Sheet 10

Due date: 27 May 2014

Exercise 1 [Angular momentum]: The angular momentum operator is defined by

$$
\mathbf{L}=\mathbf{x} \wedge \mathbf{p}
$$

and thus its components are

$$
L_{i}=\varepsilon_{i j k} x_{j} p_{k}
$$

(i) Using the fact that $\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j}$, derive the commutation relations for the L_{i}

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=i \hbar \varepsilon_{i j k} L_{k} \tag{1}
\end{equation*}
$$

(ii) Use (1) to show that

$$
\left[\mathbf{L}^{2}, L_{j}\right]=0 \quad \text { for } j=1,2,3 .
$$

Let us denote by $|l, m\rangle$ the eigenstates of both \mathbf{L}^{2} and L_{3} such that

$$
\begin{aligned}
\mathbf{L}^{2}|l, m\rangle & =\hbar^{2} l(l+1)|l, m\rangle \\
L_{3}|l, m\rangle & =\hbar m|l, m\rangle
\end{aligned}
$$

(iii) Evaluate the commutator [$L_{3}, L_{1} L_{2}+L_{2} L_{1}$], and deduce that the expectation values of L_{1}^{2} and L_{2}^{2} with respect to $|l, m\rangle$ are given by

$$
\langle l, m| L_{1}^{2}|l, m\rangle=\langle l, m| L_{2}^{2}|l, m\rangle=\frac{1}{2} \hbar^{2}\left[l(l+1)-m^{2}\right] .
$$

Hint: If ψ is an eigenstate of the self-adjoint operator \mathbf{A}, show that, for any operator \mathbf{B},

$$
\langle\psi \mid[\mathbf{A}, \mathbf{B}] \psi\rangle=0
$$

Exercise $2\left[\right.$ Oscillator representation of su(2)]: Let $a_{ \pm}^{\dagger}$ and $a_{ \pm}$be two pairs of creation and annihilation operators, i.e.

$$
\left[a_{+}, a_{+}^{\dagger}\right]=\left[a_{-}, a_{-}^{\dagger}\right]=1
$$

while all the other commutators vanish. Define

$$
J_{3}=\frac{1}{2}\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right), \quad J_{+}=a_{+}^{\dagger} a_{-}, \quad J_{-}=a_{-}^{\dagger} a_{+}
$$

(i) Show that these operators satisfy the commutation relations of $\mathrm{su}(2)$,

$$
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=2 J_{3}
$$

(ii) Calculate $\mathbf{J}^{2}=J_{3}^{2}+\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)$and show that it equals $\frac{N}{2}\left(\frac{N}{2}+1\right)$, where $N=a_{+}^{\dagger} a_{+}+a_{-}^{\dagger} a_{-}$is the (total) number operator.
(iii) Let us denote by $\left|n_{+}, n_{-}\right\rangle$the eigenstates of the number operators $N_{ \pm}=a_{ \pm}^{\dagger} a_{ \pm}$with eigenvalues $n_{ \pm}$. Show that

$$
\begin{aligned}
J_{+}\left|n_{+}, n_{-}\right\rangle & =\sqrt{n_{-}\left(n_{+}+1\right)}\left|n_{+}+1, n_{-}-1\right\rangle, \\
J_{-}\left|n_{+}, n_{-}\right\rangle & =\sqrt{n_{+}\left(n_{-}+1\right)}\left|n_{+}-1, n_{-}+1\right\rangle, \\
J_{3}\left|n_{+}, n_{-}\right\rangle & =\frac{1}{2}\left(n_{+}-n_{-}\right)\left|n_{+}, n_{-}\right\rangle .
\end{aligned}
$$

(iv) Recall that on the standard basis $|j, m\rangle$ the generators of $\operatorname{su}(2)$ act as

$$
\begin{aligned}
J_{3}|j, m\rangle & =m|j, m\rangle \\
J_{ \pm}|j, m\rangle & =\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle .
\end{aligned}
$$

Show that the above operators take this form with

$$
j=\frac{1}{2}\left(n_{+}+n_{-}\right), \quad \text { and } \quad m=\frac{1}{2}\left(n_{+}-n_{-}\right) .
$$

Thus conclude that we have the identification

$$
|j, m\rangle=\frac{\left(a_{+}^{\dagger}\right)^{j+m}\left(a_{-}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0,0\rangle .
$$

