i.e., (V , W ) = (Y ,−Γ(Y , X)) and similarly in the barred coordina-
tes. Then

−Γp
rqY

rXq =
∂2xp

∂x̄k∂x̄l
X̄kȲ l −

∂xp

∂x̄i
Γ̄i

lkȲ
lX̄k

or, by solving w.r.t the last term,

∂xp

∂x̄i
Γ̄i

lk = Γp
rq

∂xr

∂x̄l

∂xq

∂x̄k
+

∂2xp

∂x̄k∂x̄l

times Ȳ lX̄k, where we used Xq = (∂xq/∂x̄k)X̄k. This is the same as

Γ̄i
lk =

∂x̄i

∂xp
(Γp

rq

∂xr

∂x̄l

∂xq

∂x̄k
+

∂2xp

∂x̄k∂x̄l
)

which is (2.5).


