General relativity, solution sheet 8.

HS 08
1. Energy conditions

The dual basis is € = eg, €' = —e;. We have therefore Tog = T% = T, Ty, = —T%, Ty, =
—T"%, = T% and in particular T' = T%, = Tyo — Z?:l T.

i) Ty in the rest frame of an observer with 4-velocity w is written in general covariant
form as Tho = (T'w,u), because in his rest frame u = eg, i.e. (Tu,u) = T'(eg,e9) = Too-
The weak energy condition is then (T'u,u) > 0 for every timelike vector w.

ii) (Tog — (1/2)gapsT)u*u’ is invariant and in the rest frame of the observer it is equal to
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The strong energy condition is therefore (Th5 — (1/2)gasT)u®u’ > 0 for every timelike
vector u. According to the calculations done at page 36 we have V2 n,|,—o = R(eo, €4)e€o,
le.

(N, Vgona)}

and, as R%,, = 0,

=0 — —<€a7 Vgona\7:0> = <€a, R(ea, 60)€0> = R%a0
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iii) The cone of timelike or lightlike vectors is V* := {v | (v,v) > 0,2° > 0}. In the
rest frame of the observer we have (Tu)® = Tz = T, therefore the dominant energy
condition is equivalent to

(Tu,u) >0,  (Tu,Tu) >0
for every timelike vector wu.

We note that v € V* iff (v,w) > 0 for all w € V* (such vectors are of the form (v°,?)
with v° > |#], therefore (v,w) = v%w® — ¥ @ > 0 by |v]|w| > |7 - @]). Applying this to
v = T'u, the dominant energy condition states (w,Tu) > 0 for any timelike vectors u, w.
Taking them with u® = w® = 1, and hence |u], |@] < 1, yields

(w, Tu) = Too + Tor(u* 4+ w"*) + w'Tyu* >0,
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Two = Tor). In particular for 4 = @ = 0 the weak energy condition follows; picking
= +é;, W = 0 implies Too £ To; > 0, i.e. |Ty;| < Too; by setting instead W = +é;, we get

<y

Too £ (Toi + Tor) + Ti. > 0,

and Tyo + T > 0 by the sum of the two inequalities. In the same way Thy — Tij > 0
(and therefore the claim) follows from the choice W = Fé;. Conversely: by a rotation of



ea, (a=1,2,3) with e fixed, T% does not change and (7%°)3_, transforms as a Euclidean
vector, with no consequences on the property (T“O)izo € V', we may therefore assume
T'9 =720 = ( and the dominant energy condition follows then from |73 < T,

iv) As a preliminary we consider tensors of the form 7" = au®u — b(u, u)g with (u,u) > 0.
We have

(v, Tv) = a(v,u)* — b(u, u)(v,v) = a((v, u)? — (u, u)(v,v)) + (a = b)(u,u)(v,v) .

In both terms the factors containing v are > 0 for (v,v) > 0. Indeed, @ = 0 without loss
by invariance; then the first factor is (u°)? = (u,u) times (v°)? — (v,v) = @2 The two
terms can however be made = 0 independently of one another. Thus (v,7v) > 0 for all
veVtiffa—b>0anda > 0.

Let us put ¢ = 1. For the ideal fluid, a = p + p and b = p. The condition (i) thus implies
p>0and p+p > 0. Since trT = p — 3p the tensor T'— (1/2)(tr T")g is of the same form,
with the same a but with b = p + (1/2)(p — 3p) = (1/2)(p — p). Thus (ii) amounts to
p+3p>0and p+p>0. Finally (T?)* := TH, T is still of the same form:

T? = (a*(u,w)u ® u — 2ab(u, w)u @ u + b*(u, u)’g = (u,u)(d'u @ u —b'(u,u)g)

with @’ = a® — 2ab, b = —b?. The condition 0 < a’ — b = (a — b)? is trivial and (iii) asks

for 0 < a’ = p? — p?. In view of p > 0, this is |p| < p. One can reinstate ¢ by p ~ pc2.

Alternatively the same conclusions may be obtained from the formulations of the energy
conditions in terms of matrix elements. We have

T = (p+p)(u’)? —p=(p+p) ()= 1) +p,

Too + ZT =(p+p) (W) +a*) —p+3p=2(p+p)((u°)> = 1)+ p+3p

by using (u®)? —@? = 1. Both expression are linear in (u°)? € [1, 00), hence the conclusion
about (i,ii). The condition (iii), i.e. |T] < T for T' = (T™), is equivalent to 7% > 0 and
IT)? < (T%)2. The latter inequality is, after some rearrangement, 0 < (p* — p?)((u°)? —

1) + p?, whence the conclusion.

For the electromagnetic field we have 7% = (1/2)(E? 4+ B2) > 0. Therefore (i,ii) are
satisfied (the difference between the two disappears because of tr7" = 0). Also (iii) is
satisfied because T% = (E' A B)' and |E A B| < |E||B| < Tyo.

For the cosmological term 7" = (A/k)g" with A > 0 we have: (i) is satisfied, (ii) is not
(T —(1/2)Tg" = —(A/k)g") and (iii) again is. Less directly, this also follows from the
fluid with p = —p.

The strong energy condition plays a role in Hawking’s singularity theorem described below.

Let (M, g) be a pseudo-Riemannian manifold of signature (+, —, —, —) and ¥ C M be a
spacelike 3-surface having normal u: g(u,u) = 1, g(u, X) = 0 for any vector field X on X.
Conventionally call the side of ¥ distinguished by w its future side. Define a (symmetric)
tensor K of type (g) on X, called extinsic curvature, by

K(X,Y) = g(Vxu,Y),



where X, Y are vector fields on X.

Theorem (roughly). Suppose ¥ is compact and tr K < C' < 0 on X. Suppose
R, "€ >0 (1)

for any timelike vector field £ on M. Then there is a timelike geodesic starting from the
past side of X, such that it ends in a singularity of M. In fact, it reaches it within proper
time 3/|C/.

Remarks. 1) For g a solution of the field equations (5.9), eq. (1) amounts to the strong
energy condition.

2) Example: Let ¥ be a time slice in a Friedmann model (it is compact for &k = +1). Then
u=(1,0,0,0) in chart A on p. 41 of the lecture notes. At (¢,0,0,0),

Kij = a21—‘ji0 = 5,-]-&& .
In particular, tr K = —3aa™! < 0 during expansion. Indeed, there is a singularity (the

big bang) in the past of X, as the theorem claims. The theorem however shows that
homogeneity and isotropy are not essential for that.



