Sheet 3

Due date: 14 March 2014

Exercise 1 [Magnetic field of an inductor]: Consider an inductor with radius R and length L oriented along the z-direction, for which the number of windings per unit length equals n. If the electric current through the inductor is I, compute the z-component of the magnetic field for points on the symmetry axis of the inductor. What is the value of the magnetic field in the limit $L \rightarrow \infty$ with n held fixed?

Hint: $\int d x \frac{1}{{\sqrt{x^{2}+w^{2}}}^{3}}=\frac{x}{w^{2} \cdot \sqrt{x^{2}+w^{2}}}$.
Exercise 2 [Magnetic monopole]: Dirac's ansatz for the vector potential of a magnetic monopole reads

$$
\mathbf{A}(\mathbf{x})=\frac{g}{4 \pi} \int_{L} \frac{d \mathbf{l}^{\prime} \wedge\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}
$$

where the line integral is understood to be along the Dirac string L. Here we consider the case where L is the negative z-axis from $z=-\infty$ to $z=0$.
(i) Compute \mathbf{A} explicitly, and show that the components of the vector potential in spherical coordinates are given by $\mathbf{A}_{r}=0, \mathbf{A}_{\theta}=0$ as well as

$$
\mathbf{A}_{\phi}=\frac{g(1-\cos \theta)}{r \sin \theta}=\frac{g}{r} \tan \frac{\theta}{2} .
$$

(ii) Show that the magnetic field $\mathbf{B}=\nabla \wedge \mathbf{A}$ has (everywhere except for $\theta=\pi$) the same form as the Coulomb field of an electric point charge.
Hint: Use the fact that in spherical coordinates

$$
\nabla \wedge\left(A_{\phi} \mathbf{e}_{\phi}\right)=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right) \mathbf{e}_{r}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}\right) \mathbf{e}_{\theta}
$$

(iii) Using the result from part (ii), compute the magnetic flux through the disk of radius $R \sin \theta$ shown in the figure. Choose the orientation of the surface for both $\theta<\frac{\pi}{2}$ and $\theta>\frac{\pi}{2}$ such that the normal vector points in the positive z-direction.

(iv) Compute the line integral $\oint \mathbf{A} d \mathbf{l}$ along the circle that bounds the disk, and compare the result to the one obtained in part (iii). Why do the two results agree only for $0<\theta<\frac{\pi}{2}$, but differ for $\frac{\pi}{2}<\theta<\pi$ by a constant term? Can you interpret this difference?

