Exercise Sheet VIII

Hand in by 10.12.2008

Problem 1 [Zero mode Hamiltonian.]: We can use the action

$$
S=\int d \tau d \sigma \mathcal{L}=\frac{1}{4 \pi \alpha^{\prime}} \int d \tau \int_{0}^{\pi} d \sigma\left(\dot{X} \dot{X}-X^{\prime} X^{\prime}\right)
$$

to study the dynamics of the compact coordinate X. Consider the zero mode expansion of the string coordinate in the sector of winding number m :

$$
X(\tau, \sigma)=x(\tau)+m R \sigma
$$

Find the action for $x(\tau)$. Calculate the Hamiltonian, and show that you recover the contributions to

$$
H=\frac{\alpha^{\prime}}{2}\left(p^{i} p^{i}+p^{2}+w^{2}\right)+N^{\perp}+\bar{N}^{\perp}-2
$$

arising from the compact dimension.
Problem 2 [Compactification on T^{2} with a constant Kalb-Ramond field.]: Assume that x^{2} and x^{3} are each compactified into a circle of radius R. The corresponding string coordinates are called X^{r}, with $r=2,3$. Moreover, there is a non-vanishing Kalb-Ramond field with expectation value

$$
B_{23} \equiv \frac{1}{2 \pi \alpha^{\prime}} b
$$

where b is a dimensionless constant. All other components of $B_{\mu \nu}$ vanish.
(a) Build an action for the $X^{r}(\tau, \sigma)$ by adding an action of the type used in Problem 1 to the action

$$
S=-\int d \tau d \sigma \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \sigma} B_{\mu \nu}(X)
$$

(b) Consider the following expansion for the zero mode part of the coordinates:

$$
X^{r}=x^{r}(\tau)+m_{r} R \sigma, \quad r=2,3
$$

Show that the Lagrangian for $x^{r}(\tau)$ is

$$
\begin{equation*}
L=\frac{1}{2 \alpha^{\prime}}\left(\left(\dot{x}^{2}\right)^{2}+\left(\dot{x}^{3}\right)^{2}\right)-\frac{\alpha^{\prime}}{2}\left(\left(w_{2}\right)^{2}+\left(w_{3}\right)^{2}\right)-b\left(\dot{x}^{2} w_{3}-\dot{x}^{3} w_{2}\right) . \tag{1}
\end{equation*}
$$

Here $w_{r}=m_{r} R / \alpha^{\prime}$. The last term in (1) is a total derivative, but it is important in the quantum theory, as you will see.
(c) Define momenta canonical to x^{r}, compute the Hamiltonian, and show that it takes the form

$$
H=\frac{\alpha^{\prime}}{2}\left(\left(p_{2}+b w_{3}\right)^{2}+\left(p_{3}-b w_{2}\right)^{2}+w_{2}^{2}+w_{3}^{2}\right)
$$

Verify that the Hamiltonian generates the correct equations of motion. Note that the quantisation conditions on the momenta are $p_{r}=n_{r} / R$.
(d) While we have only looked explicitly at the zero modes, the oscillator expansion of the coordinates works just as before. Write the appropriate expansions for the coordinates $X^{2}(\tau, \sigma)$ and $X^{3}(\tau, \sigma)$ along the lines of

$$
X(\tau, \sigma)=x_{0}+\alpha^{\prime} p \tau+\alpha^{\prime} w \sigma+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{e^{-i n \tau}}{n}\left(\bar{\alpha}_{n} e^{-i n \sigma}+\alpha_{n} e^{i n \sigma}\right)
$$

Explain why the mass-squared operator takes the form

$$
\begin{align*}
M^{2}= & \left(\frac{n_{2}}{R}+b \frac{m_{3} R}{\alpha^{\prime}}\right)^{2}+\left(\frac{n_{3}}{R}-b \frac{m_{2} R}{\alpha^{\prime}}\right)^{2} \tag{2}\\
& +\left(\frac{m_{2} R}{\alpha^{\prime}}\right)^{2}+\left(\frac{m_{3} R}{\alpha^{\prime}}\right)^{2}+\frac{2}{\alpha^{\prime}}\left(N^{\perp}+\bar{N}^{\perp}-2\right) .
\end{align*}
$$

(e) Show that the constraint $L_{0}^{\perp}-\bar{L}_{0}^{\perp}=0$ yields

$$
\begin{equation*}
N^{\perp}-\bar{N}^{\perp}=n_{2} m_{2}+n_{3} m_{3} \tag{3}
\end{equation*}
$$

Problem 3 [Dualities in the T^{2} compactification with Kalb-Ramond field.]: In problem 2 you obtained equations (2) and (3), which define the spectrum of a compactification on a square torus T^{2} with radius R and with Kalb-Ramond field $B_{23}=b /\left(2 \pi \alpha^{\prime}\right)$. We are now interested in duality symmetries. Show that the spectrum is unchanged under the changes in the background parameters R and b listed below.
(a) The value of b is changed as

$$
\begin{equation*}
b \mapsto b^{\prime}=b+\ell \frac{\alpha^{\prime}}{R^{2}}, \quad \ell \in \mathbb{Z} \tag{4}
\end{equation*}
$$

while R is left unchanged. Equation (4) states that b is a periodic variable. Let A denote the area of the torus. Use (4) to show that the "flux" parameter $f_{B}=B_{23} A$ is an angle variable (i.e., $f_{b} \sim f_{b}+2 \pi$). To prove that the spectrum is unchanged, you must find an appropriate compensating change in the quantum numbers, as in

$$
M^{2}(R ; n, m)=M^{2}(\tilde{R} ; m, n)
$$

for example. [Hint: $n_{2} \rightarrow n_{2}-\ell m_{3}$ is one needed change.]
(b) The values of R and b are changed as

$$
R \mapsto R^{\prime}=\frac{\alpha^{\prime}}{R} \frac{1}{\sqrt{1+b^{2}}}, \quad b \mapsto b^{\prime}=-b .
$$

When $b=0$ this is the familiar T-duality transformation of the radius. The compensating change here is the expected $n_{r} \leftrightarrow m_{r}$. [Hint: The algebra is easier if you first expand (2).]
(c) $b \mapsto-b$, with R unchanged. Use $m_{r} \mapsto-m_{r}$ as the compensating change of quantum numbers. What additional change must be done regarding oscillators to make (3) work?

