Extra Sheet
Due date: 8 April 2014 (only discussion)

Exercise 1 [Minimal surface of revolution]: We generate a surface of revolution by rotating a curve with fixed endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ around the y-axis (fig. 1), where $0<x_{1}<x_{2}$ and $y_{1}<y_{2}$. Determine the curve $y(x)$ that minimises the area.

Figure 1: Surface of revolution around the y-axis
Hint: First compute the area A of the surface as a function of the curve $y(x)$, then apply the extremal principle to the functional $A[y(x)]$. As the problem is invariant under translation in the y direction, solving the Euler-Lagrange equation is simplified by the corresponding conserved quantity.

Exercise 2 [Simple systems]: Find the Lagrangian and the corresponding equations of motion for the following systems:
(i) the pendulum in the plane: First identify the constraints of the system depicted in fig. 2 and find a good choice of independent parameters that describe the possible configurations of the system. Write the kinetic T and potential V energy in terms of these parameters, and define $L=T-V$. Then write down the Euler-Lagrange equations for this Lagrange function. Compare the resulting equations of motion with what you would have obtained by the traditional approach, using forces and constraints.
(ii) the double pendulum in the plane: Do a similar analysis with the planar double pendulum as shown in fig. 3.

Figure 2: Single pendulum in the plane

Hint: Use the trigonometric identity

$$
\cos \phi_{1} \cos \phi_{2}+\sin \phi_{1} \sin \phi_{2}=\cos \left(\phi_{1}-\phi_{2}\right) .
$$

In this case it may be difficult to do the traditional analysis of forces and constraints explicitly.
(iii) [optional] the centrifugal governor: Do a similar analysis for the centrigual governor (fig. 3), and determine the equilibrium solutions ($\theta=$ const).

The centrifugal governor consists of two massless rods of length a which are attached to an axis rotating at an angular velocity Ω. At the end of the rods, there are two identical masses m_{1}. These are connected to two further massless rods of length a by joints. At their lower ends, these rods are connected to a slider of mass m_{2} which can move along the z-axis without friction.

Figure 3: Double pendulum and centrifugal governor

