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1. Time delay in the Schwarzschild metric

i) For null geodesics, the Lagrangian vanishes,
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ṙ2 −

l2

r2
= 0 .
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Moreover, ṙ = ṫ dr/dt = E(1 − 2m/r)−1 dr/dt, so that the radial equation is
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ii) To first order in m/r,
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and the Shapiro time delay is
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iii) Finally, to lowest order in r0/r1,2,
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2. Radial free fall

The particle being initially at rest at r(0) = R, it has E2 = 1 − 2m/R and l = 0. In this
case, the radial equation
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is of the same form as the Friedmann equation for k = 1 but with different boundary
conditions. In fact in terms of s =
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2m/R τ the equation is
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with the particular (expanding) cycloid solution (6.25)
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2
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The endpoints η = 0, π correspond to r = 0, R and s = 0, (R/2)π. However we seek
the infalling solution, preferably parametrized forward in time. We thus replace s ;

(R/2)π − s, η ; π − η and obtain
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where 0 ≤ η ≤ π. Note that the total proper time to reach r = 0 is finite, τ(π) =
(πR/2)

√

R/2m.


