Exercise 1. Polarization of a neutral Fermi liquid

Consider a system of neutral spin- $1 / 2$ particles each carrying a magnetic moment $\boldsymbol{\mu}=\frac{\mu}{2} \boldsymbol{\sigma}$. An electric field \boldsymbol{E} couples to the particles by the relativistic spin-orbit interaction

$$
\begin{equation*}
H_{S O}=\frac{\mu}{2}\left(\frac{\boldsymbol{v}}{c} \times \boldsymbol{E}\right) \cdot \boldsymbol{\sigma}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}=\left(\sigma^{x}, \sigma^{y}, \sigma^{z}\right)$ is the vector of Pauli spin matrices. In the following we want to calculate the linear response function χ for the uniform polarization

$$
\begin{equation*}
\boldsymbol{P}=\chi \boldsymbol{E} . \tag{2}
\end{equation*}
$$

In the presence of the spin-orbit interaction we have to consider a more general situation of a distribution of quasiparticles with variable spin quantization axis. In such a case we must treat the quasiparticle distribution function and the energy as a 2×2 matrix, $\left(\hat{n}_{\boldsymbol{p}}\right)_{\alpha \beta}$ and $\left(\hat{\epsilon}_{\boldsymbol{p}}\right)_{\alpha \beta}$, respectively. Furthermore, we require f to be a scalar under spin rotations. In this case f must be of the form

$$
\begin{equation*}
\hat{f}_{\alpha \beta, \alpha^{\prime} \beta^{\prime}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)=f^{s}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \delta_{\alpha \beta} \delta_{\alpha^{\prime} \beta^{\prime}}+f^{a}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \boldsymbol{\sigma}_{\alpha \beta} \cdot \boldsymbol{\sigma}_{\alpha^{\prime} \beta^{\prime}} \tag{3}
\end{equation*}
$$

(a) Expand $\hat{n}_{\boldsymbol{p}}, \hat{\epsilon}_{\boldsymbol{p}}$, and $\hat{f}_{\boldsymbol{\sigma} \sigma^{\prime}}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$ in terms of the unit matrix $\sigma^{0}=\mathbf{1}$ and the Pauli spin matrices $\sigma^{1}=\sigma^{x}, \sigma^{2}=\sigma^{y}, \sigma^{3}=\sigma^{z}$ and write down Landau's energy functional E.
(b) Assume that the electric field is directed along the z direction, $\boldsymbol{E}=E_{z} \hat{z}$. Show that the polarization of such a system is given by

$$
\begin{equation*}
P_{z}=\frac{\partial E}{\partial E_{z}}=\frac{\mu}{m^{*} c} \sum_{p}\left(p_{y} \delta n_{p}^{1}-p_{x} \delta n_{p}^{2}\right) . \tag{4}
\end{equation*}
$$

Here, $\delta n_{\boldsymbol{p}}^{i}=\frac{1}{2} \operatorname{tr}\left[\delta \hat{n}_{\boldsymbol{p}} \sigma^{i}\right]$ and $\delta \hat{n}_{\boldsymbol{p}}$ is the deviation from the equilibrium $\left(E_{z}=0\right)$ distribution function.
(c) The application of the electric field changes the quasiparticle energy in linear response according to

$$
\begin{equation*}
\delta \tilde{\epsilon}_{\boldsymbol{p}}^{i}=\delta \epsilon_{\boldsymbol{p}}^{i}+\frac{2}{V} \sum_{\boldsymbol{p}^{\prime}} f^{i i}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \delta n_{\boldsymbol{p}^{\prime}}^{i} \quad \text { with } \quad \delta n_{\boldsymbol{p}}^{i}=\frac{\partial n_{\boldsymbol{p}}^{0}}{\partial \epsilon_{\boldsymbol{p}}} \delta \tilde{\epsilon}_{\boldsymbol{p}}^{i}=-\delta_{D}\left(\epsilon_{\boldsymbol{p}}^{0}-\epsilon_{F}\right) \delta \tilde{\epsilon}_{\boldsymbol{p}}^{i}, \tag{5}
\end{equation*}
$$

where δ_{D} denotes the Dirac delta function.
Use the ansatz $\delta \tilde{\epsilon}_{\boldsymbol{p}}^{i}=\alpha \delta \epsilon_{\boldsymbol{p}}^{i}$ and show that $\alpha=1 /\left(1+F_{1}^{a} / 3\right)$.
(d) Compute χ according to Eq. (2).

