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Exercise 1 [Hamilton formalism for electrodynamics ]: The Lagrange function describing
a massive charged particle in an external electromagnetic field is
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(i) Define the conjugate momentum, and find the corresponding Hamilton function.

(ii) Determine the Hamiltonian equations, and show that they are equivalent to the
relativistic equations of motion
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Exercise 2 [Poisson brackets ]: On the space of functions defined on phase space, the
Poisson bracket is defined as
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(i) Show that the Poisson bracket satisfies the Jacobi identities

{F1, {F2, F3}}+ {F2, {F3, F1}}+ {F3, {F1, F1}} = 0 .

(ii) Assume that the Hamiltonian of a system is not explicitly time-dependent. Then it
follows from Hamilton’s equations of motion that

d

dt
F (q(t), p(t)) = {H,F} .

Show that if F and G are conserved quantities then so is the Poisson bracket {F,G}.

(iii) Let L be the angular momentum L = x∧p and e1, e2 and e3 the three unit vectors
of R3. From the fact that L · e1 and L · e2 are conserved deduce that L · e3 is a
conserved quantity.


